

Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/

Volume 5, Issue 3, Article 81, 2004

CORRIGENDUM TO "ON SHORT SUMS OF CERTAIN MULTIPLICATIVE FUNCTIONS"

OLIVIER BORDELLÈS

2 ALLÉE DE LA COMBE 43000 AIGUILHE FRANCE

borde43@wanadoo.fr

Received 27 August, 2003; accepted 28 April, 2004 Communicated by S.S. Dragomir

ABSTRACT. This note is a corrigendum of the main result of the paper "On short sums of certain multiplicative functions" (J. Ineq. Pure & Appl. Math., 3(5), Art. 70 (2002)).

Key words and phrases: Corrigendum, Short sums, Integer points.

2000 Mathematics Subject Classification. 11N37, 11P21.

The purpose of this note is both to give a corrected statement of the main result in [1] and to provide the necessary changes to the arguments in that paper to justify this corrected statement. The result we now assert is the following:

Theorem 1. Let $\varepsilon, c_0 > 0$ and $2 \leqslant y \leqslant c_0 x^{1/2}$ be real numbers. Let f be a multiplicative function satisfying $0 \leqslant f(n) \leqslant 1$ for any positive integer n and f(p) = 1 for any prime number p. We have as $x \to +\infty$:

$$\sum_{x < n \leqslant x+y} f(n) = y \mathcal{P}(f) + O_{\varepsilon} \left(x^{1/15+\varepsilon} y^{2/3} \right),$$

where

$$\mathcal{P}\left(f\right) := \prod_{p} \left(1 - \frac{1}{p}\right) \left(1 + \sum_{l=1}^{\infty} \frac{f\left(p^{l}\right)}{p^{l}}\right).$$

Before giving the proof, we note that if $y < x^{1/5}$, then $x^{1/15} > y^{1/3}$ so that the expression $x^{1/15+\varepsilon}y^{2/3}$ in the error term exceeds the main term (as well as the trivial bound of y+1 on the sum).

ISSN (electronic): 1443-5756

The author is indebted to the referee for insightful comments.

^{© 2004} Victoria University. All rights reserved.

Proof. On page 5 of [1], the sum

$$S_1 := \sum_{\substack{y < d \leqslant x + y \\ d \text{ squarefull}}} |g(d)| \left(\left[\frac{x + y}{d} \right] - \left[\frac{x}{d} \right] \right)$$

has been bounded by the sum

$$S_2 := \sum_{b \leqslant (x+y)^{1/3}} \sum_{\left(\frac{y}{b^3}\right)^{1/2} < a \leqslant \left(\frac{x+y}{b^3}\right)^{1/2}} \left(\left[\frac{(x+y)b^{-3}}{a^2} \right] - \left[\frac{xb^{-3}}{a^2} \right] \right)$$

by using $d = a^2b^3$ with $\mu^2(b) = 1$, and S_2 has been bounded by

$$\ll_{\varepsilon} x^{\varepsilon} \max_{1 \leq B \leq (x+y)^{1/3}} \mathcal{R}\left(\frac{x}{b^3}, B, \frac{y}{B^3}\right)$$

for any (small) positive real number ε , where we defined $\mathcal{R}\left(f,N,\delta\right)$ to be the number of integer points (n,m) verifying $n\in]N;2N]$ and $|f\left(n\right)-m|\leqslant \delta$. Unfortunately, the part $\sum_{b\leqslant y^{1/3}}$ of S_2 cannot be estimated by $\max_{1\leqslant B\leqslant (x+y)^{1/3}}\mathcal{R}\left(\frac{x}{b^3},B,\frac{y}{B^3}\right)$, hence we have to proceed differently: for any positive integer r, we set

$$\tau_{(r)}\left(n\right) := \sum_{d^r \mid n} 1$$

and recall that

$$\tau_{(r)}(n) \ll_{\varepsilon} n^{\varepsilon/r}$$

for any positive integers n, r.

In S_1 , $d = a^2b^3 > y$ implies $a > y^{1/5}$ or $b > y^{1/5}$. Since

$$\sum_{y^{1/5} < a \leqslant (x+y)^{1/2}} \sum_{\left(\frac{y}{a^2}\right)^{1/3} < b \leqslant \left(\frac{x+y}{a^2}\right)^{1/3}} \left(\left[\frac{(x+y) a^{-2}}{b^3} \right] - \left[\frac{xa^{-2}}{b^3} \right] \right) \\ \leqslant \sum_{y^{1/5} < a \leqslant (x+y)^{1/2}} \sum_{\frac{x}{a^2} < n \leqslant \frac{x+y}{a^2}} \tau_{(3)} \left(n \right)$$

and we have the same if $b > y^{1/5}$, then

$$S_{1} \leqslant \sum_{y^{1/5} < b \leqslant (x+y)^{1/3}} \sum_{\frac{x}{b^{3}} < n \leqslant \frac{x+y}{b^{3}}} \tau_{(2)}(n) + \sum_{y^{1/5} < a \leqslant (x+y)^{1/2}} \sum_{\frac{x}{a^{2}} < n \leqslant \frac{x+y}{a^{2}}} \tau_{(3)}(n)$$

$$= \sum_{y^{1/5} < b \leqslant (2y)^{1/3}} \sum_{\frac{x}{b^{3}} < n \leqslant \frac{x+y}{b^{3}}} \tau_{(2)}(n) + \sum_{(2y)^{1/3} < b \leqslant (x+y)^{1/3}} \sum_{\frac{x}{b^{3}} < n \leqslant \frac{x+y}{b^{3}}} \tau_{(2)}(n)$$

$$+ \sum_{y^{1/5} < a \leqslant (2y)^{1/2}} \sum_{\frac{x}{a^{2}} < n \leqslant \frac{x+y}{a^{2}}} \tau_{(3)}(n) + \sum_{(2y)^{1/2} < a \leqslant (x+y)^{1/2}} \sum_{\frac{x}{a^{2}} < n \leqslant \frac{x+y}{a^{2}}} \tau_{(3)}(n)$$

$$:= \Sigma_{1} + \Sigma_{2} + \Sigma_{3} + \Sigma_{4}.$$

• For Σ_1 and Σ_3 we use the trivial bound:

$$\Sigma_{1} + \Sigma_{3} \ll_{\varepsilon} x^{\varepsilon/2} \sum_{y^{1/5} < b \leqslant (2y)^{1/3}} \left(\left[\frac{x+y}{b^{3}} \right] - \left[\frac{x}{b^{3}} \right] \right) + x^{\varepsilon/3} \sum_{y^{1/5} < a \leqslant (2y)^{1/2}} \left(\left[\frac{x+y}{a^{2}} \right] - \left[\frac{x}{a^{2}} \right] \right)$$
$$\ll_{\varepsilon} x^{\varepsilon/2} y \left(\sum_{b > y^{1/5}} \frac{1}{b^{3}} + \sum_{a > y^{1/5}} \frac{1}{a^{2}} \right) \ll_{\varepsilon} y^{4/5} x^{\varepsilon/2}.$$

CORRIGENDUM 3

• For Σ_2 , we use the method of [1] to get

$$\Sigma_2 \ll_{\varepsilon} x^{\varepsilon} \left(x^{1/6} + y^{1/3} \right).$$

• For Σ_4 , if we suppose $y \leqslant c_0 x^{1/2}$ (where $c_0 > 0$ is sufficiently small), we have using Lemmas 2.1 and 2.2 of [1]:

$$\Sigma_{4} \ll_{\varepsilon} x^{\varepsilon} \left\{ \max_{(2y)^{1/2} < A \leqslant c_{0}^{-1} y} \mathcal{R}\left(\frac{x}{a^{2}}, A, \frac{y}{A^{2}}\right) + \max_{c_{0}^{-1} y < A \leqslant x^{1/2}} \mathcal{R}\left(\frac{x}{a^{2}}, A, \frac{y}{A^{2}}\right) \right\}$$
$$\ll_{\varepsilon} x^{\varepsilon} \left((xy)^{1/6} + x^{1/5} + x^{1/15}y^{2/3} \right).$$

Hence we finally have

$$S_1 \ll_{\varepsilon} x^{\varepsilon} \left(x^{1/15} y^{2/3} + y^{4/5} + (xy)^{1/6} + x^{1/5} + x^{1/6} + y^{1/3} \right)$$
$$\ll_{\varepsilon} x^{\varepsilon} \left(x^{1/15} y^{2/3} + y^{4/5} \right)$$

if $y \ge x^{1/5}$. Note that $y^{4/5} \ll x^{1/15}y^{2/3}$ if $y \le c_0 x^{1/2}$ and that

$$\left| \sum_{x < n \leqslant x + y} f(n) - y \mathcal{P}(f) \right| \ll y \ll x^{1/15} y^{2/3}$$

if $y < x^{1/5}$. This concludes the proof of the theorem.

REFERENCES

[1] O. BORDELLÈS, On short sums of certain multiplicative functions, *J. Inequal. Pure and Appl. Math.*, **3**(5) (2002), Art. 70. [ONLINE: http://jipam.vu.edu.au/article.php?sid=222]