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ABSTRACT. In this paper, we will establish a martingale inequality, which extends the classic
Hoeffding inequality in some sense. In addition, our inequality improves the results of Lee and
Su [7] (2002) in some cases.
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1. I NTRODUCTION

Given a probability space(Ω,F , P) and a filtrationF0 = {φ, Ω} ⊂ F1 ⊂ · · · ⊂ Fn = F , an
integrable random variableX ∈ L1(Ω,F , P) can be written as

X − EX =
n∑

k=1

[
E(X|Fk)− E(X|Fk−1)

]
:=

n∑
k=1

dk,

wheredk is a martingale difference. An early inequality result is the following. If for anyk,
there exist constantsak andbk, such thatP(dk ∈ [ak, bk]) = 1, then for anyt > 0, we have the
following classic Hoeffding inequality (cf. [5])

P(|X − EX| ≥ t) ≤ 2 exp

{
− 2t2∑n

k=1(bk − ak)2

}
.

De la Peña [2, 3] discussed a general class of exponential inequalities for bounded martingale
difference and ratios by the decoupling theory. Andreas [9] gave exponential deviation inequal-
ities for one-sided bounded martingale difference sequences. In the case of the length of longest
increasing subsequences and the independence number of sparse random graphs, Lee and Su
[7] have utilised the symmetry argument in the martingale inequality.
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For these phenomena of measure concentration, the usual procedure in analysis is via mar-
tingale methods, information-theoretic methods and Talagrand’s induction method (see [6, 8,
10]). In most applications,X is a function ofn independent (possibly vector valued) ran-
dom variablesξ1, ξ2, . . . , ξn and the filtration isFk = σ(ξ1, ξ2, . . . , ξn). In this case we let
{ξ′1, ξ

′
2, . . . , ξ

′
n} be an independent copy of{ξ1, ξ2, . . . , ξn} and define

∆k = X(ξ1, ξ2, . . . , ξk−1, ξk, ξ
′

k+1, . . . , ξ
′

n)−X(ξ1, ξ2, . . . , ξk−1, ξ
′

k, ξ
′

k+1, . . . , ξ
′

n).

Let dk = E(∆k|Fk). By definition, ∆k is the change in the value ofX resulting from a
change only in one coordinate. So, if there exists a constantck, such that|∆k| ≤ ck a.s.,
then |dk| ≤ ck a.s. and we can apply the Hoeffding inequality to obtain a tail bound forX.
However, in many cases,ck grows too rapidly and so the Hoeffding inequality does not provide
any reasonable tail bound. For improving the Hoeffding inequality, Lee and Su [7] obtained the
following reasonable tail bound forX.

Theorem 1.1(See Theorem 1 in Lee and Su [7]). Assume that there exists a positive and finite
constantc such that for allk ≤ n, |∆k| ≤ c a.s. and there exist0 < pk < 1 such that for each
k ≤ n, P(0 < |∆k| ≤ c|Fk−1) ≤ pk a.s. Then, for everyt > 0,

(1.1) P(|X − EX| ≥ t) ≤ 2 exp

{
− t2

2c2
∑n

k=1 pk + 2ct/3

}
.

In this paper, we will demonstrate that if t
c
∑n

k=1 pk
is larger, especially if t

c
∑n

k=1 pk
≥ 2.83e2.83,

we can obtain a more precise inequality than (1.1). In Section 2, we will give the main results
and show our inequalities are more precise than (1.1) in some cases. In Section 3, we apply our
results to the longest increasing subsequence.

2. M AIN RESULTS

In this section, we will continue to use the notions of Section 1.

Theorem 2.1.LetX be an integrable random variable defined on a probability space(Ω,F , P)
which is in fact a function ofn independent random variablesξ1, ξ2, . . . , ξn. We defineFk, ∆k,
dk as in Section 1. Assume that there exist positive and finite constantsck such that for all
k ≤ n,

(2.1) |∆k| ≤ ck a.s.

and there exist0 < pk < 1 such that for eachk ≤ n,

(2.2) P(0 < |∆k| ≤ ck|Fk−1) ≤ pk a.s.

Then, for everyt > 0,

(2.3) P(|X − EX| ≥ t) ≤ 2 exp

{
− t2

2
∑n

k=1 esckc2
kpk

}
,

wheres satisfies the equations = t∑n
k=1 esck c2kpk

. In addition, if there exists a constantb, such

thats ≥ b, we will obtain

(2.4) P(|X − EX| ≥ t) ≤ 2e−bt/2.

Proof. In fact, we only prove the formP(X − EX ≥ t), and the other formP(X − EX ≤ −t)
is similar. By Jensen’s inequality, for anys > 0, we have

E(esdk |Fk−1) = E(esE(∆k|Fk)|Fk−1) ≤ E(es∆k |Fk−1), a.e.
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From (2.1), (2.2) and the following elementary inequality,

∀x ∈ R, ex ≤ 1 + x +
|x|2

2
e|x|,

we can obtain

E(es∆k |Fk−1) ≤ E
(

1 + s∆k +
|s∆k|2

2
e|s∆k||Fk−1

)
≤ 1 +

s2

2
esckE(∆2

k|Fk−1)

≤ 1 +
s2

2
esckc2

kpk

≤ exp

{
s2

2
esckc2

kpk

}
a.e.

It is easy to check that

X − EX =
n∑

k=1

dk.

Thus, by Markov’s inequality, for anys > 0,

P(X − EX ≥ t) ≤ e−stEes(X−EX)

≤ e−stEes
∑n

k=1 dk

≤ e−stE
[
es

∑n−1
k=1 dkE

(
esdn|Fn−1

)]
≤ exp

{
−st +

s2

2
escnc2

npn

}
Ees

∑n−1
k=1 dk

≤ · · ·

≤ exp

{
−st +

s2

2

n∑
k=1

esckc2
kpk

}
.

If we could take

(2.5) s =
t∑n

k=1 esckc2
kpk

,

(2.3) can be shown. In fact, puttingfn(s) =
∑n

k=1 escksc2
kpk, it is easy to see that for anyn,

fn(s) is a continuous function ins, and is nondecreasing on[0,∞) with fn(0) = 0. Thus, for
anyt > 0, there exists only one solution that satisfies equations = t∑n

k=1 esck c2kpk
. The remainder

of the proof is straightforward. �

Remark 2.2. It is easy to see that the solution of the equations = t∑n
k=1 esck c2kpk

could not be
given concretely. However, we can use the formula (2.4), by obtaining a low bound ofs in
many cases.

Corollary 2.3. Under the conditions of Theorem 1.1, we assume that for all1 ≤ k ≤ n, ck = c.
Then, for everyt > 0,

(2.6) P(|X − EX| ≥ t) ≤ 2 exp

{
− t2

2escc2
∑n

k=1 pk

}
,
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wheres satisfies the equations = t
escc2

∑n
k=1 pk

. In addition, if there exists a constantb, such
thats ≥ b, we obtain

(2.7) P(|X − EX| ≥ t) ≤ 2e−bt/2.

Next, we will show that, in some cases, the conditions ≥ b in Corollary 2.3 could be obtained
and our results are better than inequality (1.1).

Proposition 2.4. Under the conditions of Corollary 2.3,

(R1): Assuming that for any givent > 0,

(2.8)
t

c
∑n

k=1 pk

≥ 2.83e2.83,

then we have the following inequality

(2.9) P(|X − EX| ≥ t) ≤ 2e−2.83t/(2c),

and in this case, our bounde−2.83t/(2c) is better than (1.1).
(R2): Conversely, if for any givent > 0,

(2.10)
t

c
∑n

k=1 pk

≤ 2.82e2.82,

then (1.1) is better than our result.

Proof. By s = t
escc2

∑n
k=1 pk

and t
c
∑n

k=1 pk
≥ 2.83e2.83, it is easy to see that

scesc ≥ 2.83e2.83 and sc ≥ 2.83.

From Corollary 2.3, (2.9) can be obtained.
Next we will show that our bounde−2.83t/(2c) is better than (1.1). For t

c
∑n

k=1 pk
≥ 3e3, we

know
t

c
∑n

k=1 pk

(1/c− s/3) < s, s =
t

escc2
∑n

k=1 pk

;(2.11)

⇔ t

c2
∑n

k=1 pk

<
ts

3c
∑n

k=1 pk

+ s, sesc =
t

c2
∑n

k=1 pk

;

⇔ sesc <
ts

3c
∑n

k=1 pk

+ s, sesc =
t

c2
∑n

k=1 pk

;

⇔ esc <
t

3c
∑n

k=1 pk

+ 1, sesc =
t

c2
∑n

k=1 pk

;

⇔ c(esc − 1)
n∑

k=1

pk < t/3, sesc =
t

c2
∑n

k=1 pk

;

⇔ 2c2esc

n∑
k=1

pk < 2c2

n∑
k=1

pk + 2ct/3, sesc =
t

c2
∑n

k=1 pk

.

Thus, by comparing (2.6) and (1.1), the proof of(R1) is given under the condition t
c
∑n

k=1 pk
≥

3e3. To proving remainders, by (2.11), we only show the following relations

(2.12)


t

c
∑n

k=1 pk
(1/c− s/3) ≥ s, if 2.83e2.83 ≤ t

c
∑n

k=1 pk
< 3e3;

t
c
∑n

k=1 pk
(1/c− s/3) ≤ s, if t

c
∑n

k=1 pk
< 2.82e2.82.
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Figure 1

Sinces = t
escc2

∑n
k=1 pk

, (2.12) is equivalent to the following relations

(2.13)

cesc(1/c− s/3) ≥ 1, if 2.83e2.83 ≤ t
c
∑n

k=1 pk
< 3e3;

cesc(1/c− s/3) ≤ 1, if t
c
∑n

k=1 pk
< 2.82e2.82.

Letting f(s) = cesc(1/c − s/3) − 1 andsc = x, we havef(x) = ex(1 − x/3) − 1. It is not
difficult to check thatf(x) is an increasing function in[0, 2.82] and a decreasing function in
[2.83,∞) (or see Figure 1). Andf(0) = 0, f(x0) = 0, wherex0 ∈ [2.82, 2.83]. The rest is
obvious.

�

Remark 2.5. In the above proposition, though the bounds2.82e2.82 and2.83e2.83 are coarser,
we can easily determine which inequalities are a little sharper by using these bounds.

Remark 2.6. The above results show that for givenn (resp.t), our inequality is more precise
in the case of sufficiently larget (resp. smalln). However, in many cases, we need computer
power to use our inequality. For example, assumingt

c
∑n

k=1 pk
= B, whereB is given, then we

often need to control the solution of the equationxex = B.

3. THE L ONGEST I NCREASING SUBSEQUENCE

In this section, we discuss the longest increasing subsequence as in Lee and Su [7] (2002) and
show our results are little sharper. Consider the symmetric groupSn of permutationsπ on the
number1, 2, . . . , n, equipped with the uniform probability measure. Given a permutationπ =
(π(1), π(2), . . . , π(n)), an increasing subsequencei1, i2, . . . , ik is a subsequence of1, 2, . . . , n
such that

i1 < i2 < · · · < ik, π(i1) < π(i2) < · · · < π(ik).

We writeLn(π) for the length of longest increasing subsequences ofπ.
Let Ui = (Xi, Yi), i = 1, 2, . . . , n, be a sequence of i.i.d. uniform sample on the unit square

[0, 1]2. Ui1 , Ui2 , . . . , Uik is called a monotone increasing chain of heightk if

Xij < Xij+1, Yij < Yij+1 for j = 1, 2, . . . , k − 1.

DefineLn(U) to be the maximum height of the chains in the sampleU1, U2, . . . , Un.
By Hammersley [4] (1972) and Aldous and Diaconis [1] (1999), the following facts are

known:
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(F1): Ln(π) has the same distribution asLn(U).
(F2):

Ln(π)√
n
→ 2, in probability and in mean.

Let {U ′
1, U

′
2, . . . , U

′
n} be an independent copy of{U1, U2, . . . , Un}. It is easy to see that,

letting

∆k = Ln(U1, . . . , Uk−1, Uk, U
′

k+1, . . . , U
′

n)− Ln(U1, . . . , Uk−1, U
′

k, U
′

k+1, . . . , U
′

n)

∆k takes values only+1, 0,−1. Moreover, sinceE(∆k|Fk−1), whereFk−1 = σ(U1, U2, . . . , Uk−1),
we have

P(∆k = +1|Fk−1) = P(∆k = −1|Fk−1).

Letting pk = 2ELn−k+1(Uk, Uk+1, . . . , Un)/(n − k + 1), from Lee and Su [7] (2002), there is
the following fact:

(F3): P(∆k = +1|Fk−1) ≤ pk/2.

For the longest increasing subsequence, we have the following result.

Theorem 3.1. There exists a constantδ < 1/2, such that for all sufficiently largen and any
r > 0,

(3.1) P(|Ln(U)− ELn(U)| > rn) ≤ 2 exp

{
−δrn log n

2

}
.

Proof. For anyr > 0 and sufficiently largen, s in Corollary 2.3 needs to satisfy the equation
s = rn

es
∑n

k=1 pk
. Since

1√
n

ELn(U) → 2 as n →∞,

we have
1√
n

n∑
k=1

ELk(U)

k
→ 4 as n →∞, i.e., n−1/2

n∑
k=1

pk → 4.

By the equations = rn
es

∑n
k=1 pk

, we know that for sufficiently largen, ses = O(
√

n). Thus there

exists a constantδ < 1/2, such thatses > eδ log nδ log n, i.e.,s ≥ δ log n. By Corollary 2.3, we
have the result. �

Remark 3.2. By Proposition 2.4, we know our results are sharper than the ones in Lee and Su
[7] to a certainty. Lee and Su [7] gave the following result by an application of inequality (1.1).

Theorem LS.Given anyε > 0, for all sufficiently largen and anyt > 0,

(3.2) P (|Ln(π)− ELn(π)| ≥ t) ≤ 2

(
− t2

(16 + ε)
√

n + 2t/3

)
.

Here if takingt = rn, thenP (|Ln(π)− ELn(π)| ≥ rn) ≤ O(e−n), which is coarser than
(3.1)
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