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ABSTRACT. In this paper, we will establish a martingale inequality, which extends the classic
Hoeffding inequality in some sense. In addition, our inequality improves the results of Lee and
Su [7] (2002) in some cases.
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1. INTRODUCTION
Given a probability spacé?, F,P) and a filtrationF, = {¢,Q} C F, C --- C F, = F, an
integrable random variabl& € £!(Q, F,P) can be written as

X -EX = i [E(X|F) — E(X|Fpor)] = idk,

whered,, is a martingale difference. An early inequality result is the following. If for &ny
there exist constants, andby, such that?(d, € [ax, bx]) = 1, then for anyt > 0, we have the
following classic Hoeffding inequality (cfl_[5])

2t*
P(|X —EX|>1t) < Zexp{ ST (o — ar)? } )

De la Pena]Z,!3] discussed a general class of exponential inequalities for bounded martingale
difference and ratios by the decoupling theory. Andreas [9] gave exponential deviation inequal-
ities for one-sided bounded martingale difference sequences. In the case of the length of longest
increasing subsequences and the independence number of sparse random graphs, Lee and Su
[7] have utilised the symmetry argument in the martingale inequality.
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For these phenomena of measure concentration, the usual procedure in analysis is via mar-
tingale methods, information-theoretic methods and Talagrand’s induction method!(ske [6, 8,
10]). In most applicationsX is a function ofn independent (possibly vector valued) ran-
dom variablest, &, . . ., &, and the filtration isF, = o(&,&,...,&,). In this case we let
{€,,6,...,€ } be an independent copy éf;, &, . . ., &, } and define

Ak:X(§1’€27" gk 17€k7€k+17"'7§ ) (51’§2’"‘7€k‘—1’§;§7§]/§—|—1""75’1’1)‘

Let d, = E(Ag|Fx). By definition, A is the change in the value of resulting from a
change only in one coordinate. So, if there exists a congiarduch thatA,| < ¢ a.s.,
then|d,| < ¢, a.s. and we can apply the Hoeffding inequality to obtain a tail boundfor
However, in many cases, grows too rapidly and so the Hoeffding inequality does not provide
any reasonable tail bound. For improving the Hoeffding inequality, Lee and Su [7] obtained the
following reasonable tail bound fox'.

Theorem 1.1(See Theorem 1 in Lee and Su [7Assume that there exists a positive and finite
constantc such that for allt < n, |A,| < ca.s. and there exist < p; < 1 such that for each
k<n,P0 < |Ag| < c|Fr-1) < pir a.s. Then, for every > 0,

tQ
1.1 P|X —EX|>1t) <2 - :
(3.1) ( [21) < eXp{ ZCQZzlpk+2ct/3}
In this paper, we will demonstrate that—ih is larger, especially |f7 > 2.83e283,
we can obtain a more precise inequality t@(l 1). In Seftion 2, we WI|| glve the main results

and show our inequalities are more precise thar (1.1) in some cases. In §gction 3, we apply our
results to the longest increasing subsequence.

2. MAIN RESULTS

In this section, we will continue to use the notions of Sedtion 1.

Theorem 2.1.Let X be an integrable random variable defined on a probability spater, P)
which is in fact a function of. independent random variabl€s, &, . . ., &,. We defineF,, A,
d as in Sectio |1. Assume that there exist positive and finite constastsch that for all
k<n,

(21) |Ak| <c¢, a.s.
and there exist < p,, < 1 such that for eaclk < n,
(22) ]P(O < ‘Ak| < Ck’.’ltk,l) <p. as.

Then, for every > 0,

t? }
2.3 Pl X —EX|>1t) <2exp — — ,
23) (X ~EX| 2 0) < 2o { gt

¢ . In addition, if there exists a constahtsuch

wheres satisfies the equatiofn = ST e,

thats > b, we will obtain
(2.4) P(|X —EX| >t) < 272,

Proof. In fact, we only prove the for?(X — EX > t), and the other fornP(X — EX < —t)
is similar. By Jensen’s inequality, for ary> 0, we have

E(e"®|Fjo1) = E(eF 0| F_ 1) < E(e**|Fry),  ace.
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From (2.1),[(2.R) and the following elementary inequality,
z |? ||
Vr € R, egl—i-x—l—Te ,

we can obtain

sA
E(e*| F— 1)<E(1+5Ak+| 2' elsul| 7 >

2
S
< 1+ e E(A|Fi)

32
<1+ Eesckcipk

2
s
< exp {Eesckcipk} a.e.

It is easy to check that

X—]EX:idk.

k=1
Thus, by Markov's inequality, for any > 0,

P(X —EX > 1) < e *'Ee"™EY)
< efstEeszzzl d

< e 'K [6322;11 ) (eSd”|Fn_1)}

IN

2
S n—
exp {—st + Eesc"cipn} Ee® Xkt dr

IN

2 n
< exp {—st + % Z esc’“chk} .
k=1
If we could take
t

n 2
> k1 €5 CiDE

(2.3) can be shown. In fact, puttinfy(s) = >°)_, e**scipy, it is easy to see that for any,
fn(s) is a continuous function in, and is nondecreasing o0, co) with f,,(0) = 0. Thus, for
anyt > 0, there exists only one solution that satisfies equaimm. The remainder
of the proof is straightforward. - O

(2.5) s =

Remark 2.2. It is easy to see that the solution of the equation ﬁ could not be

given concretely. However, we can use the formfla](2.4), by obtaining a low boundhof
many cases.

Corollary 2.3. Under the conditions of Theorém ]L.1, we assume that far gllk < n, ¢, = c.
Then, for every > 0,

t2
2.6 P(|X —EX| > 1) < 2exp 4 — _ :
26) (1% —EX| > 0) < 20 { e}
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wheres satisfies the equation =
thats > b, we obtain

(2.7) P(|X —EX| >t) < 272,

m. In addition, if there exists a constaht such
=1

Next, we will show that, in some cases, the condition b in Corollary{2.3 could be obtained
and our results are better than inequality](1.1).

Proposition 2.4. Under the conditions of Corollafy 2.3,
(R1): Assuming that for any givein> 0,

t
(2.8) ———— > 2.83e2%,
€ je1 Pk
then we have the following inequality
(2.9) P(|X —EX| > t) < 2¢283/(2)

and in this case, our bound 23/(2%) js better than[(1]1).
(Rs): Conversely, if for any giveh> 0,

(2.10) < 2.82e%%2

t
DIy
then [1.1) is better than our result.

Proof. By s = L and——-— > 2.83¢%%3, it is easy to see that

escc?y 1| D €Y k=1 Pk
sce®c > 2.83¢%83 and sc > 2.83.

From Corollary 2.B,[(2]9) can be obtained.
Next we will show that our bound=283/(2¢) js petter thanl). F(}!Z’,;‘t—pk > 3e3, we
=1

know

t t
(2.11) ——(1/c—s/3) < s, = ——
Czkzl pk( / / ) esec? Zk:l Pk
- Lo s . ¢
n n S, S€ = —-=n
2 k1 Pk 3CD kg Dk 2 k1 Dk
<:> ScC < ts + Sc t
se ——— + 8, s = ———;
3¢ j—1 Dk ¢? Y 1 Dk
t t
o €SC<T+17 SGSCZT;
3c zk:1 Pk c? Zk:l Dk
- t
& e —1)) pp<t/3, se* = ——m——;
; 2 i1 Pk

t
c ZZ:1 P

Thus, by comparin.6) an 1), the proof(&f,) is given under the conditiom >
3e3. To proving remainders, by (2.1.1), we only show the following relations '

& 20k Zpk < 2c* Zpk + 2ct /3, se®t =
k=1 k=1

1/c—s/3) > s, if 2.83e*® < —L— < 3e3;

t
e op—1 Pk( €D j—1 Pk

(1/c—s/3) <s, if

(2.12)

t 2.82
ST e < 2.82e*°4,

t
522:1 Pk
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Figure 1
Sinces = m 2.12) is equivalent to the following relations
ce’*(1/c—s/3) > 1, if 2.83e%8 < —L— < 3¢?;
Y CZ 1 )
(2.13) b

sc _ : t 2.82
ce®(1/c—s/3) <1, if ST < 28277

Letting f(s) = ce*(1/c — s/3) — 1 andsc = z, we havef(z) = e*(1 — x/3) — 1. Itis not
difficult to check thatf(z) is an increasing function i, 2.82] and a decreasing function in
[2.83, 00) (or see Figure 1). Ang'(0) = 0, f(x¢) = 0, wherex, € [2.82,2.83]. The rest is
obvious.

O

Remark 2.5. In the above proposition, though the bourdi2e?#? and2.83¢2%3 are coarser,
we can easily determine which inequalities are a little sharper by using these bounds.

Remark 2.6. The above results show that for giver(resp.t), our inequality is more precise
in the case of sufficiently large(resp. small). However, in many cases, we need computer
power to use our inequality. For example, assumj% = B, whereB is given, then we
often need to control the solution of the equatiefi = 5.

3. THE LONGEST INCREASING SUBSEQUENCE

In this section, we discuss the longest increasing subsequence as in Leeland Su [7] (2002) and
show our results are little sharper. Consider the symmetric géqugd permutationsr on the

numberl, 2, ..., n, equipped with the uniform probability measure. Given a permutatien
(w(1),7(2),...,m(n)), an increasing subsequengei,, . . ., i; IS a subsequence of2,...,n
such that

i <y < - <ig, w(iy) <m(ia) < -+ < 7(ig).
We write L,, () for the length of longest increasing subsequences of
LetU; = (X;,Y;), i = 1,2,...,n, be a sequence of i.i.d. uniform sample on the unit square
0,12 U;,, Uy, . .., Uy, is called a monotone increasing chain of heiffift
Xij < XijJrl, Y;‘j < Y;‘j+1 fOI'j = 1,2,...,]{7— 1.

Define L, (U) to be the maximum height of the chains in the samiplels, . . ., U,.
By Hammersley([4] (1972) and Aldous and Diaconis$ [1] (1999), the following facts are
known:
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(F1): L,(m) has the same distribution ds, (U).
(Fy): =4 — 2, in probability and in mean.
Let {U,,U,,...,U,} be an independent copy &t/;,Us,...,U,}. Itis easy to see that,
letting
Ap=LoU, ..., Upt, U, Uy - U = LU,y oo Uy, Uy Uy -2, U)

Ay takes values only-1, 0, —1. Moreover, sinc&(A|Fy._1), whereF,_ = o(Uy, Us, ..., Ux_1),
we have
—1|Fp_1).

P(Ay = +1|Fr1) =P(A, =
+ 1), from Lee and Su|7] (2002), there is

Lettingpr, = 2EL,—k41(Uk, Upgr, .-, Un) /(0 — Kk
the following fact:
For the longest increasing subsequence, we have the following result.

Theorem 3.1. There exists a constant < 1/2, such that for all sufficiently large and any
r >0,

ornl
(3.1) P(|L,(U) — EL,(U)| > rn) < 2exp{—mTOgn}.
Proof. For anyr > 0 and sufficiently large:, s in Corollary[2.3 needs to satisfy the equation
8§ = =mn—— ZCF . Since
€ k=1Pk 1
we have
1 K ELL(U) . v

—Z —4 as n—oo, lLe, n Zpk—>4.

\/ﬁ k=1 k k=1
By the equations = —~— ST We know that for sufficiently large, se®* = O(y/n). Thus there

=1

exists a constant < 1/2, such thate® > e°s"5logn, i.e.,s > ¢ logn. By Corollary[2.3, we
have the result. O

Remark 3.2. By Propositiorj 2.4, we know our results are sharper than the ones in Lee and Su
[7] to a certainty. Lee and SUl[7] gave the following result by an application of inequalify (1.1).

Theorem LS. Given any: > 0, for all sufficiently largen and anyt > 0,

(3.2) P(|Lo(r) — ELy(r)| > 1) <2 (— (16+e)f/ﬁ+2t /3) |

Here if takingt = rn, thenP (|L,,(7) — EL,(7)| > rn) < O(e™™), which is coarser than
(N
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