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ABSTRACT. We use the familiar convolution structure of analytic functions to introduce new
class of analytic functions of complex order. The results investigated in the present paper include,
the characterization and subordination properties for this class of analytic functions. Several
interesting consequences of our results are also pointed out.
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1. I NTRODUCTION AND PRELIMINARIES

LetA denote the class of functions of the form

(1.1) f(z) = z +
∞∑

k=2

akz
k,

which are analytic and univalent in the open unit diskU = {z; z ∈ C : |z| < 1}. If f ∈ A is
given by (1.1) andg ∈ A is given by

(1.2) g(z) = z +
∞∑

k=2

bkz
k,

then the Hadamard product (or convolution)f ∗ g of f andg is defined(as usual) by

(1.3) (f ∗ g)(z) := z +
∞∑

k=2

akbkz
k.

In this article we study the classSγ(g;α) introduced in the following:
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2 J. K. PRAJAPAT

Definition 1.1. For a given functiong(z) ∈ A defined by (1.2), wherebk ≥ 0 (k ≥ 2). We say
thatf(z) ∈ A is in Sγ(g;α), provided that(f ∗ g)(z) 6= 0, and

(1.4) Re

{
1 +

1

γ

(
z(f ∗ g)′(z)
(f ∗ g)(z)

− 1

)}
> α (z ∈ U; γ ∈ C\{0}; 0 ≤ α < 1).

Note that

S1

(
z

1− z
; α

)
= S∗(α) and S1

(
z

(1− z)2
; α

)
= K(α),

are, respectively, the familiar classes of starlike and convex functions of orderα in U (see, for
example, [11]). Also

Sγ

(
z

1− z
; 0

)
= S∗γ and Sγ

(
z

(1− z)2
; 0

)
= Kγ,

where the classesS∗γ andKγ stem essentially from the classes of starlike and convex functions
of complex order, which were considered earlier by Nasr and Aouf [9] and Wiatrowski [12],
respectively (see also [7] and [8]).

Remark 1. When

g(z) = z +
∞∑

k=2

(α1)k−1 · · · (αq)k−1

(β1)k−1 · · · (βs)k−1(k − 1)!
zk(1.5)

(αj ∈ C(j = 1, 2, . . . , q), βj ∈ C\{0,−1,−2, . . . } (j = 1, 2, . . . , s)) ,

with the parameters
α1, . . . , αq and β1, . . . , βs,

being so choosen that the coefficientsbk in (1.2) satisfy the following condition:

(1.6) bk =
(α1)k−1 · · · (αq)k−1

(β1)k−1 · · · (βs)k−1(k − 1)!
≥ 0,

then the classSγ(g;α) is transformed into a (presumbly) new classS∗γ(q, s, α) defined by

S∗γ(q, s, α) :=

{
f : f ∈ A and Re

(
1 +

1

γ

(
z(Hq

s [α1]f)′(z)

(Hq
s [α1]f)(z)

− 1

))
> α

}
(1.7)

(z ∈ U; q ≤ s+ 1; q, s ∈ N0; γ ∈ C\{0}).
The operator

(Hq
s [α1]f) (z) := Hq

s (α1, . . . , αq; β1, . . . , βs)f(z),

involved in (1.7) is the Dziok-Srivastava linear operator (see for details, [3]) which contains such
well known operators as the Hohlov linear operator, Carlson-Shaffer linear operator, Ruscheweyh
derivative operator, the Barnardi-Libera-Livingston operator, and the Srivastava-Owa fractional
derivative operator. One may refer to the papers [3] to [5] for further details and references for
these operators. The Dziok-Srivastava linear operator defined in [3] was further extended by
Dziok and Raina [1] (see also [2]).

In our present investigation, we require the following definitions and a related result due to
Welf [13].

Definition 1.2 (Subordination Principal). For two functionsf and g analytic in U, we say
that the functionf(z) is subordinated tog(z) in U and writef(z) ≺ g(z) (z ∈ U), if there
exists a Schawarz functionw(z) analytic in U with w(0) = 0, and |w(z)| < 1, such that
f(z) = g(w(z)), z ∈ U. In particular, if the functiong(z) is univalent inU, the above
subordination is equivalent tof(0) = g(0) andf(U) ⊂ g(U).
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SUBORDINATION THEOREM FOR AFAMILY OF ANALYTIC FUNCTIONS 3

Definition 1.3 (Subordinating Factor Sequence). A sequence{bk}∞k=1 of complex numbers is
called a subordinating factor sequence if, whenever

f(z) =
∞∑

k=1

akz
k (a1 = 1),

is analytic, univalent and convex inU, we have the subordination given by

(1.8)
∞∑

k=1

akbkz
k ≺ f(z) (z ∈ U).

Lemma 1.1(Wilf, [13]) . The sequence{bk}∞k=1 is a subordinating factor sequence if and only
if

(1.9) Re

{
1 + 2

∞∑
k=1

bkz
k

}
> 0 (z ∈ U).

2. CHARACTERIZATION PROPERTIES

In this section we establish two results (Theorem 2.1 and Theorem 2.3) which give the suffi-
ciency conditions for a functionf(z) defined by (1.1) and belong to the classf(z) ∈ Sγ(g;α).

Theorem 2.1.Letf(z) ∈ A such that

(2.1)

∣∣∣∣z(f ∗ g)′(z)(f ∗ g)(z)
− 1

∣∣∣∣ < 1− β (β < 1; z ∈ U),

thenf(z) ∈ Sγ(g;α), provided that

(2.2) |γ| ≥ 1− β

1− α
, (0 ≤ α < 1).

Proof. In view of (2.1), we write

z(f ∗ g)′(z)
(f ∗ g)(z)

= 1 + (1− β)w(z) where |w(z)| < 1 for z ∈ U.

Now

Re

{
1 +

1

γ

(
z(f ∗ g)′(z)
(f ∗ g)(z)

− 1

)}
= Re

{
1 +

1

γ
(1− β)w(z)

}
= 1 + (1− β) Re

{
w(z)

γ

}
≥ 1− (1− β)

∣∣∣∣w(z)

γ

∣∣∣∣
> 1− (1− β) · 1

|γ|
≥ α,

provided that|γ| ≥ 1−β
1−α

. This completes the proof. �

If we set
β = 1− (1− α)|γ| (0 ≤ α < 1; γ ∈ C\{0}),

in Theorem 2.1, we obtain

J. Inequal. Pure and Appl. Math., 9(4) (2008), Art. 102, 8 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


4 J. K. PRAJAPAT

Corollary 2.2. If f(z) ∈ A such that

(2.3)

∣∣∣∣z(f ∗ g)′(z)(f ∗ g)(z)
− 1

∣∣∣∣ < (1− α)|γ| (z ∈ U, 0 ≤ α < 1; γ ∈ C\{0}),

thenf(z) ∈ Sγ(g;α).

Theorem 2.3.Letf(z) ∈ A satisfy the following inequality
∞∑

k=2

bk[(k − 1) + (1− α)|γ| ]|ak| ≤ (1− α)|γ|(2.4)

(z ∈ U; bk ≥ 0 (k ≥ 2); γ ∈ C\{0}; 0 ≤ α < 1),

thenf(z) ∈ Sγ(g;α).

Proof. Suppose the inequality (2.4) holds true. Then in view of Corollary 2.2, we have

|z(f ∗ g)′(z)− (f ∗ g)(z)| − (1− α)|γ| |(f ∗ g)(z)|

=

∣∣∣∣∣
∞∑

k=2

bk(k − 1)ak z
k

∣∣∣∣∣− (1− α)|γ|

∣∣∣∣∣z +
∞∑

k=2

bkak z
k

∣∣∣∣∣
≤

{
∞∑

k=2

bk(k − 1)|ak| − (1− α)|γ|+ (1− α)|γ|
∞∑

k=2

bk|ak|

}
|z|

≤

{
∞∑

k=2

bk[(k − 1) + (1− α)|γ| ]|ak| − (1− α)|γ|

}
≤ 0.

This completes the proof. �

On specializing the parameters, Theorem 2.1 would yield the following results:

Corollary 2.4. Letf(z) ∈ A satisfy the following inequality

(2.5)
∞∑

k=2

(k + |γ| − 1)|ak| ≤ |γ| (z ∈ U, γ ∈ C\{0}),

thenf(z) ∈ S∗γ .

Corollary 2.5. Letf(z) ∈ A satisfy the following inequality

(2.6)
∞∑

k=2

k(k + |γ| − 1)|ak| ≤ |γ| (z ∈ U, γ ∈ C\{0}),

thenf(z) ∈ Kγ.

Corollary 2.6. Letf(z) ∈ A satisfy the following inequality
∞∑

k=2

[(k − 1) + (1− α)|γ|](α1)k−1 · · · (αq)k−1

(β1)k−1 · · · (βs)k−1(k − 1)!
|ak| ≤ (1− α)|γ|(2.7)

(z ∈ U; q ≤ s+ 1; q, s ∈ N0; γ ∈ C\{0}; 0 ≤ α < 1),

thenf(z) ∈ S∗γ(q, s, α).
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3. SUBORDINATION THEOREM

Theorem 3.1.Let the functionf(z) ∈ A satisfy the inequality (2.4), andK denote the familiar
class of functionsh(z) ∈ A which are univalent and convex inU. Then for everyψ ∈ K, we
have

[1 + (1− α)|γ|]b2
2[b2 + (1− α)(b2 + 1)|γ|]

(f ∗ ψ)(z) ≺ ψ(z)(3.1)

(z ∈ U; bk ≥ b2 > 0 (k ≥ 2); γ ∈ C\{0}; 0 ≤ α < 1),

and

(3.2) Re{f(z)} > − [b2 + (1− α)(b2 + 1)|γ|]
[1 + (1− α)|γ|]b2

(z ∈ U).

The following constant factor

[1 + (1− α)|γ|]b2
2[b2 + (1− α)(b2 + 1)|γ|]

in the subordination result (3.1) is the best dominant.

Proof. Let f(z) satisfy the inequality (2.4) and letψ(z) =
∑∞

k=0 ckz
k+1 ∈ K, then

(3.3)
[1 + (1− α)|γ|]b2

2[b2 + (1− α)(b2 + 1)|γ|]
(f ∗ ψ)(z)

=
[1 + (1− α)|γ|]b2

2[b2 + (1− α)(b2 + 1)|γ|]

(
z +

∞∑
k=2

akckz
k

)
.

By invoking Definition 1.3, the subordination (3.1) of our theorem will hold true if the sequence

(3.4)

{
[1 + (1− α)|γ|]b2

2[b2 + (1− α)(b2 + 1)|γ|]
ak

}∞

k=1

,

is a subordination factor sequence. By virtue of Lemma 1.1, this is equivalent to the inequality

(3.5) Re

{
1 +

∞∑
k=1

[1 + (1− α)|γ|]b2
[b2 + (1− α)(b2 + 1)|γ|]

akz
k

}
> 0 (z ∈ U).

Sincebk ≥ b2 > 0 for k ≥ 2, we have

Re

{
1 +

∞∑
k=1

[1 + (1− α)|γ|]b2

[b2 + (1− α)(b2 + 1)|γ|]
akz

k

}

= Re

{
1 +

[1 + (1− α)|γ|]b2

[b2 + (1− α)(b2 + 1)|γ|]
z +

1
[b2 + (1− α)(b2 + 1)|γ|]

∞∑
k=2

[1 + (1− α)|γ|]b2akz
k

}

≥ 1− [1 + (1− α)|γ|]b2

[b2 + (1− α)(b2 + 1)|γ|]
r − 1

[b2 + (1− α)(b2 + 1)|γ|]

∞∑
k=2

[(k − 1) + (1− α)|γ|]bk|ak|rk

> 1− [1 + (1− α)|γ|]b2

[b2 + (1− α)(b2 + 1)|γ|]
r − (1− α)|γ|

[b2 + (1− α)(b2 + 1)|γ|]
r > 0 (|z| = r < 1).

This establishes the inequality (3.5), and consequently the subordination relation (3.1) of The-
orem 3.1 is proved. The assertion (3.2) follows readily from (3.1) when the functionψ(z) is
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6 J. K. PRAJAPAT

selected as

(3.6) ψ(z) =
z

1− z
= z +

∞∑
k=2

zk ∈ K.

The sharpness of the multiplying factor in (3.1) can be established by considering a function
h(z) defined by

h(z) = z − (1− α)|γ|
[1 + (1− α)|γ|]

z2 (z ∈ U; γ ∈ C\{0}; 0 ≤ α < 1),

which belongs to the classSγ(g;α). Using (3.1), we infer that

[1 + (1− α)|γ|]b2
2[b2 + (1− α)(b2 + 1)|γ|]

h(z) ≺ z

1− z
.

It can easily be verified that

(3.7) min
|z|≤1

[
[1 + (1− α)|γ|]b2

2[b2 + (1− α)(b2 + 1)|γ|]
h(z)

]
= −1

2
,

which shows that the constant
[1 + (1− α)|γ|]b2

2[b2 + (1− α)(b2 + 1)|γ|]
is the best estimate. �

Before concluding this paper, we consider some useful consequences of the subordination
Theorem 3.1.

Corollary 3.2. Let the functionf(z) defined by (1.1) satisfy the inequality (2.5). Then for every
ψ ∈ K, we have

(3.8)
(1 + |γ|)

2(1 + 2|γ|)
(f ∗ ψ)(z) ≺ ψ(z) (z ∈ U),

and

(3.9) Re{f(z)} > −(1 + 2|γ|)
(1 + |γ|)

(z ∈ U).

The constant factor
(1 + |γ|)

2(1 + 2|γ|)
,

in the subordination result (3.8) is the best dominant.

Corollary 3.3. Let the functionf(z) defined by (1.1) satisfy the inequality (2.6). Then for every
ψ ∈ K, we have

(3.10)
(1 + |γ|)
(2 + 3|γ|)

(f ∗ ψ)(z) ≺ ψ(z) (z ∈ U),

and

(3.11) Re{f(z)} > −2(2 + 3|γ|)
(1 + |γ|)

(z ∈ U).

The constant factor
(1 + |γ|)
(2 + 3|γ|)

,

in the subordination result (3.10) is the best dominant.
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Corollary 3.4. Let the functionf(z) defined by (1.1) satisfy the inequality (2.7). Then for every
ψ ∈ K, we have

(3.12)
[1 + (1− α)|γ|]c2

2[c2 + (1− α)(c2 + 1)|γ|]
(f ∗ ψ)(z) ≺ ψ(z) (z ∈ U),

and

(3.13) Re{f(z)} > − [c2 + (1− α)(c2 + 1)|γ|]
[1 + (1− α)|γ|]c2

(z ∈ U).

The constant factor
[1 + (1− α)|γ|]c2

2[c2 + (1− α)(c2 + 1)|γ|]
,

in the subordination result (3.12) is the best dominant, wherec2 is given by

c2 =
α1 · · · αq

β1 · · · βs

.

Remark 2. On settingγ = 1 in Corollaries 3.2 and 3.3, we obtain results that correspond to
those of Frasin [6, p. 5, Corollary 2.4; p. 6 , Corollary 2.7] (see also, Singh [10, p. 434,
Corollary 2.2]).
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