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In this paper we obtain a sufficient condition for the analyticity and the univalence
of the functions defined by an integral operator. In a particular case we find the
well known condition for univalency established by S. Ozaki and M. Nunokawa.
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1. Introduction

We denote by, = {z € C: |z| < r} adisk of thez-plane, where € (0, 1], U; =
U andl = [0,00). Let.A be the class of functiong analytic inU such thatf(0) =

0, f(0) = 1.
Theorem 1.1 (]). Letf € A. Ifforall z € U
2f'(2)
f2(z)

then the functiory is univalent inU.
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2. Preliminaries

In order to prove our main result we need the theory of Léewner chains; we recall

the basic result of this theory, from Pommerenke.

Theorem 2.1 (R]). LetL(z,t) = a1(t)z + aa(t)2* + - -+, a1(t) # 0 be analytic in
U,, forall t € I, locally absolutely continuous ihand locally uniform with respect
to U,..For almost allt € I, suppose that

OL(z,t)
0z

wherep(z, t) is analytic inU and satisfies the conditidRe p(z,¢) > 0, forall z € U,

t el If |a(t)] — oo fort — oo and{L(z,t)/a;(t)} forms a normal family irU,,
then for eacht € I, the functionL(z,t) has an analytic and univalent extension to
the whole diskJ.

OL(z,t
:p(z,t)%, Vz e U,

z
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3. Main Results

Theorem 3.1.Let f € A anda be a complex numbeRe o > 0. If the following
inequalities

(3.1) z;f(g) - 1' <1
and
62 |(F - e e = (S )

N (1o;||5||§:>2 KZ;ZS) = 1) +(1-a) (@ - 1)” <1

are true for allz € U \ {0}, then the functiorf,,

(3.3) Fu(z) = <a / s f’(u)du)i

0
is analytic and univalent i/, where the principal branch is intended.

Proof. Let us consider the functiof (z, t) given by

ey =11 (f(e_tz) - 1) .

« etz

Forallt € I andz € U we havee~'z € U and becaus¢ € A, the functiong, (z, t)
is analytic inU andg;(0,t) = 1. Then there is a disk/,,, 0 < r; < 1 in which
g1(z,t) # 0, forall t € I. For the function

-t

go(z,t) = a/oe Zuo‘_lf'(u)du ,

Ozaki and Nunokawa’s
Univalence Criterion

Horiana Tudor

vol. 9, iss. 4, art. 117, 2008

Title Page
Contents
44 44
< >
Page 5 of 11
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:htudor@unitbv.ro
http://jipam.vu.edu.au

g2(z,t) = z* - g3(z,1), it can be easily shown that(z, ) is analytic inU,, and
g3(0,t) = e~ It follows that the function

4 2
(eat _ e—ozt) (f(:—t;)>

gl('Z?t)

ga(2,t) = g3(z,t) +

is also analytic in a disk/,,, 0 < ry < r; andg,(0,¢) = e**. Therefore, there is
adiskU,,, 0 < r3 < ryinwhich gs(z,t) # 0, for all ¢t € I and we can choose an
analytic branch ofg,(z,)]'/*, denoted byy(z,t). We choose the branch which is

equal toe* at the origin.
From these considerations it follows that the function

L(z,t) = z-g(z,t) = €'z + ap(t)2* + - -

is analytic inU,,, for all t € I and can be written as follows

Q=

—t

B8 1= [ w s D)
0

1_&<M_1>

a etz

From the analyticity of.(z, ¢) in U,,, it follows that there is a numbey;, 0 < ry <
r3, and a constank’ = K (r4) such that

|L(z,t)/e'] < K, VeelU,, tel,

and then{L(z,t)/e'} is a normal family inU,.,. From the analyticity obL(z,t)/0t,

for all fixed numbersl” > 0 andr;, 0 < r5 < ry4, there exists a constaif; > 0

(that depends o' andrs) such that

OL(z,t)
ot

< Kj, VzeU,, tel0,T].
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It follows that the functionl.(z, t) is locally absolutely continuous ify locally uni-
form with respect td/,,. We also have that the function

OL(z,t) OL(z,t)
oz ot

is analytic inU,, 0 < r < rs, forallt € I.

In order to prove that the functignz, t) has an analytic extension with positive
real partinU for all ¢t € I, itis sufficient to show that the functian(z, ¢) defined in
U, by

p(z,t) =

p(z,t) — 1

p(z,t)+1

can be continued analytically iri and thatw(z,t)| < 1 forall z € U andt € 1.
By simple calculations, we obtain

w(z,t) =

(3.5) w(z,t)

B e—QtZQf/(e—tz) ot 1— 6—2at e—QtZQf/(e—tz)
‘( Fet) ‘1>6 LR ( F2et) ‘1>

(1 _ 6—2at)2 e—2tZ2f/(e—tZ) B B f(e_tz) B
+ a2e—2at f2(€_t2) 1 + <1 Oé) e—tZ 1 '
From 3.1) and 3.2) we deduce that the functian(z, t) is analytic in the unit disk
and

2f'(2)
f*(z)
We observe that(0,¢) = 0. Lett be a fixed numbet, > 0, z € U, z # 0. Since

letz| < et < 1forallz € U={z€ C:|z| <1} we conclude that the function

(3.6) lw(z,0)] =

—1‘<1.
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w(z,t) is analytic inU. Using the maximum modulus principle it follows that for
each arbitrary fixed > 0, there exist¥ = 0(¢) € R such that

3.7) [z )] < maxw(, )] = [w(e”, 1)],

We denote: = e~ - ¢, Then|u| = e~* < 1 and from @.5) we get

wte) = (Mgt = 1) i+ 2= (1)
OB ) (19 ))

a?ful* f*(u)

Sinceu € U, the inequality §.2) implies that|w(e?,¢)| < 1 and from (.6) and
(3.7) we conclude thaw(z,t)| < 1 forall z € U andt > 0.

From Theoren?.1it results that the functioi(z, ) has an analytic and univalent
extension to the whole disk for eacht € I, in particularL(z,0). But L(z,0) =
F,(z). Therefore the functior¥,(z) defined by £.3) is analytic and univalent in
U. O

If in Theorem3.1 we takea = 1 we obtain the following corollary which is just
Theoreml.1, namely Ozaki-Nunokawa’s univalence criterion.

Corollary 3.2. Let f € A. Iffor all z € U, the inequality £.1) holds true, then the
function f is univalent inU.

Proof. Fora = 1 we haveF; (z) = f(z) and the inequalityd.2) becomes

oo (345000 v 1422

|t -1) el <
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It is easy to check that if the inequalit$.() is true, then the inequality3(8) is also
true. Indeed, the function,

is analytic inU, g(z) = byz? + b32® + - -+, which shows thay(0) = ¢/(0) = 0.
In view of (1.1) we have|g(z)| < 1 and using Schwarz’s lemma we detz)| <
|2]2. O
Example3.1 Letn be a natural number, > 2, and the function

z

n

Thenf is univalent inU ananTH is analytic and univalent ity, where

(3.10) Fun(2) = [” ; L / ui f’(u)du} "
0
Proof. We have
21z
(3.11) f{(i)) —1 ="M
and
f(Z) L Zn+1
(3.12) . 1= T

It is clear that condition{.1) of Theorem3.1 is satisfied, and the functiofi is
univalent inU.
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Taking into accounti.11) and (3.12), condition (3.2) of Theorem3.1 becomes

4 4
2(n+1) n+1 1 — n+1 1 — n+1\2
08 S Bl (L= ) (1= )
L20-=n) n !
e (L

n+1)?

i P e
2 [ n+ 1 |z|2(n+1 +4(n+ 1)(1 _ |Z|n+1) + 6(1 o |Z|n+1)2]

1 2
- _ (n+1) _ n+1
MCESE [(n* —2n + 3)|z| + (4n —8)|z|"" 4+ 6] <1,
because the greatest value of the function

g(r) = (n* —2n + 3)2* + (4n — 8)x + 6,

for z € [0,1], n > 2is taken forzr = 1 and isg(1) = (n + 1)?

= . Therefore the
function FnTH is analytic and univalent ify.

]
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