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Abstract

In the paper we prove some sufficient conditions for a family of meromorphic
functions to be normal in a domain.
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Let C be the open complex plane abdC C be a domain. A familyF of mero-
morphic functions defined i is said to be normal, in the sense of Montel, if
for any sequencg, € F there exists a subsequenfe such thatf,,, converges
spherically, locally and uniformly i to a meromorphic function ax.

F is said to be normal at a poin§ € D if there exists a neighbourhood of
zo Inwhich F is normal. It is well known thaf is normal inD if and only if it
is normal at every point db.

It is an interesting problem to find out criteria for normality of a family of
analytic or meromorphic functions. In recent years this problem attracted the 'ndrajitLahiriand Shyamali Dewan
attention of a number of researchers worldwide.
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In 1969 D. Drasin §] proved the following normality criterion. Title Page
Theorem A. LetF be a family of analytic functions in a domaihanda(+# 0), Contents
b be two finite numbers. If for evelyc F, f' — af™ — b has no zero therF is
normal, wheren(> 3) is an integer. 4« dd
Chen-Fang{] and Ye 1] independently proved thdtheoremA also holds 4 >
for n = 2. A number of authors {cf. 4, 11, 12, 13, 16, 24]} extendedTheo- Go Back

remA to a family of meromorphic functions in a domain. Their results can be

combined in the following theorem. Close
Theorem B. Let F be a family of meromorphic functions in a domdnand Quit
a(#£ 0), b be two finite numbers. If for every € F, f' — af™ — b has no zero Page 3 of 21

thenF is normal, where:(> 3) is an integer.
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Li[17], Li [ 1] and Langley [ 1] proved TheoremB for n > 5, Pang [L6]
proved forn = 4 and Chen-Fang3], Zalcman P4] proved forn = 3. Fang-
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Yuan [6] showed thafTheoremB does not, in general, hold for = 2. For the
casen = 2 they [5] proved the following result.

Theorem C. Let F be a family of meromorphic functions in a domdnand
a(# 0), b be two finite numbers. If —af? — b has no zero angl has no simple
and double pole for every € F thenF is normal.

Fang-Yuan §] mentioned the following example from which it appears that
the condition for eaclf € F not to have any simple and double pole is neces-
sary forTheorenC.

Example 1.1.Let f,(2) = nz(zy/n —1)2forn =1,2,...andD : |z| < 1.
Then eacly,, has only a double pole and a simple zero. Af$e- f* = n(zy/n—
1)~ # 0. Sincef#(0) = n — oo asn — oo, it follows from Marty’s criterion
that{ f,,} is not normal inD.

However, the following example suggests that the restriction on the poles of
f € F may be relaxed at the cost of some restriction imposed on the zeros of
ferF.

Example 1.2.Let f,(z) = nz"2forn = 3,4,...andD : |z| < 1. Then each
f» has only a double pole and no simple zero. Also we seefthat f? =
n(n —2z)z~* # 0in D. Since

2n|z| 2
#)= 1 <2
fn (Z) |Z|2—|—TL2 = n

in D, it follows from Marty’s criterion that the family f,,} is normal inD.

Now we state the first theorem of the paper.
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Theorem 1.1. Let F be a family of meromorphic functions in a domdisuch
that nof € F has any simple zero and simple pole. Let

E;={2:2€D and f'(z) — af*(z) = b},

wherea(+# 0), b are two finite numbers.
If there exists a positive numbéf such that for every € F, |f(z)| < M
whenever € Ey, thenF is normal.

The following examples together withxamplel.1 show that the condition
of Theoreml.1on the zeros and poles are necessary.

Example 1.3.Let f,,(z) = ntannz forn =1,2,...andD : |z| < 7. Thenf,
has only simple zeros and simple poles. Also we seefthat f2 = n? # 0.
Sincef#(0) = n*> — oo asn — oo, by Marty’s criterion the family{ f,,} is not
normal.

Example 1.4.Let f,(z) = (1 +e*"*)"1 forn = 1,2,...andD : |z| < 1.
Thenf,, has no simple zero and no multiple pole. Also we seefthat /2 # 1.
Sincef#(0) = %* — oo asn — oo, by Marty’s criterion the family{ ,,} is not
normal.

Drasin [L8, p. 130] also proved the following normality criterion which
involves differential polynomials.

Theorem D. Let F be a family of analytic functions in a domaihanday, a;,
..., a,_1 be finite constants, whefeis a positive integer. Let

H(f) =% +ap f* Y+ +arfY +aof.
If for every f € F
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(i) f has no zero,
(i) H(f) — 1 has no zero of multiplicity less than- 2,
thenF is normal.

Recently Fang-Yuart] proved thafTheorenD remains valid even it ( f)—
1 has only multiple zeros for every € F. In the next theorem we extend

TheorenmD to a family of meromorphic functions which also improves a result

of Fang-Yuan §].

Theorem 1.2. Let F be a family of meromorphic functions in a domdand
H(f) =P+ a1 f& D+ .+ arfY + aof,

whereay, a1, . . ., ax_1 are finite constants ankl is a positive integer.

Let
Ey={z:zeDandzisasimple zero of{ (f) — 1}.

If for every f € F

(i) f has no pole of multiplicity less thah+ £,

(i) f has no zero,

(iii) there exists a positive constabt such that f(z)| > M whenever € Ey,
thenF is normal.

The following examples show that conditions (ii) and (iii) BheoremLl.2

are necessary, leaving the question of necessity of the condition (i) as open.
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Example 1.5.Let f,, () = nzforn=2,3,...,D: |z| <1, H(f) = f'— fand
M = 1. Theneaclty, hasazeroat =0andE;, = {1 —1}forn=2,3,....
Solf(l-2)=n—-12> Mforn =2,3,.... Sincef#(0) =n — oo as
n — oo, by Marty’s criterion the family f,,} is not normal inD.

Example 1.6.Let f,(z) = e¢™forn=2,3,...,D: |z| <landH(f) = f'—f.
Then eachf,, has no zero andy, = {z : = € D and (n — 1)e"* = 1} for

n =2,3,.... Also we see that for € E;,, |f.(z)] = =5 — 0asn — oc.

: 4 _ SN : :
Slncefn_ (0) = § — oo asn — oo, by Marty’s criterion the family{ f,, } is not ——
normal inD.

Indrajit Lahiri and Shyamali Dewan
In connection torheoremA Chen-Fang ] proposed the following conjec-

ture:
Title Page
Conjecture 1. Let F be a family of meromorphic functions in a dom&inlf p——
for every functionf ¢ F, f*) — af™ — b has no zero irD thenF is normal,
wherea(+# 0), b are two finite numbers ankl n(> k + 2) are positive integers. <4« >
In response to this conjecture X&) proved the following result. 4 >
Theorem E. Let F be a family of meromorphic functions in a domdnand ColEaes
a(# 0), b be two finite constants. K andn are positive integers such that Close
>
n > k + 2 and for everyf € F Quit
(i) f® —af™—bhas no zero, Page 7 of 21

i) f has no simple pole
( ) f p p ’ J. Ineq. Pure and Appl. Math. 5(2) Art. 35, 2004
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The condition (ii) of TheoremE can be dropped if we choose> k + 4
(cf. [15, 17]). Also some improvement dFheoremE can be found ing”]. In
the next theorem we investigate the situation when the powgihegative in
condition (i) of TheorentE.

Theorem 1.3.Let F be a family of meromorphic functions in a domédmand
a(# 0), b be two finite numbers. Suppose tigt= {2 : 2 € D and f®(z) +
af~"(z) = b}, wherek, n(> k) are positive integers.

If foreveryf € F

(i) f has no zero of multiplicity less than

(i) there exists a positive numbéf such that for every € F, |f(z)| > M
whenever € Ey,

thenF is normal.

Following examples show that the conditionsldfeorenml.3are necessary.

Example 1.7.Let f,(z) = pz*forp = 1,2,...andD : |z] < 1,n =k = 3,
a =1,b= 0. Thenf, has only a double zero anfl;, = (). Sincef,,(0) = 0 and
for z # 0, f,(2) — oo asp — oo, it follows that the family{ f, } is not normal.

Example 1.8.Let f,(z) = pzforp = 1,2,...andD : |z| < 1,n = k = 1.
Thenf, has simple zero at the origin and for any two finite numbees 0), b,
E;, = {a/p(b—p)} sothat|f,(z)| — 0 asp — oo whenever € E; . Since
ff(()) = p — oo asp — oo, by Marty'’s criterion the family{ £, } is not normal.
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In this section we present some lemmas which will be needed in the sequel.

Lemma 2.1.[1] Let f be a transcendental meromorphic function of finite or-
der inC. If f has no simple zero thefi assumes every non-zero finite value
infinitely often.

Lemma 2.2.[1(] Let f be a nonconstant rational function i having no
simple zero and simple pole. Th¢hassumes every non-zero finite value.

The following lemma can be proved in the line 61,

Lemma 2.3. Let f be a meromorphic function i such thatf*) 0. Suppose
thaty = f*f*), wherek, n are positive integers. I > k =2orn >k > 3
then

1+k n(1+ k) —
{1_ n+k (n+k:)(n+k+1)}T(T’¢) < N(ra; ) +5(r,4),

wherea(# 0, 00) is a constant.

Lemma 2.4.[19 Let f be a transcendental meromorphic functionGnand
¢ = f*f@, wheren(> 2) is an integer. Then
. N(r,a;1)
limsup —————= > 0,
r—00 T(T, w)

wherea(# 0, 00) is a constant.

The following lemma is a combination of the results 6f |, 14].
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Lemma 2.5. Let f be a transcendental meromorphic functiondnThenf" f’
assumes every non-zero finite value infinitely often, whe¥el) is an integer.

Lemma 2.6. Let f be a nhon-constant rational function@®. Thenf" f’ assumes
every non-zero finite value.

Proof. Letg = f"™!/(n + 1). Theng is a nonconstant rational function having

no simple zero and simple pole. So bgmma2.2 ¢ = f™f’ assumes every
non-zero finite value. This proves the lemma. O

Lemma 2.7. Let f be a rational function inC such thatf® ## 0. Theny =
12 f® assumes every non-zero finite value.

Proof. Let f = p/q, wherep, ¢q are polynomials of degree:, n respectively
andp, ¢ have no common factor.

Let a be a non-zero finite number. We now consider the following cases.

Case l.Letm = n. Thenf = « + p1/q, wherea is a constant ang; is a
polynomial of degreen; < n.

Now , )
ponimng P
q

2 )
q2

wherep, andg, are polynomials of degre@, = m; +n— 1 andny, = 2n. Also

we note thain, < ny. Hence

! . /
f// _ Poq2 2P2Q2 _ ]E) Say,

a5 q3
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wherep; and g; are polynomials of degreeis = mo +no — 1 = mq +3n — 2
andns = 2n, = 4n. Also we see thati; < ns.

Lety = f2f) = P/Q. ThenP, ) are polynomials of degre2n + ms and
2n + nz respectively an@m + ms < 2n + n3. Thereforey is nonconstant.

Now —a = (P —aQ)/Q and the degree aP — a( is equal to the degree of
Q. If » — a has no zero the® — a() and @ share0 CM (counting multiplicites)

and soP — a@Q = AQ, whereA is a constant. Therefore¢ = A — a, which is
impossible. S@ — a must have some zero.

Case 2.Letmn =n + 1. Then
f=az+ 0+ %,

whereq, [ are constants ang, is a polynomial of degree; < n.

Now f” = p3/q3, whereps and ¢z are polynomials of degree; = m; +
3n — 2 andns = 4n respectively andnz < n;.

If v = P/Q then P, Q are polynomials of degreem + m3 and 2n + nj
respectively. We see thatn + ms = 5n + my < 6n = 2n 4 ng and soy is
nonconstant. Therefore as Cake — a must have some zero.

Case 3.Letm # n,n+ 1. Then

I
J Lt S Y
q g4
wherep,, ¢, are polynomials of degree;, = m +n — 1 andny = 2n. Also we
note thatm, # ny.

Some Normality Criteria

Indrajit Lahiri and Shyamali Dewan

Title Page
Contents
44 44
< >
Go Back
Close
Quit
Page 11 of 21

J. Ineq. Pure and Appl. Math. 5(2) Art. 35, 2004
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:indrajit@cal2.vsnl.net.in
http://jipam.vu.edu.au/

Hence , )
n_ Pad4 — Pads ZE, say,
CIZ gs
whereps, ¢; are polynmials of degreei; = my +n4 — 1 = m + 3n — 2 and
ns = 2ny4 = 4n.

If v = P/Q then P, Q are polynomials of degre2m + ms and 2n + ns
respectively. Clearlgm + ms # 2n + ns; because otherwise. = n + 2/3,
which is impossible. Sois nonconstant. Also we see thata = (P—aQ)/Q,
where the degree @ — a() is not less than that ap. If ' — a has no zero then
as per Casd. ¢ becomes a constant, which is impossible/Se a must have
some zero. This proves the lemma.

]

Lemma 2.8. Let f be a meromorphic function i€ such thatf*) # 0 and
a(# 0) be a finite constant. Thefi*) + af~" must have some zero, whére
andn(> k) are positive integers.

Proof. First we assume thdat = 1. Then byLemmas2.5and2.6 we see that
f™f" 4+ a must have some zero. Since a zerg®f’ + a is not a pole or a zero
of f, it follows that a zero off™ f + a is a zero off’ + af ™.

Now we assume that = 2. Then byLemmas2.3 2.4and2.7 we see that
f"f® +a must have some zero. As the preceding paragraph a z¢rf6? +a
is a zero off® 4 af—.

Finally we assume that > 3. Then byLemma2.3 f" f*) + ¢ must have
some zero. Since a zero ¢f f*) + q is a zero off®) + af~™, the lemma is
proved. ]
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Lemma 2.9. Let f be a nonconstant meromorphic functiorGrsuch thatf has
no zero and has no pole of multiplicity less tran k. Thenf®) — 1 must have
some simple zero, whekes a positive integer.

Proof. Since N(r, f*)) = N(r, f) + kN(r, f) andm(r, f*)) < m(r, f) +
S(r, f), we get

T(r, f* < T(r, f) + kN(r, f) + S(r, )

< T(T, f) + 3 _]r_ kN(T’ f) + S(T, f) Some Normality Criteria
3+ 2k Indrajit Lahiri and Shyamali Dewan
T .
< ST )+ S0
Sincef has no zero and no pole of multiplicity less ttgank, we get by Milloux 1 g
inequality ([, p. 57]) Contents
T(r,f) S N(r, f) + N(r, 1 f9) + 5(r, ) Wi »
1 — < 4
< 57 T )+ N 1 f9) + S(r ).
3+ Go Back
If possible, suppose th#t®) —1 has no simple zero. Then we get from above Close
Quit

T(r.f) < ——T(r, f) + 2N (r, 1; fO) + 5(r, f)

3+k 2 Page 13 of 21
1 3+ 2k
< {3 + k + 2(3 + k) } T(?‘, f) + S(T’ f) J. Ineq. Pure and Appl. Math. 5(2) Art. 35, 2004
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and so
1

—T <
a contradiction. This proves the lemma. O

Lemma 2.10.[4, 2(] Let F be a family of meromorphic functions in a domain
D and let the zeros of be of multiplicity not less thak ( a positive integer)
for eachf € F. If Fis not normal atzg € D then for0 < o < k there exist a
sequence of complex numbers— z,, a sequence of function$ € F, and a
sequence of positive numbers— 0 such that

9;(C) = p; “ [i(z + piC)

converges spherically and locally uniformly to a nonconstant meromorphic func-
tion g(¢) in C. Moreover the order of is not greater than two and the zeros of Contents
g are of multiplicity not less thah.

Some Normality Criteria

Indrajit Lahiri and Shyamali Dewan

Title Page

44 44
Note 1. If each f € F has no zero thep also has no zero and in this case we P >
can chooser to be any finite real number.
Go Back
Close
Quit

Page 14 of 21

J. Ineq. Pure and Appl. Math. 5(2) Art. 35, 2004
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:indrajit@cal2.vsnl.net.in
http://jipam.vu.edu.au/

In this section we discuss the proofs of the theorems.

Proof of Theoreni.l If possible suppose th& is not normal at, € D. Then
Fy={1/f:f e F}isnotnormal aty € D. Letaw = 1. Then byLemma2.10

there exist a sequence of functiofisc F, a sequence of complex numbers

z; — 2o and a sequence of positive numbgys— 0 such that

9;(Q) = p; ' f; (2 + piC)

Some Normality Criteria

converges spherically and locally uniformly to a nonconstant meromorphic fuc-  Indrajit Lahiri and Shyamali Dewan

ntion g(¢) in C. Also the order ofy does not exceed two angdhas no simple
zero. Again by Hurwitz’s theorem has no simple pole.
By Lemmag2.1and2.2we see that there exisfg € C such that

(3.1) 9'(¢o) +a=0.
Since(, is not a pole ofg, it follows thatg;({) converges uniformly tg(()
in some neighbourhood @f. We also see th%{g’(ﬁ) + a} is the uniform
limit of p?{f; — af? — b} in some neighbourhood af.

In view of (3.1) and Hurwitz's theorem there exists a sequefjce: (, such
that f/(¢;) — af7(¢;) — b = 0. So by the given condition
1 1 1
—_. > .
pi |1z +piG) — piM

Since(, is not a pole of;, there exists a positive numbg&rsuch that in some
neighbourhood of, we get|¢({)| < K.

19;(G)| =

Title Page
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Sinceg;(¢) converges uniformly tg(¢) in some neighbourhood @f,, we
get for all large values of and for all¢ in that neighbourhood af,

19;(0) —g(Q)] < 1.

Since¢; — ¢, we get for all large values of

K = 19(G)l = 19; (G = 19(¢G) — 95(G)I >

which is a contradiction. This proves the theorem. O

L 1
piM
Proof of Theorem..2. Let o = k. If possible suppose tha is not normal at
z0 € D. Then byLemma2.10andNote1 there exists a sequence of functions
f; € F, a sequence of complex numbets— z, and a sequence of positive
numbersy; — 0 such that

9;(C) = p; " fi(z + ps¢)
converges spherically and locally uniformly to a nonconstant meromorphic func-
tion g(¢) in C. Now by conditions (i) and (ii) and by Hurwitz’s theorem we see
thatg(¢) has no zero and has no pole of multiplicity less tBan k.

Now by Lemma2.9¢¥)(¢) — 1 has a simple zero at a poigit € C. Since(,
is not a pole ofy(¢), in some neighbourhood @f, g;(¢) converges uniformly

to g(¢).
Since
k—1
—1+Z% = 10+ 0;0) Y aif (2 + pi¢) — 1
=0

= H(fj(zj +p;i()) — 1
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andzZ 0 azpj igli )(C) converges uniformly to zero in some neighbourhood of
Co, it follows thatg(k (¢) — 1is the uniform limit of H( f;(z; + p;¢)) — 1.

Since( is a simple zero of®)(¢) — 1, by Hurwitz’s theorem there exists a
sequenceé; — (, such that; is a simple zero of{(f;(z; + p;¢)) — 1. So by
the given conditionf;(z; + p;¢;)| > M for all large values of.

Hence for all large values gfwe get|g;((;)| > M/p? and as the last part of
the proof ofTheoreml.1we arrive at a contradiction. This proves the theorem.

O

Some Normality Criteria
Proof of Theoreni..3. Let o = k/(1 + n) < 1. If possible suppose th& is
not normal at, € D. Then byLemma2.10there exist a sequence of functions
f; € F, a sequence of complex numbets— z, and a sequence of positive
numbersp; — 0 such that Title Page

Indrajit Lahiri and Shyamali Dewan

—a Contents
9;(C) = p; “ fi(2 + pi¢)
44 44
converges spherically and locally uniformly to a nonconstant meromorphic func- > S
tion g(¢) in C. Also g has no zero of multiplicity less than Sog*) # 0 and
by Lemma2.8we get Go Back
Cl
(3.2) 9 (G) + —— =0 =
g (CO) Quit
for some(, € C. Page 17 of 21
Clearly(, is neither a zero nor a pole gf So in some neighbourhood ¢f,
g;(¢) converges uniformly tg(¢). 3. Ineq. Pure and Appl. Math. 5(2) Art, 35, 2004
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Now in some neighbourhood g we see thay¥)(¢) + ag~™(¢) is the uni-
form limit of

nk_
g + agi"(Q) — prob = p) {f;k)(zj + Q) +afi" (2 + piC) — b} :

By (3.2) and Hurwitz’s theorem there exists a sequefice- ¢, such that for
all large values of

fj(k)(zj + p;G) + afj*"(zj +piG) = .

Therefore for all large values gfit follows from the given conditiorg; (¢;)| >
M/p$ and as in the last part of the proof Gheoreml.1we arrive at a contra-
diction. This proves the theorem. O
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