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Abstract
The authors investigate several recently posed problems involving the familiar
Mathieu series and its various generalizations. For certain families of general-
ized Mathieu series, they derive a number of integral representations and inves-
tigate several one-sided inequalities which are obtainable from some of these
general integral representations or from sundry other considerations. Relevant
connections of the results and open problems (which are presented or con-
sidered in this paper) with those in earlier works are also indicated. Finally, a
conjectured generalization of one of the Mathieu series inequalities proven here
is posed as an open problem.
2000 Mathematics Subject Classification: Primary 26D15, 33C10, 33C20, 33C60;
Secondary 33E20, 40A30.
Key words: Mathieu’s series, Integral representations, Bessel functions, Hypergeo-
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Riemann-Liouville fractional integral, Lommel function of the first kind.
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The following familiar infinite series:

(1.1) Sr)=>_

n=1

2n
(n? + 7“2)2 (r © R+)

is named after Emile Leonard Mathieu (1835-1890), who investigated it in his

1890 work [LZ] on elasticity of solid bodies. SN P
For the Mathieu serie§ (r) defined by {.1), Alzer et al. [?] showed that Involving Mathieu’s Series and

the best constants, andx in the following two-sided inequality: Its Generalizations

H.M. Srivastava and

1.2 1 S 1 0 Zivorad Tomovski
(1.2) S <S<—/5  #0)
are given by Title Page
1 1
K1 = m and kg = R Contents
: <44 >
where( (s) denotes the Riemann Zeta function defined by (see, for details, [
Chapter 2]) < >
Go Back
(S-S o @) .
= S l-2 = (2n—1)° ° Close
1.3) ((s):= Quit
g (=D Page 3 of 27
(1 _ 21—3) 1 Z ( n)s (9{ (3) = 0’ s ;é 1) ' age o 0
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A remarkably useful integral representation ffr) in the elegant form:

S(r)zl/ooowdx

(1.4) e

was given by Emersleben]| In fact, by applying {.4) in conjunction with the
generating function:

(1.5) (2] < 27)

for the Bernoulli numbers
B, (neNy:={0,1,2,...}),

Elbert [5] derived the following asymptotic expansion f6i(r):

1.6) S(r)~ N

k=0

¢ Bae 11 1
r2k+2  p2 Gt 306

(r — 00).

More recently, GuolI(] made use of the integral representatibrl) in order to
obtain a number of interesting results including (for example) bounds foy.
For various subsequent developments using)(the interested reader may be
referred to the works by (among others) &ial. ([16] to [19]). (See also an
independenterivation of the asymptotic expansioh.§) by Wang and Wang

[24]).
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Several interesting problems and solutions dealing with integral representa-
tions and bounds for the followinmild generalization of the Mathieu series
(1.D:

a.7) Sy (r) = Z (nzi—nﬂ)“ (7“ eRT; u> 1)

can be found in the recent works by Dianandg [Guo [1(], Tomovski and
Trentevski [27], and Cerone and Lenard][ Motivated essentially by the works

of Cerone and Lenard3] (and Qi [17]), we propose to investigate the corre-
sponding problems involving a family of generalized Mathieu series, which is
defined here by

o o i 2a5
(1.8) S (r;a) = S (1 {ar )2 ) - Z )
n=1

(r,o, B, p € RY),
where @nd throughout this papért is tacitly assumed that thpositive se-
qguence

a:={ar}e; ={a1,a2,as,...,ax,...} (lim ap = oo)

k—o0

is so chosen (and then tipesitiveparametersy, 5, andy are so constrained)
that the infinite series in the definitioh.g) converges, that is, that the following

auxiliary series:
(o]
>
o
n=1 a

Some Problems and Solutions
Involving Mathieu’s Series and
Its Generalizations

H.M. Srivastava and
Zivorad Tomovski

Title Page
Contents
44 44
| | 2
Go Back
Close
Quit
Page 5 of 27

J. Ineq. Pure and Appl. Math. 5(2) Art. 45, 2004
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:
mailto:harimsri@math.uvic.ca
mailto:
mailto:
mailto:tomovski@iunona.pmf.ukim.edu.mk
http://jipam.vu.edu.au/

is convergent. We remark in passing that, in a very recent research report (which
appeared after the submission of this papeHRAM), Pogany [ 4] considered
a substantially more general form of the definitidngj. As a matter of fact,
Pogéany'’s investigationl[/] was based largely upon suchain mathematical
tools as the Laplace integral representation of general Dirichlet series and the
familiar Euler-Maclaurin summation formulaf(, e.q., [20, p. 36et seq)).

Clearly, by comparing the definitions.(), (1.7), and (L.8), we obtain

(1.9) Se(r)=S(r) and S,(r) =82 (r;{k};2,).
Furthermore, the special cases

Dir{akys), PV {k,),  and S (k1)

were investigated by Qil[/], Tomovski [27], and Cerone and Lenard]|
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First of all, we find from the definition1( 8) that

a, . o) . :u_’_m -1 m - 1
s st =23 () ()Y s
so that
(1) S (ri {k}02)
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> —1
_ 9 <u+m

m
m=0

(7’7057577 € R+7 fY(luOé - ﬁ) > 1)
in terms of the Riemann Zeta function defined fy3j.

Now, by making use of the familiar integral representatioin €.g., [20, p. Title Page
96, Equation 2.3 (4)]): Contents
1 [ee] xs—l
: = 44 >
(2.2) ¢ (s) D) /0 =1 dx (R(s) >1)
in (2.1), we obtain 4 g
9 0o (o)1 Go Back
(a76) . o0 f—
(2.3) SM (7’, {m}kzl) T (M) /0 et — 1 Close
10y [(1, 1) 5 (y (po = B) ,ya) s —r? 27°] d, Quit
Page 7 of 27

(7"7a767’7€]R+; ’Y(Ma_ﬂ) > 1)7
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where , ¥, denotes the Fox-Wright generalization of the hypergeometfic
function withp numerator ang denominator parameters, defined &y,[p. 50,
Equation 1.5 (21)]

(24) p\Ijq [(@17 Al) P (apa

Ap); (B, Bi), .., (B, B ); Z

_Z i U (g + Aym)  m
H L'(B; + Bym) ml’

(Aj€R+ (j=1,...,p); B;eR" (j =1

so that, obviously,

(2.5) U, [(aq,1),...,(ap,1); (51, 1),. ..,
(1) T(ay)

In its special case when

(Bg:1) 5 2]
qu (041, NP

,Bgs 2) .

70517;617"'

ya=q (¢geN:={1,2,3,...}),

we can apply the Gauss-Legendre multiplication formtlg p. 23, Equation
1.1 (27)]:

(2.6)

q p
q); 1+ZBj—ZAj>O>,
j=1 j=1
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on the right-hand side of our integral representatidf)( We thus find that

. ) xq[ﬂ—g]—l
2.7) S\ (r; {kq/"‘}k:1> T I'(q [;_ ) /0 er —1

afesfonf-2) )

(T,aﬁEW; p-S s, qGN) :
(0%
where, for convenience\ (¢; \) abbreviates the array gfparameters

A A+1 Atqg—1
-, e q (g e N).
q q q

Forq = 2, (2.7) can easily be simplified to the form:

. 5 00 p2u—(B/a)]-1
2.8) S (ri{k*}, ) = / el
@8 S0 (L) = rapm e e
1 2,.2
-1Fz(u;u—éaﬂ—é+_5_”)dx
a 04 4

2
1
(r,a,ﬁ€R+; ,u—é>—>.
a 2

A further special case of(.8) can be deduced in terms of the Bessel function

J, (z) of orderv:
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00 _1)m %Z v+2m

(2.9) Ju (Z)Z—Z_(]m'p(y&nl+1)
_ 39 P
- reryn (e T):

Thus, by settings = %a andu — p+ 11in(2.8), and applying 2.9) as well as

(2.6) with m = 2, we obtain the following known result] p. 3, Theorem 2.1]:

(210) S5 (s (k)
- S;(ill) (r; {k}ezy) = Suya (1)
1ﬁ / & J, 1 (rz)dz
(n+1)Jo

- (27“)#*5 r er —1 H72
(r,p e R).

In a similar manner, a limit case o?.@) when — 0 would formally yield
the formula:

(11) S0 (B} = i nQM
=5 ( )/OO - J, 1 (rx)de

N (QT,)M—% I et —1 F2

1
(TER+;M>§),
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which is, in fact, equivalent to the following 1906 result of Willem Kapteyn
(1849-1927) P5, p. 386, Equation 13.2 (9)]:

2))" 1) — 1
) dt = (\/%) T <u - 5) ; T
Rw)>0; |TWN)|<mn).
Furthermore, a rather simple consequencedf) or (2.12) in the form:
2y/m i3
(2¢)°°7 T'(s) Jo € —1

(36> 3 1 <1).

appears erroneously in the works by (for example) Hansend. 122, Entry
(6.3.59)] and Prudnikoet al. [15, p. 685, Entry 5.1.25.1]. And, by making use
of the Trigamma function’ (z) defined, in general, by’[), p. 22, Equation 1.2

(52)]
(2.14)

[e.9]

213) > ﬁ

n=—oo

=c 4+ Joo1 (cx) dx

m+1

W () = T g T (2)) = o ()
(m e Nyg:=NU{0}; z€ C\ Zy; Zy := {O,— ,—2,...})
or, equivalently, by

m) () (gt NS L
$ ) = Y

= (=)™ ml¢(m+1,2)

(2.15)
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(meN; zeC\ Zy)

in terms of the Hurwitz (or generalized) Zeta functiofs, ) [20, p. 88, Equa-
tion 2.2 (1)et seq], both Hansen11, p. 111, Entry (6.1.137)] and Prudnikev
al. [15, p. 687, Entry 5.1.25.28] have recorded the followaxgplicit evaluation
of the classical Mathieu series:

2k Y (—ir) = (ir)
R AT

o0

(2.16) S(r):= (i :=V-1).

We remark in passing that, in light of one of the familiar relationships:

2 COSs 2
(2.17) Ter (2) =4/ = :

Tz .
Sz

a special case 02(10 whenyp = 1 would immediately yield the well-exploited
integral representatiori (4).

Next, in the theory of Bessel functions, it is fairly well known thet (e.g,
[7, p. 49, Equation 7.7.3 (16)])

(2.18) / e ST, (pt) dt
0
1 1
sWH+AN),sw+A+1);
(L) ey BT
2
2s F'v+1) vl S

R (s) > [T (p)l; R+ A) >0).
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Since
(2.19) BN —2)=(1-27" (<L Ae0),

the integral formulaZ.18 would simplify considerably when = v + 1 and
when\ = v + 2, giving us [see also Equation3.(0 and @.11) above]

(20)" T(v+5)
VI (524 p2)"

(%> 17 ()l 30 > )

(2.20) / etV J, (pt)dt =
0

and

> —st yv+1 _ 28 (2p)V . ( )
(2.21) /0 e Tt J, (pt) dt = N

R (s) > [T (p)l; R(v) > -1),

respectively. While each of the special case2() and @.21), too, together
with the parent formulaZ.18), are readily accessible in many different places
in various mathematical books and tablek, €.g., [26, p. 72]), .20 appears
slightly erroneously in{, p. 49, Equation 7.7.3 (17)]. The integral formula
(2.21) would follow also when we differentiate both sides @tZ0 partially
with respect to the parameter

Now we turn once again to our definitioh.8) which, fora = 2, yields

3
2

o0

(2.22) SP (ri{ar}isy) = 5o

n=1

Qaﬁ

(a2 +r?)

(r,8,p € RT).
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Making use of the integral formulag.@0 and .21), we find from @.16) that

(2.23) S (r; {ar},)

2 1
_ \/_ <Z af —ana:) o, ;(rx) dx

(27’)“ 2 T (u

(7“, B, e RY)
and

(2.24) 8PP (ri{antiy)

VT m(zagl ) -

(27‘)“ 3 T (u

w\»—t
<

(ra) dx

Njw

(r,ﬁ,,u eRY),

respectively.
A special case of the integral representatidr2{) when

6=1 and pur—pu+1

was given by Cerone and Lenard p. 9, Equation (4.5)].
Finally, in view of the Eulerian integral formula:

o0 (A
(2.25) / e St dt = (A )
0 S

(R(s) >0; R (A) >0),

Some Problems and Solutions
Involving Mathieu’s Series and
Its Generalizations

H.M. Srivastava and
Zivorad Tomovski

Title Page

Contents
44 4 4
| | 2
Go Back
Close
Quit
Page 14 of 27

J. Ineq. Pure and Appl. Math. 5(2) Art. 45, 2004
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:
mailto:harimsri@math.uvic.ca
mailto:
mailto:
mailto:tomovski@iunona.pmf.ukim.edu.mk
http://jipam.vu.edu.au/

we find from the definitionX.8) that

2 o )
) = R ), (@)
(r,a,B,p e RY),
where, for convenience,
(2.27) © (1:) = Zag exp (_az 1’) '
n=1

In terms of the generalized Mathieu serigs(r) defined by (.7), a special
case of the integral representati@nZ6 when

a =2, B=1, and a, =k (ke N),

was given by Tomovski and Tréavski [23, p. 6, Equation (2.3)].
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2.8

For the generalized hypergeometyig; function ofp numerator ang denom-
inator parameters, which is defiend B4 and @.5), we first recall here the
following equivalent form of a familiar Riemann-Liouville fractional integral
formula (cf., e.g., [3, p. 200, Entry 13.1 (95)]:

(3.1) p+1Fq+1 (,07 a1y ...,0p 0+ 0, By aﬁq§ Z) Some Problems and Solutions
Involving Mathieu’s Series and
_ I (/0 + U) Its Generalizations

1
)/0 tp_l(l—t)"*1 pFy (o, o ap; By, ..., By 2t) dt

r (p) r (U Hv.l_\/l. Srivastava ar_wd
(p § q+ 1; min {m <p) ,9%(0)} > 0; ’Z’ <1 when p=q+ 1) ’ Zivorad Tomovski
which, for :
Title Page
1 2,.2
p=q—1=0 (ﬁlzﬂ—é), P = U J:§—é, and z:—rf , Contents
«Q «Q
44 44
immediately yields
< 4
1 2,.2
(3.2) F, <u;u—§,u—§+§;—%> Go Back
—(B/a)— Close
CT(u=0)T(n—2+3) 2\ _
INMINCE g) rT Quit
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2

In terms of the Lommel function,, , (z) of the first kind, defined by, p.
40, Equation 7.5.5 (69)]

1
(r,x,,ueR*; ﬁ<—).
a

Zu—l—l

(w—v+1)(p+rv+1)

(3.3) suu(2) =

1 1 31 1 3 22 .
. - a2 2.z Some Probl d Solut
Fo(Lgu-got Sigurgregi-T), | e s,
Its Generalizations
the special casg = 1 of (3.2) can be found recorded as a Riemann-Liouville H.M. Srivastava and
fractional integral formula by Erdélet al. [3, p. 194, Entry 13.1 (64)] (see Zivorad Tomovski
also [3, p. 195, Entry 13.1 (65)]).

Now we turn to a recent investigation by Landaw][in which several best Title Page
possible uniform bounds for the Bessel functions were obtained by using mono- p—
tonicity arguments. Following also the work of Cerone and Lenay&gction ontents
3], we choose to recall here two of Landau’s inequalities given below. The first <44« 44
inequality: p >

br Go Back
(3.4) |, ()] = 3
Close
holds true uniformly in the argumentand is the best possible in the exponent Quit

3, with the constant,, given by
Page 17 of 27
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whereAi (z) denotes the Airy function satisfying the differential equation:

(3.6) 272;) —zw =0 (w = Ai(2)).

The second inequality:

(3.7) 1, ()] £ —%

= /3

holds true uniformly in the order € R* and is the best possible in the exponent
3, with the constant;, given by

(3.8) cr, = sup {2'/® Jy (z)} = 0.78574687 .. ..

By appealing appropriately to the bounds #4) and @.7), we find from
(3.2 that

1 r2z?
15 u;u—@,u—éJr—;——
«Q a 2 4

2 p—(B8/a)—1 *%
(@ o)
rx «

D= 2)T (=5 + )T (5+55+3)

(3.9)

1
(T7I€R+;M—é>1;u+é>—l; é<—)
Q e} a 2
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and

(3.10)

F . _ = _ = e
1 Q(Mnu a?ﬂ +27 4

I 8 5
I (M> r (5 2 T 6) Some Problems and Solutions
Involving Mathieu’s Series and
I} 16} 2 f 1 Its Generalizations
rreERu—=>1Lu+=>—=;, =< =,
« « 3 « 2 H.M. Srivastava and

Zivorad Tomovski

whereb;, andc;, are given by 8.5) and 3.8), respectively.

Finally, we apply the inequalities3(9) and 3.10 in our integral represen-
tation 2.8). We thus obtain the following bounds for the generalized Mathieu
series occurring in4.9): Contents

Title Page

) - 44 44
(3.11) S;S H) (7“; {kQ/ }kzl) < >
CwvE (B
< (QT)M—(ﬂ/a)—l [ - Go Back
s p B 1 Close
.F(,u o 1)F(2+2°‘+2)C(M—§+1> -
LT (5= 2 +1) @ -
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and

(312) S (r; {k2/}7)

< CLﬁ
= ou—(B/a)-1 pu—(B8/a)-3
DTG ED (0,2
F(wT (-2 +1) 3
1
(r,x,a,ﬁER+;é<§; —£>1)7

where we have employed the integral representafid?) for the Riemann Zeta
function( (s), by, andcy, being given (as before) b (5) and @.9), respectively.
In their special case when

1
g — e and pur— pu+1,
the bounds ing.11) and 3.12 would correspond naturally to those given earlier
by Cerone and Lenard[ p. 7, Theorem 3.1]. Theecondbound asserted by
Cerone and Lenard3[ p. 7, Equation (3.12)] should, in fact, be corrected to
includel” (i + 1) in thedenominatoron the right-hand side.
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We first prove the following inequality which was recently posed a®pen
problem by Qi [.7, p. 7, Open Problem 2]:

0o . 2 0o
(4.2) (/ osin (rz) dx) > 27“2/ 2e " f (x) dx
o e —1 0
(r eRT; f(z):= Zne‘”QﬂC) :
n=1
which, in view of the integral representatian4), is equivalent to the inequality:
4.2) S ()] > 2 / 22 e~ f(7) da,
0

wheref () is defined as in4.1).

Proof. Since the infinite series:

oo
Z n€—<n2+r2)x
n=1

is uniformly convergent whem € R, for the right-hand side of the inequality
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(4.2), we have

2/ 2 e f () do = 2/ z? (Z ne("Q”Q)I) dx
0 0 n=1

=2 n/ 22 e (M%) g
> n
=4 Z (TLQ + 7“2)3 3 (T) ’ Some Problems and Solutions
n=1 Involving Mathieujs S_eries and

where we have used the Eulerian integral formal2%9. Hence it is sufficient Its Generalizations

to prove the following inequality: H.M. Srivastava and
Zivorad Tomovski

(4.3) 1S (r)]? > 2S5 (1),

which was, in fact, conjectured by Alzer and Brenngrgnd proven by Wilkins Title Page

[27] b_y remarkably applying series and integral representations for the Trigamma Contents

functiont’ (z) defined by 2.14) for m = 1. O
<44 >»

We conclude our present investigation by remarking that it seems to be very
likely that the inequality4.1) can be generalized to the following form: < 4
Open Problem. Prove or disprove that Go Back
% . gi p 00 ) Close
(4.4) (/ de) >T“F(,u+1)/ e f () dx _
0 et —1 0 Quit
= Page 22 of 27
(T, peRT; f(z):= Zne_”2m> 998220
n=1
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or, equivalently, that

(@5) s > e )
(r e R+)
since
@s) [ et @ =Ty T
=t s, )

by virtue of the Eulerian integral formul2 25 once again.

The open problemd( 1), which we have completely solved here, corresponds
to thespecialcaseu = 2 of the Open Problen¥(4) posed in this paper.
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