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Abstract
The authors investigate several recently posed problems involving the familiar
Mathieu series and its various generalizations. For certain families of general-
ized Mathieu series, they derive a number of integral representations and inves-
tigate several one-sided inequalities which are obtainable from some of these
general integral representations or from sundry other considerations. Relevant
connections of the results and open problems (which are presented or con-
sidered in this paper) with those in earlier works are also indicated. Finally, a
conjectured generalization of one of the Mathieu series inequalities proven here
is posed as an open problem.
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1. Introduction, Definitions, and Preliminaries
The following familiar infinite series:

(1.1) S (r) :=
∞∑

n=1

2n

(n2 + r2)2

(
r ∈ R+

)
is named after Émile Leonard Mathieu (1835-1890), who investigated it in his
1890 work [13] on elasticity of solid bodies.

For the Mathieu seriesS (r) defined by (1.1), Alzer et al. [2] showed that
the best constantsκ1 andκ2 in the following two-sided inequality:

(1.2)
1

κ1 + r2
< S (r) <

1

κ2 + r2
(r 6= 0)

are given by

κ1 =
1

2ζ (3)
and κ2 =

1

6
,

whereζ (s) denotes the Riemann Zeta function defined by (see, for details, [20,
Chapter 2])

(1.3) ζ (s) :=



∞∑
n=1

1

ns
=

1

1− 2−s

∞∑
n=1

1

(2n− 1)s (R (s) > 1)

(1− 21−s)
−1

∞∑
n=1

(−1)n−1

ns
(R (s) > 0; s 6= 1) .
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A remarkably useful integral representation forS (r) in the elegant form:

(1.4) S (r) =
1

r

∫ ∞

0

x sin (rx)

ex − 1
dx

was given by Emersleben [6]. In fact, by applying (1.4) in conjunction with the
generating function:

(1.5)
z

ez − 1
=

∞∑
n=0

Bn
zn

n!
(|z| < 2π)

for the Bernoulli numbers

Bn (n ∈ N0 := {0, 1, 2, . . .}) ,

Elbert [5] derived the following asymptotic expansion forS (r):

(1.6) S (r) ∼
∞∑

k=0

(−1)k B2k

r2k+2
=

1

r2
− 1

6r4
− 1

30r6
− · · · (r →∞) .

More recently, Guo [10] made use of the integral representation (1.4) in order to
obtain a number of interesting results including (for example) bounds forS (r).
For various subsequent developments using (1.4), the interested reader may be
referred to the works by (among others) Qiet al. ([16] to [19]). (See also an
independentderivation of the asymptotic expansion (1.6) by Wang and Wang
[24]).
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Several interesting problems and solutions dealing with integral representa-
tions and bounds for the followingmild generalization of the Mathieu series
(1.1):

(1.7) Sµ (r) :=
∞∑

n=1

2n

(n2 + r2)µ

(
r ∈ R+; µ > 1

)
can be found in the recent works by Diananda [4], Guo [10], Tomovski and
Treňcevski [23], and Cerone and Lenard [3]. Motivated essentially by the works
of Cerone and Lenard [3] (and Qi [17]), we propose to investigate the corre-
sponding problems involving a family of generalized Mathieu series, which is
defined here by

(1.8) S(α,β)
µ (r; a) = S(α,β)

µ (r; {ak}∞k=1) :=
∞∑

n=1

2aβ
n

(aα
n + r2)µ

(
r, α, β, µ ∈ R+

)
,

where (and throughout this paper) it is tacitly assumed that thepositivese-
quence

a := {ak}∞k=1 = {a1, a2, a3, . . . , ak, . . .}
(

lim
k→∞

ak = ∞
)

is so chosen (and then thepositiveparametersα, β, andµ are so constrained)
that the infinite series in the definition (1.8) converges, that is, that the following
auxiliary series:

∞∑
n=1

1

aµα−β
n
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is convergent. We remark in passing that, in a very recent research report (which
appeared after the submission of this paper toJIPAM), Pogány [14] considered
a substantially more general form of the definition (1.8). As a matter of fact,
Pogány’s investigation [14] was based largely upon suchmain mathematical
tools as the Laplace integral representation of general Dirichlet series and the
familiar Euler-Maclaurin summation formula (cf., e.g., [20, p. 36et seq.]).

Clearly, by comparing the definitions (1.1), (1.7), and (1.8), we obtain

(1.9) S2 (r) = S (r) and Sµ (r) = S(2,1)
µ (r; {k}∞k=1) .

Furthermore, the special cases

S(2,1)
2 (r; {ak}∞k=1) , S(2,1)

µ (r; {kγ}∞k=1) , and S(α,α/2)
µ (r; {k}∞k=1)

were investigated by Qi [17], Tomovski [22], and Cerone and Lenard [3].

http://jipam.vu.edu.au/
mailto:
mailto:harimsri@math.uvic.ca
mailto:
mailto:
mailto:tomovski@iunona.pmf.ukim.edu.mk
http://jipam.vu.edu.au/


Some Problems and Solutions
Involving Mathieu’s Series and

Its Generalizations

H.M. Srivastava and
Živorad Tomovski

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 7 of 27

J. Ineq. Pure and Appl. Math. 5(2) Art. 45, 2004

http://jipam.vu.edu.au

2. A Class of Integral Representations
First of all, we find from the definition (1.8) that

S(α,β)
µ (r; {ak}∞k=1) = 2

∞∑
m=0

(
µ+m− 1

m

)(
−r2

)m ∞∑
n=1

1

a
(µ+m)α−β
n

,

so that

(2.1) S(α,β)
µ (r; {kγ}∞k=1)

= 2
∞∑

m=0

(
µ+m− 1

m

)(
−r2

)m
ζ (γ [(µ+m)α− β])

(
r, α, β, γ ∈ R+; γ (µα− β) > 1

)
in terms of the Riemann Zeta function defined by (1.3).

Now, by making use of the familiar integral representation (cf., e.g., [20, p.
96, Equation 2.3 (4)]):

(2.2) ζ (s) =
1

Γ (s)

∫ ∞

0

xs−1

ex − 1
dx (R (s) > 1)

in (2.1), we obtain

(2.3) S(α,β)
µ (r; {kγ}∞k=1) =

2

Γ (µ)

∫ ∞

0

xγ(µα−β)−1

ex − 1

· 1Ψ1

[
(µ, 1) ; (γ (µα− β) , γα) ;−r2 xγα

]
dx,(

r, α, β, γ ∈ R+; γ (µα− β) > 1
)
,
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where pΨq denotes the Fox-Wright generalization of the hypergeometricpFq

function withp numerator andq denominator parameters, defined by [21, p. 50,
Equation 1.5 (21)]

(2.4) pΨq [(α1, A1) , . . . , (αp, Ap) ; (β1, B1) , . . . , (βq, Bq) ; z]

:=
∞∑

m=0

∏p
j=1 Γ (αj + Ajm)∏q
j=1 Γ (βj +Bjm)

· z
m

m!
,

(
Aj ∈ R+ (j = 1, . . . , p) ; Bj ∈ R+ (j = 1, . . . , q) ; 1 +

q∑
j=1

Bj −
p∑

j=1

Aj > 0

)
,

so that, obviously,

(2.5) pΨq [(α1, 1) , . . . , (αp, 1) ; (β1, 1) , . . . , (βq, 1) ; z]

=
Γ (α1) · · ·Γ (αp)

Γ (β1) · · ·Γ (βq)
pFq (α1, . . . , αp; β1, . . . , βq; z) .

In its special case when

γα = q (q ∈ N := {1, 2, 3, . . .}) ,

we can apply the Gauss-Legendre multiplication formula [21, p. 23, Equation
1.1 (27)]:

Γ (mz) = (2π)
1
2
(1−m) mmz− 1

2

m∏
j=1

Γ

(
z +

j − 1

m

)
(2.6) (

z ∈ C \
{

0,− 1

m
,− 2

m
, . . .

}
; m ∈ N

)
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on the right-hand side of our integral representation (2.3). We thus find that

(2.7) S(α,β)
µ

(
r;
{
kq/α

}∞
k=1

)
=

2

Γ
(
q
[
µ− β

α

]) ∫ ∞

0

xq[µ− β
α ]−1

ex − 1

· 1Fq

(
µ; ∆

(
q; q

[
µ− β

α

])
;−r2

(
x

q

)q)
dx

(
r, α, β ∈ R+; µ− β

α
> q−1; q ∈ N

)
,

where, for convenience,∆ (q;λ) abbreviates the array ofq parameters

λ

q
,
λ+ 1

q
, . . . ,

λ+ q − 1

q
(q ∈ N) .

For q = 2, (2.7) can easily be simplified to the form:

(2.8) S(α,β)
µ

(
r;
{
k2/α

}∞
k=1

)
=

2

Γ (2 [µ− (β/α)])

∫ ∞

0

x2[µ−(β/α)]−1

ex − 1

· 1F2

(
µ;µ− β

α
, µ− β

α
+

1

2
;−r

2x2

4

)
dx

(
r, α, β ∈ R+; µ− β

α
>

1

2

)
.

A furtherspecial case of (2.8) can be deduced in terms of the Bessel function
Jν (z) of orderν:

http://jipam.vu.edu.au/
mailto:
mailto:harimsri@math.uvic.ca
mailto:
mailto:
mailto:tomovski@iunona.pmf.ukim.edu.mk
http://jipam.vu.edu.au/


Some Problems and Solutions
Involving Mathieu’s Series and

Its Generalizations

H.M. Srivastava and
Živorad Tomovski

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 10 of 27

J. Ineq. Pure and Appl. Math. 5(2) Art. 45, 2004

http://jipam.vu.edu.au

Jν (z) : =
∞∑

m=0

(−1)m (1
2
z
)ν+2m

m! Γ (ν +m+ 1)
(2.9)

=

(
1
2
z
)ν

Γ (ν + 1)
0F1

(
; ν + 1;−z

2

4

)
.

Thus, by settingβ = 1
2
α andµ 7→ µ + 1 in (2.8), and applying (2.9) as well as

(2.6) withm = 2, we obtain the following known result [3, p. 3, Theorem 2.1]:

S(α,α/2)
µ+1

(
r;
{
k2/α

}∞
k=1

)
(2.10)

= S(2,1)
µ+1 (r; {k}∞k=1) = Sµ+1 (r)

=

√
π

(2r)µ− 1
2 Γ (µ+ 1)

∫ ∞

0

xµ+ 1
2

ex − 1
Jµ− 1

2
(rx) dx(

r, µ ∈ R+
)
.

In a similar manner, a limit case of (2.8) whenβ → 0 would formally yield
the formula:

S(α,0)
µ

(
r;
{
k2/α

}∞
k=1

)
=

∞∑
n=1

2

(n2 + r2)µ(2.11)

=
2
√
π

(2r)µ− 1
2 Γ (µ)

∫ ∞

0

xµ− 1
2

ex − 1
Jµ− 1

2
(rx) dx(

r ∈ R+; µ >
1

2

)
,
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which is, in fact, equivalent to the following 1906 result of Willem Kapteyn
(1849-1927) [25, p. 386, Equation 13.2 (9)]:

(2.12)
∫ ∞

0

xν

eπx − 1
Jν (λx) dt =

(2λ)ν

√
π

Γ

(
ν +

1

2

) ∞∑
n=1

1

(n2 π2 + λ2)ν+ 1
2

(R (ν) > 0; |J (λ)| < π) .

Furthermore, a rather simple consequence of (2.11) or (2.12) in the form:
∞∑

n=−∞

1

(n2 + c2)s = c−2s +
2
√
π

(2c)s− 1
2 Γ (s)

∫ ∞

0

xs− 1
2

ex − 1
Js− 1

2
(cx) dx(2.13) (

R (s) >
1

2
; |c| < 1

)
.

appears erroneously in the works by (for example) Hansen [11, p. 122, Entry
(6.3.59)] and Prudnikovet al. [15, p. 685, Entry 5.1.25.1]. And, by making use
of the Trigamma functionψ′ (z) defined, in general, by [20, p. 22, Equation 1.2
(52)]

ψ(m) (z) :=
dm+1

dzm+1
{log Γ (z)} =

dm

dzm
{ψ (z)}(2.14) (

m ∈ N0 := N ∪ {0} ; z ∈ C \ Z−0 ; Z−0 := {0,−1,−2, . . .}
)

or, equivalently, by

ψ(m) (z) := (−1)m+1 m!
∞∑

k=0

1

(k + z)m+1(2.15)

=: (−1)m+1 m! ζ (m+ 1, z)
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(
m ∈ N; z ∈ C \ Z−0

)
in terms of the Hurwitz (or generalized) Zeta functionζ (s, a) [20, p. 88, Equa-
tion 2.2 (1)et seq.], both Hansen [11, p. 111, Entry (6.1.137)] and Prudnikovet
al. [15, p. 687, Entry 5.1.25.28] have recorded the followingexplicitevaluation
of the classical Mathieu series:

(2.16) S (r) :=
∞∑

k=1

2k

(k2 + r2)2 =
ψ′ (−ir)− ψ′ (ir)

2ir

(
i :=

√
−1
)
.

We remark in passing that, in light of one of the familiar relationships:

(2.17) J∓ 1
2
(z) =

√
2

πz
·


cos z

sin z
,

a special case of (2.10) whenµ = 1 would immediately yield the well-exploited
integral representation (1.4).

Next, in the theory of Bessel functions, it is fairly well known that (cf., e.g.,
[7, p. 49, Equation 7.7.3 (16)])

(2.18)
∫ ∞

0

e−st tλ−1 Jν (ρt) dt

=
( ρ

2s

)ν

s−λ Γ (ν + λ)

Γ (ν + 1)
2F1

 1
2
(ν + λ) , 1

2
(ν + λ+ 1) ;

ν + 1;
− ρ2

s2


(R (s) > |J (ρ)| ; R (ν + λ) > 0) .
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Since

(2.19) 1F0 (λ; ; z) = (1− z)−λ (|z| < 1; λ ∈ C) ,

the integral formula (2.18) would simplify considerably whenλ = ν + 1 and
whenλ = ν + 2, giving us [see also Equations (2.10) and (2.11) above]∫ ∞

0

e−st tν Jν (ρt) dt =
(2ρ)ν

√
π

·
Γ
(
ν + 1

2

)
(s2 + ρ2)ν+ 1

2

(2.20) (
R (s) > |J (ρ)| ; R (ν) > −1

2

)
and ∫ ∞

0

e−st tν+1 Jν (ρt) dt =
2s (2ρ)ν

√
π

·
Γ
(
ν + 3

2

)
(s2 + ρ2)ν+ 3

2

(2.21)

(R (s) > |J (ρ)| ; R (ν) > −1) ,

respectively. While each of the special cases (2.20) and (2.21), too, together
with the parent formula (2.18), are readily accessible in many different places
in various mathematical books and tables (cf., e.g., [26, p. 72]), (2.20) appears
slightly erroneously in [7, p. 49, Equation 7.7.3 (17)]. The integral formula
(2.21) would follow also when we differentiate both sides of (2.20) partially
with respect to the parameters.

Now we turn once again to our definition (1.8) which, forα = 2, yields

(2.22) S(2,β)
µ (r; {ak}∞k=1) =

∞∑
n=1

2aβ
n

(a2
n + r2)µ

(
r, β, µ ∈ R+

)
.
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Making use of the integral formulas (2.20) and (2.21), we find from (2.16) that

(2.23) S(2,β)
µ (r; {ak}∞k=1)

=
2
√
π

(2r)µ− 1
2 Γ (µ)

∫ ∞

0

(
∞∑

n=1

aβ
n e

−anx

)
xµ− 1

2 Jµ− 1
2
(rx) dx

(
r, β, µ ∈ R+

)
and

(2.24) S(2,β)
µ (r; {ak}∞k=1)

=

√
π

(2r)µ− 3
2 Γ (µ)

∫ ∞

0

(
∞∑

n=1

aβ−1
n e−anx

)
xµ− 1

2 Jµ− 3
2
(rx) dx

(
r, β, µ ∈ R+

)
,

respectively.
A special case of the integral representation (2.24) when

β = 1 and µ 7−→ µ+ 1

was given by Cerone and Lenard [3, p. 9, Equation (4.5)].
Finally, in view of the Eulerian integral formula:

(2.25)
∫ ∞

0

e−st tλ−1 dt =
Γ (λ)

sλ
(R (s) > 0; R (λ) > 0) ,
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we find from the definition (1.8) that

S(α,β)
µ (r; {ak}∞k=1) =

2

Γ (µ)

∫ ∞

0

xµ−1 e−r2x ϕ (x) dx(2.26) (
r, α, β, µ ∈ R+

)
,

where, for convenience,

(2.27) ϕ (x) :=
∞∑

n=1

aβ
n exp (−aα

n x) .

In terms of the generalized Mathieu seriesSµ (r) defined by (1.7), a special
case of the integral representation (2.26) when

α = 2, β = 1, and ak = k (k ∈ N) ,

was given by Tomovski and Trenčevski [23, p. 6, Equation (2.3)].
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3. Bounds Derivable from the Integral
Representation (2.8)

For the generalized hypergeometricpFq function ofp numerator andq denom-
inator parameters, which is defiend by (2.4) and (2.5), we first recall here the
following equivalent form of a familiar Riemann-Liouville fractional integral
formula (cf., e.g., [8, p. 200, Entry 13.1 (95)]:

(3.1) p+1Fq+1 (ρ, α1, . . . , αp; ρ+ σ, β1, . . . , βq; z)

=
Γ (ρ+ σ)

Γ (ρ) Γ (σ)

∫ 1

0

tρ−1 (1− t)σ−1
pFq (α1, . . . , αp; β1, . . . , βq; zt) dt

(p 5 q + 1; min {R (ρ) ,R (σ)} > 0; |z| < 1 when p = q + 1) ,

which, for

p = q− 1 = 0

(
β1 = µ− β

α

)
, ρ = µ, σ =

1

2
− β

α
, and z = −r

2x2

4
,

immediately yields

(3.2) 1F2

(
µ;µ− β

α
, µ− β

α
+

1

2
;−r

2x2

4

)
=

Γ
(
µ− β

α

)
Γ
(
µ− β

α
+ 1

2

)
Γ (µ) Γ

(
1
2
− β

α

) (
2

rx

)µ−(β/α)−1

·
∫ 1

0

(√
t
)µ+(β/α)−1

(1− t)−(β/α)− 1
2 Jµ−(β/α)−1

(
rx
√
t
)
dt
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(
r, x, µ ∈ R+;

β

α
<

1

2

)
.

In terms of the Lommel functionsµ,ν (z) of the first kind, defined by [7, p.
40, Equation 7.5.5 (69)]

(3.3) sµ,ν (z) =
zµ+1

(µ− ν + 1) (µ+ ν + 1)

· 1F2

(
1;

1

2
µ− 1

2
ν +

3

2
;
1

2
µ+

1

2
ν +

3

2
;−z

2

4

)
,

the special caseµ = 1 of (3.2) can be found recorded as a Riemann-Liouville
fractional integral formula by Erdélyiet al. [8, p. 194, Entry 13.1 (64)] (see
also [8, p. 195, Entry 13.1 (65)]).

Now we turn to a recent investigation by Landau [12] in which several best
possible uniform bounds for the Bessel functions were obtained by using mono-
tonicity arguments. Following also the work of Cerone and Lenard [3, Section
3], we choose to recall here two of Landau’s inequalities given below. The first
inequality:

(3.4) |Jν (x)| 5 bL
ν1/3

holds true uniformly in the argumentx and is the best possible in the exponent
1
3
, with the constantbL given by

(3.5) bL = 21/3 sup
x
{Ai (x)} ∼= 0.674885 . . . ,
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whereAi (z) denotes the Airy function satisfying the differential equation:

(3.6)
d2w

dz2
− zw = 0

(
w = Ai (z)

)
.

The second inequality:

(3.7) |Jν (x)| 5 cL
x1/3

holds true uniformly in the orderν ∈ R+ and is the best possible in the exponent
1
3
, with the constantcL given by

(3.8) cL = sup
x

{
x1/3 J0 (x)

} ∼= 0.78574687 . . . .

By appealing appropriately to the bounds in (3.4) and (3.7), we find from
(3.2) that

(3.9)

∣∣∣∣ 1F2

(
µ;µ− β

α
, µ− β

α
+

1

2
;−r

2x2

4

)∣∣∣∣
5 bL

(
2

rx

)µ−(β/α)−1(
µ− β

α
− 1

)− 1
3

·
Γ
(
µ− β

α

)
Γ
(
µ− β

α
+ 1

2

)
Γ
(

µ
2

+ β
2α

+ 1
2

)
Γ (µ) Γ

(
µ
2
− β

2α
+ 1
)

(
r, x ∈ R+; µ− β

α
> 1; µ+

β

α
> −1;

β

α
<

1

2

)
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and

(3.10)

∣∣∣∣ 1F2

(
µ;µ− β

α
, µ− β

α
+

1

2
;−r

2x2

4

)∣∣∣∣
5

cL

(rx)1/3

(
2

rx

)µ−(β/α)−1

·
Γ
(
µ− β

α

)
Γ
(
µ− β

α
+ 1

2

)
Γ
(

µ
2

+ β
2α

+ 1
3

)
Γ (µ) Γ

(
µ
2
− β

2α
+ 5

6

)
(
r, x ∈ R+;µ− β

α
> 1; µ+

β

α
> −2

3
;
β

α
<

1

2

)
,

wherebL andcL are given by (3.5) and (3.8), respectively.
Finally, we apply the inequalities (3.9) and (3.10) in our integral represen-

tation (2.8). We thus obtain the following bounds for the generalized Mathieu
series occurring in (2.8):

(3.11) S(α,β)
µ

(
r;
{
k2/α

}∞
k=1

)
5

bL
√
π

(2r)µ−(β/α)−1

(
µ− β

α
− 1

)− 1
3

·
Γ
(
µ− β

α
+ 1
)
Γ
(

µ
2

+ β
2α

+ 1
2

)
Γ (µ) Γ

(
µ
2
− β

2α
+ 1
) ζ

(
µ− β

α
+ 1

)
(
r, x, α, β ∈ R+;

β

α
<

1

2
; µ− β

α
> 1

)
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and

(3.12) S(α,β)
µ

(
r;
{
k2/α

}∞
k=1

)
5

cL
√
π

2µ−(β/α)−1 rµ−(β/α)− 2
3

·
Γ
(
µ− β

α
+ 2

3

)
Γ
(

µ
2

+ β
2α

+ 1
2

)
Γ (µ) Γ

(
µ
2
− β

2α
+ 1
) ζ

(
µ− β

α
+

2

3

)
(
r, x, α, β ∈ R+;

β

α
<

1

2
; µ− β

α
> 1

)
,

where we have employed the integral representation (2.2) for the Riemann Zeta
functionζ (s), bL andcL being given (as before) by (3.5) and (3.8), respectively.

In their special case when

β −→ 1

2
α and µ 7−→ µ+ 1,

the bounds in (3.11) and (3.12) would correspond naturally to those given earlier
by Cerone and Lenard [3, p. 7, Theorem 3.1]. Thesecondbound asserted by
Cerone and Lenard [3, p. 7, Equation (3.12)] should, in fact, be corrected to
includeΓ (µ+ 1) in thedenominatoron the right-hand side.
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4. Inequalities Associated with Generalized
Mathieu Series

We first prove the following inequality which was recently posed as anopen
problem by Qi [17, p. 7, Open Problem 2]:(∫ ∞

0

x sin (rx)

ex − 1
dx

)2

> 2r2

∫ ∞

0

x2e−r2xf (x) dx(4.1) (
r ∈ R+; f (x) :=

∞∑
n=1

ne−n2x

)
,

which, in view of the integral representation (1.4), is equivalent to the inequality:

(4.2) [S (r)]2 > 2

∫ ∞

0

x2 e−r2x f (x) dx,

wheref (x) is defined as in (4.1).

Proof. Since the infinite series:

∞∑
n=1

ne−(n2+r2)x

is uniformly convergent whenx ∈ R+, for the right-hand side of the inequality

http://jipam.vu.edu.au/
mailto:
mailto:harimsri@math.uvic.ca
mailto:
mailto:
mailto:tomovski@iunona.pmf.ukim.edu.mk
http://jipam.vu.edu.au/


Some Problems and Solutions
Involving Mathieu’s Series and

Its Generalizations

H.M. Srivastava and
Živorad Tomovski

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 22 of 27

J. Ineq. Pure and Appl. Math. 5(2) Art. 45, 2004

http://jipam.vu.edu.au

(4.2), we have

2

∫ ∞

0

x2 e−r2x f (x) dx = 2

∫ ∞

0

x2

(
∞∑

n=1

ne−(n2+r2)x

)
dx

= 2
∞∑

n=1

n

∫ ∞

0

x2 e−(n2+r2)x dx

= 4
∞∑

n=1

n

(n2 + r2)3 =: 2S3 (r) ,

where we have used the Eulerian integral formula (2.25). Hence it is sufficient
to prove the following inequality:

(4.3) [S (r)]2 > 2S3 (r) ,

which was, in fact, conjectured by Alzer and Brenner [2] and proven by Wilkins
[27] by remarkably applying series and integral representations for the Trigamma
functionψ′ (z) defined by (2.14) for m = 1.

We conclude our present investigation by remarking that it seems to be very
likely that the inequality (4.1) can be generalized to the following form:

Open Problem.Prove or disprove that(∫ ∞

0

x sin (rx)

ex − 1
dx

)µ

> rµ Γ (µ+ 1)

∫ ∞

0

xµ e−r2x f (x) dx(4.4) (
r, µ ∈ R+; f (x) :=

∞∑
n=1

ne−n2x

)
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or, equivalently, that

[S (r)]µ >
{Γ (µ+ 1)}2

2
Sµ+1 (r)(4.5) (

r, µ ∈ R+
)
,

since ∫ ∞

0

xµ e−r2x f (x) dx = Γ (µ+ 1)
∞∑

n=1

n

(n2 + r2)µ+1(4.6)

=:
Γ (µ+ 1)

2
Sµ+1 (r) ,

by virtue of the Eulerian integral formula (2.25) once again.
The open problem (4.1), which we have completely solved here, corresponds

to thespecialcaseµ = 2 of the Open Problem (4.4) posed in this paper.
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and Series(Elementary Functions), “Nauka”, Moscow, 1981 (Russian); En-

http://jipam.vu.edu.au/
mailto:
mailto:harimsri@math.uvic.ca
mailto:
mailto:
mailto:tomovski@iunona.pmf.ukim.edu.mk
http://jipam.vu.edu.au/
http://rgmia.vu.edu.au/v3n3.html
http://rgmia.vu.edu.au/v3n3.html
http://rgmia.vu.edu.au/v7n1.html
http://rgmia.vu.edu.au/v7n1.html


Some Problems and Solutions
Involving Mathieu’s Series and

Its Generalizations

H.M. Srivastava and
Živorad Tomovski

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 26 of 27

J. Ineq. Pure and Appl. Math. 5(2) Art. 45, 2004

http://jipam.vu.edu.au

glish translation:Integrals and Series, Vol. 1: Elementary Functions, Gordon
and Breach Science Publishers, New York, 1986.

[16] F. QI, Inequalities for Mathieu’s series,RGMIA Res. Rep. Coll.,4 (2)
(2001), Article 3, 1–7. ONLINE [http://rgmia.vu.edu.au/v4n2.
html ].

[17] F. QI, Integral expression and inequalities of Mathieu type series,RGMIA
Res. Rep. Coll.,6 (2) (2003), Article 10, 1–8. ONLINE [http://rgmia.
vu.edu.au/v6n2.html ].

[18] F. QI, An integral expression and some inequalities of Mathieu type series,
Rostock. Math. Kolloq.,58 (2004), 37–46.

[19] F. QI AND C.-P. CHEN, Notes on double inequalities of Mathieu’s series.
Preprint 2003.

[20] H.M. SRIVASTAVA AND J. CHOI,Series Associated with the Zeta and
Related Functions, Kluwer Academic Publishers, Dordrecht, Boston, and
London, 2001.

[21] H.M. SRIVASTAVA AND H.L. MANOCHA, A Treatise on Generating
Functions, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley
and Sons, New York, Chichester, Brisbane, and Toronto, 1984.

[22] Ž. TOMOVSKI, New double inequalities for Mathieu type series,RGMIA
Res. Rep. Coll.,6 (2) (2003), Article 17, 1–4. ONLINE [http://rgmia.
vu.edu.au/v6n2.html ].

http://jipam.vu.edu.au/
mailto:
mailto:harimsri@math.uvic.ca
mailto:
mailto:
mailto:tomovski@iunona.pmf.ukim.edu.mk
http://jipam.vu.edu.au/
http://rgmia.vu.edu.au/v4n2.html
http://rgmia.vu.edu.au/v4n2.html
http://rgmia.vu.edu.au/v6n2.html
http://rgmia.vu.edu.au/v6n2.html
http://rgmia.vu.edu.au/v6n2.html
http://rgmia.vu.edu.au/v6n2.html


Some Problems and Solutions
Involving Mathieu’s Series and

Its Generalizations

H.M. Srivastava and
Živorad Tomovski

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 27 of 27

J. Ineq. Pure and Appl. Math. 5(2) Art. 45, 2004

http://jipam.vu.edu.au
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