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ABSTRACT. In the paper we consider the problem of uniqueness of meromorphic functions
sharing one finite nonzero value or one finite nonzero function with their derivatives and answer
some open questions posed by K.W. Yu.
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1. INTRODUCTION, DEFINITIONS AND RESULTS

Let f, g be nonconstant meromorphic functions defined in the open complex @lafker
a € CU {0} we say thatf, g share the value CM (counting multiplicities) iff, g have the
samea-points with the same multiplicity and we say thatg share the value IM (ignoring
multiplicities) if f, ¢ have the same-points and the multiplicities are not taken into account.

We do not explain the standard notations of the value distribution theory as these are available
in [3]. However in the following definition we explain some notations used in the paper.

Definition 1.1. For two meromorphic functiong, g and fora,b € C U {oo} and for a positive
integerk

(i) N(r,a;f |> k)(N(r,a; f |> k)) denotes the counting function (reduced countion
function) of those:-points of f whose multiplicities are not less than

(i) N(r,a;f]|g="0)(N(r,a;f|g=>)) denotes the counting function (reduced counting
function) of thosez-points of f which are the-points ofg,

(i) N(r,a;f|g#0b)(N(r,a; f|g+# b)) denotes the counting function (reduced counting
function) of those:-points of f which are not thé-points ofg,

(iv) Ny(r,a;f)=N(ra;f)+ 35 ,N(ra; f|> k),
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2 INDRAJIT LAHIRI AND ARINDAM SARKAR

(V) No(r,a; f | g=>5)(Nar,a; f | g # b)) denotes the counting function of thasgoints
of f which are (are not) the-points ofg, where am-point of f with multiplicity m is
countedn times if m < 2 and twice ifm > 2,

(i) N(r,a;f |< k)(N(r,a;f |< k)) denotes the counting function (reduced countion
function) of thosez-points of f whose multiplicities are not greater than

Definition 1.2. Let f andg share a value IM. Let z be ana-point of f andg with multiplicities
p¢(z) andp,(z) respectively. We put

vp(z) =1 if pp(z) # py(2)
=0 if ps(2) = py(2).
Letn.(r,a; f,9) = >, 1<, Vs(2) and N, (r, a; f, g) be the integrated counting function ob-
tained fromn, (r, a; f, g) in the usual manner.
ClearlyN* (Ta CL; fv g) = N* (Tv a; g7 f)
Rubel-Yang [[8], Mues-Steinmetz|[7], Gundersenh [2], Yang [9] considered the uniqueness
problem of entire functions with their first ad derivatives involving two CM or IM values.

R. Bruck [1] considered the uniqueness problem of an entire function when it shares a single
value CM with its derivative and proved the following theorem.

Theorem A. [1] Let f be a nonconstant entire function. fifand f’ share the value 1 CM and
N(r,0; f'y = S(r, f) then% is a nonzero constant.

For entire functions of finite order Yang [10] improved Theofem A and proved the following
result.
Theorem B. [10] Let f be a nonconstant entire function of finite order anddé 0) be a

finite constant. Iff, f*) share the valua CM thenf;f:a is a nonzero constant, wheké> 1)
is an integer.

Zhang [12] extended Theorgnj A to meromorphic functions and proved the following results.
Theorem C. [12] Let f be a nonconstant meromorphic functionfland f’ share 1 CM and if
(1.1) N(r,00; f) + N(r,0: f) < {X + o()}T(r, f')
for some constant € (0;1/2), then% is a nonzero constant.

Theorem D. [12] Let f be a nonconstant meromorphic functionfland /) share 1 CM and
if

(1.2) 2N (r,00; f) + N(r,0; f) + N(r,0; %) < {X + o(1)}T(r, f®)

FR)—
f—1

Consideringf(z) = 1 + tan z we can verify that in Theorenjs C ahnd D it is not possible to
relax simultaneously the conditior]s ({1.1) and(1.2) respectively and the nature of sharing the
value from CM to IM. Naturally one will desire to see how far it is possible to relax the nature
of sharing the value 1. In the paper we deal with this problem with the aid of the notion of
weighted sharing of values as introduced.in [4, 5] and we see that it is indeed possible to some
extent, at the cost of some change in the condifionj (1.2).

Zheng-Wang([13] considered the uniqueness problem of entire functions sharing two small
functions CM with their derivatives. Recently Yu ]11] considered the uniqueness problem of an
entire or meromorphic function when it shares one small function with its derivative. He proved
the following two theorems.

! is a nonzero constant.

for some constant € (0; 1), then
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Theorem E. [11] Let f be a nonconstant entire function amd= «(z) be a meromorphic
function such that # 0,00 andT'(r,a) = o{T(r, f)} asr — oc. If f —a and f*) — q share
the value 0 CM and(0; f) > 3/4 thenf = f¥), wherek is a positive integer.

Theorem F. [11] Let f be a nonconstant nonentire meromorphic function and a(z) be a
meromorphic function such that 0, co andT'(r,a) = o{T(r, f)} asr — oo. If

(i) fanda have no common pole,

(i) f—aandf® — q share the value 0 CM,
(iii) 45(0, f) + 2(8 + k)O(o0; f) > 19 + 2k,
thenf = f*), wherek is a positive integer.

Yu [11] further showed that the condition (i) of Theoréi F can be droppédsfan odd
integer. In the same paper Yu [11] posed the following open questions:

(1) Can CM shared value be replaced by an IM shared value ?

(2) Can the conditiod(0; f) > 3/4 of Theorenj E be further relaxed ?
(3) Can the condition(iii) of Theoref F be further relaxed ?

(4) Can, in general, the condition (i) of Theorgin F be dropped ?

Although the fourth question is still open, in the paper we give some affirmative answers to
the first three questions imposing some restrictions on the zeros and polds tfie following
definition we explain the idea of weighted sharing of values which measures how close a shared
value is to be shared IM or to be shared CM.

Definition 1.3. [4, 5] Let k£ be a nonnegative integer or infinity . Fere C U {oco} we denote
by Ex(a; f) the set of alla-points of f where aru-point of multiplicity m is countedn times
if m < kandk + 1timesifm > k. If Ex(a; f) = Ex(a;g), we say thaff, g share the value

with weightk.

The definition implies that iff, ¢ share a value with weight £ thenz, is ana-point of f
with multiplicity m(< k) if and only if it is ana-point of g with multiplicity m(< k) and z,
is ana-point of f with multiplicity m(> k) if and only if it is ana-point of g with multiplicity
n(> k) wherem is not necessarily equal ta

We write f, g share(a, k) to mean thatf, g share the value with weightk. Clearly if f, g
share(a, k) then f, g share(a, p) for all integersp, 0 < p < k. Also we note thayf, g share a
valuea IM or CM if and only if f, g share §, 0) or (a,00) respectively.

Definition 1.4. We denote by, (a; f) the quantity

: Np(r, a; f)
5,(a; f) =1 — limsup —=——2,
AT D I TG )
wherep is a positive integer.
Clearlyé,(a; ) > o0(a; f).
We now state the main results of the paper.

Theorem 1.1.Let f be a nonconstant meromorphic function antle a positive integer. If,
f® share(1,2) and

(1.3) 2N (r,00; f) + Na(r,0; &) + No(r, 05 f) < {X + o(1)}T(r, f*))
forr € I, where0 < A\ < 1 and/ is a set of infinite linear measure, th (kif IS a nonzero
constant.

The following corollary follows from Theorein 1.1 fér= 1 and improves Theorefm| C.
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Corollary 1.2. Theorenj € holds if the condition (1.1) is replaced by the following

N(r,00; f) + Na(r, 0; f') < {A+o(1)}T(r, f)
for some constant € (0,1/2).

Theorem 1.3.Let f be a nonconstant meromorphic function antle a positive integer. If,
f®*) share(1, 1) and
(1.4) 2N (r,00; f) + Na(r, 05 f®)) + 2N (1, 0; f') < {A + o(1)}T(r, fP)

forr € I, whereQ) < X\ < 1 and[ is a set of infinite linear measure, thél%i—;l iS a nonzero
constant.

If £, f®) share(1,0), it is clear thatf does not possess any 1-point with multiplicity greater
thank. So if in Theorenj 1]1 and in Theorgm [1.3 we respectivelyfput 2 andk = 1, it
follows that f, f*) practically shard1, o). It then follows from the proof that in these cases
we can replace each of the conditions1.3) (1.4) by the following

2N (r,00; f) + Na(r,0; fP) + N(r,0; ') < {A+ o(1)}T(r, f*)

forr € I, where) < A < 1 and! is a set of infinite linear measure.

Itis clear that iff and f*) satisfy the conclusions of Theorems|].1] 1.3 tfiea Ae#* +1 —
1/c, whereA, ¢ are nonzero constants apds ak™ root of c. So it follows that the conditions
of the theorems are necessary.

Theorem 1.4. Let f be a nonconstant meromorphic function antbe a positive integer. Let
a = a(z) (# 0,00) be a meromorphic function such thatr, a) = S(r, f). If

(i) a has no zero (pole) which is also a zero (pole)fadr f*) with the same multiplicity,
(i) f—aandf® — qashare(0,2),
(iii) 2024%(0; f) + (4 4+ k)O(00; f) > 5+ k, thenf = f*),
2. LEMMAS
In this section we present some lemmas which will be needed in the sequel.
Lemma 2.1. [3], p. 55] Let f be a nonconstant meromorphic function. Then
T(r, f*¥) < (1 +E)T(r, f) + S(r, f).
Lemma 2.2. If f is a nonconstant meromorphic function afidf*) share(1,0) then
T(r, f) < (k +2+ ﬁ) T(r, fOY + S(r, f),
wherek is a positive integer.

Proof. By Milloux’s basic result[[3, p. 57] we get
T(r, f) < N(r,00: f) + N(r,0; f) + N(r, 1; f*) = No(r, 0; f4) + S(r, f),

whereNy(r, 0; f(1+5)) is the counting function of those zeros f **) which are not the zeros
of f)) — 1.
Since
N(r,0; f) = No(r, 0; f4) < (1 + k)N (r,0; f)
and
(1+ k)N (r, 00; f) < N(r,00; f®) < T(r, fV),
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it follows that
T(r, f) < 7 00 fO) + 0+ RN (0 ) + N (1570 + ().
Applying this inequality tof — 1 and noting thatf, f*) share(1, 0) we obtain

T( 1) < Tl fO) + (L NG 1 0) + N, 15 %)+ 50, )

< (2 +k+ 1%{) T(r, f®) + S(r, f).
This proves the lemma. O
Lemma 2.3. Let f be a nonconstant meromorphic function dnlde a positive integer. Then
Na(r, 0; fM) < kN (r,00; f) + Nawi(r, 05 f) + S(r, f).

Proof. By the first fundamental theorem and the Milloux theorem [3, p. 55] we get

N(r,O;f | f#0) = (rO‘ﬂ)

Also for a positive integep

Ny(r,0; f0 ] f =0) = N(r,0; f |< p) = N(r,0; f |< p) + pN(r,0; f [ 1 + p).
So we get
(r, 05 f Y| f #0) + Ny(r, 05 fO | f=0)

N,(r,0; fV) <
< N(r,00; f) + Npia(r, 0; f) + S(r, £).

N

(2.1) N
Forp = 2 we get from|(2.]1)

Ny(r,0; f V) < N(r,00; f) 4+ Naga (r,0; f) + S(r, f),

which is the lemma fok = 1.
Suppose that the lemma is true for= m. Then in view of (2.1L) fop = 2 + m and Lemma

[2.7 we get
Na(r, 05 £0) = Na(r, 0 (/) ™)
< mN(r,00; fV) 4+ Noy(r,0; V) + S (r, f1)
< (m+ 1)N(r, 00; f) + Nowury (1,05 f) + S(r, f),
which is the lemma fok = m + 1. So by mathematical induction the lemma is proved. [

Lemma 2.4. [5] Let f and g be two meromorphic functions shariri, 2). Then one of the
following holds:

(I) T(T) S NQ(’F?O; f)+N2(7“,0;g)+N2(’f’, o3 f)_‘_NQ(Tv oo,g)+S(T, f)“‘S(T, g)v where
T(r) = max{T(r, f),T(r,9)};
(i) fg=1;
(i) f=g.
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Lemma 2.5. [6] Let f be a transcendental meromorphic function angz 0, cc) be a mero-
morphic function such that'(r, ) = S(r, f). Suppose that andc are any two finite nonzero
distinct complex numbers. 16 = o (f)" (f*)", wheren(> 0), p(> 1) and k(> 1) are
integers, then

(p+n)T(r, f) < (p+n)N(r,0; f) + N(r,b;p) + N(r, ;)
— N(r,00; f) = N(r,0;4') + S(r, f).
Lemma 2.6. Let f be a nonconstant meromorphic function antbe a positive integer. If,

() share(1,0) and f*) = A+B whereA, B, C, D are constants, thed-=" is a nonzero
ant Cf+D -1
constant.

Proof. Since f is nonconstant and, f*) share(1,0), f*) is also nonconstant and stD —
BC # 0. If zy is a pole off with multiplicity p thenz, is either a regular point or a pole with
multiplicity p of g}”—ig but z, is a pole of f*) with multiplicity p + k. So f and f*) have no
pole.

Now we consider the following cases.

Casel. LetC # 0. Sincef™) has no pole, it follows that + D /C' has no zero. Differentiating
f® = S35 we get
fO+k) AD — BC
f0 " (Cf+ D
This shows that-—— has no zero and pole. Now in view of Lem@z.l we get

F@
AD — BC f0+k)
oor )
f(1+k) f(1+k)
<T (7‘, Non ) =m (r, NCE ) =S(r, f).
Hence in view of the second fundamental theorem wdgetC' = 0. So f — 1 has no pole and
no zero and we can pyt— 1 = exp(g), whereg is an entire function. Sincg") = ¢ exp(g),
it follows that N (r, 0; fM) = N(r,0; gM) = S(r,exp(g)) = S(r, f).
Now we get by Lemmds 2.[[, 2.2 and]2.3
N(r,0; f®) < No(r,0; &) < (k = 1)N(r, 00; fO) + Nigy(r, 05 f1) + S(r, fV)
< N(r,0; f) + S(r, f) = S(r, f) = S(r, fV),
which implies a contradiction becaugé) has no pole and no-point.
Case2. Let C' = 0. Then clearlyAD # 0 and
(2.2) f& =5f+3,

wherey = A/D andd = B/D.

First we suppose thgtand sof*) has no 1-point. Ify + ¢ = 0 thenf*) = (f — 1) and so
%) has no zero. Hencg® has no zero, pole and 1-point, which is impossible.

Lety+ 6 # 0. Sincef has no pole and nb-point, it follows from ) thatf*) has no pole,
1-point and(y + d)-point. So in view of the second fundamental theorem weyget = 1 and
from (2.2) we see that®) = v f + 1 — .

Finally we suppose thgtand f*) has at least one 1-point. Then fr2.2) wegety =1
and sof®) = v f + 1 — ~. This proves the lemma.

N(r 1, f%)=N(r1;f) <N (r,

O
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Lemma 2.7. [5] Let f, ¢ be meromorphic functions sharing, 1) and

() ()
frof=1 g g-1)

ThenN(r,1; f |[< 1) = N(r, ;g [< 1) < N(r,h) + S(r, f) + S(r, ).

3. PROOFS OF THE THEOREMS

Proof of Theoreri T]4Let ¢ = f/a andy = f¥)/a. Theng andy share(1,2). If possible,
suppose that

T(r,¢) < Na(r,0;¢) + Na(r,0;9) + Na(r,00; ¢) + Na(r,00;¢) + S(r,¢) + S(r, ¥).
Then it follows in view of Lemmak 211 afnd 2.3 that
T(r, f) < No(r,0; f) + Na(r,0: f) + 4N (r, 00; f) + S(r, f)
< 2Ny, (r, 05 f) + (4 + k)N (r, 00; f) + S(r, f)
and so
202410 f) + (4 + k)O(o0; f) <5+ k,

a contradiction.
If possible, suppose that) = 1. So

(3.1) ff® =42

If fis a rational function then becomes a nonzero constant. So frbm|(3.1) we seefthas
no zero and pole. Sincgis nonconstant, this is a contradiction.
If fis transcendental then by Lemma]2.5 we get in viey of (3.1)

2T(r, f) < 2N(r,0; f) + 2T(r, ff*) + S(r, )
=2N(r,0; f)+ S(r, f)
< 2N(r,0;a%) + S(r, f)
=5(r, f),

a contradiction.
Therefore by Lemmf 2|4 we gét= ¢ and sof = f*). This proves the theorem. O

Proof of Theorerm 1]3Let
f// 2]0/ f(2+k) 2f(1+k)
"= (7‘ f—l) B <f<1+k> ) f<k>—1>'

We denote byV(r, 0; f1**)) the reduced counting function of those zerog8f*) which
are not the zeros of () — 1) f*). Let H # 0. SinceH has only simple poles, it follows that

(3.2) N(r,H) < N(r,00; f) + Nu(r, 1; f, f®) + N(r,0; f) |> 2)
+N(r,0; f') = N(r,1; f |> 2) + No(r, 0; f0+0),
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Now by Lemmas 2]1], 2|2 ard 2.7 we get frdm [3.2) becatisg?) share(1,1) and so
N (1 f, f9) < N(r, 1 f > 2)

(33 N1 f®)=N(r1/f)
N(r L fIS1)+N(r 1 f[|>2)
< N(r,H) + N(r,1; f |2 2) + S(r, /)
N(r,00: f) + N(r,0; f = 2) + N(r, 0; ')
+N(r, 1 f |2 2) + No(r, 0, f) + 5 (r, f)
N(r,00; f) +2N(r,0; f') + N(r, 0; f*) [> 2)
+ No(r, 0; fAFR) 4 S, ),
By the second fundamental theorem we get in view of| (3.3)
T(r, fM) < N(r,0; fO) + N(r, 13 f&) + N(r, 003 f&) = N(r, 05 f 1) + S(r, fP)
< 2N(r,00; f) +2N(r,0; f') + No(r, 05 f0) + S(r, f),

which contradicts the given condition.

HenceH = 0 and sof® = éﬁg, where A, B, C, D are constants. Now the theorem
follows from Lemmd Z.6. O

IA

IA

Proof of Theorerfi I} 1Let H be given as in the proof of Theorém [1.3 aHd# 0. Sincef, f*

share(1,2) and SoN.(r, a; f, f®) < N(r, 1; f |> 3), we get from|(3.2) by Lemmas 2]1, b.2
and 2.y

(3.4) N(r,1; f®)

I
=2 = =l =

(r,1; f)

(r L fISD)+ N1 f[>2)
(

(

IN

rH)+ N(r,1; f |>2)+ S(r, f®)
r,00; f) + N(r,0; f% > 2) + N(r, 0; f)

+N(r, 1 f [23) + No(r, 0, fT) + S(r, f®)
(r, 005 f) + N (r, 0; f [> 2) + N(r, 0; f)

+N(r,0; f' [ 2) + No(r, 0; fH) + S(r, fV)

= N(r,00; f) + No(r, 0; f) + N(r,0; f*)) |> 2)
+ No(r, 0; fIHR)) 4 S, f),
By the second fundamental theorem we get in view of| (3.4)
T(r, f*) <N, 0; f®) + N(r, 1; V) + N(r, 00; f) = N(r,0; fO59) + S(r, f®)
< 2N(r, 005 ) + Na(r,0; f') + No(r, 0; f*)) + S(r, f),

which contradicts the given condition.

HenceH = 0 and sof® = éjﬁ—ig, where A, B, C, D are constants. Now the theorem
follows from Lemmd 2.b. O

IN

IN
=
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