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1. I NTRODUCTION , DEFINITIONS AND RESULTS

Let f , g be nonconstant meromorphic functions defined in the open complex planeC. For
a ∈ C ∪ {∞} we say thatf , g share the valuea CM (counting multiplicities) iff , g have the
samea-points with the same multiplicity and we say thatf , g share the valuea IM (ignoring
multiplicities) if f , g have the samea-points and the multiplicities are not taken into account.

We do not explain the standard notations of the value distribution theory as these are available
in [3]. However in the following definition we explain some notations used in the paper.

Definition 1.1. For two meromorphic functionsf , g and fora, b ∈ C ∪ {∞} and for a positive
integerk

(i) N(r, a; f |≥ k) (N(r, a; f |≥ k)) denotes the counting function (reduced countion
function) of thosea-points off whose multiplicities are not less thank,

(ii ) N(r, a; f | g = b) (N(r, a; f | g = b)) denotes the counting function (reduced counting
function) of thosea-points off which are theb-points ofg,

(iii ) N(r, a; f | g 6= b) (N(r, a; f | g 6= b)) denotes the counting function (reduced counting
function) of thosea-points off which are not theb-points ofg,

(iv) Np(r, a; f) = N(r, a; f) +
∑p

k=2N(r, a; f |≥ k),
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2 INDRAJIT LAHIRI AND ARINDAM SARKAR

(v) N2(r, a; f | g = b) (N2(r, a; f | g 6= b)) denotes the counting function of thosea-points
of f which are (are not) theb-points ofg, where ana-point of f with multiplicity m is
countedm times ifm ≤ 2 and twice ifm > 2,

(vi) N(r, a; f |≤ k) (N(r, a; f |≤ k)) denotes the counting function (reduced countion
function) of thosea-points off whose multiplicities are not greater thank.

Definition 1.2. Let f andg share a valuea IM. Let z be ana-point off andg with multiplicities
pf (z) andpg(z) respectively. We put

νf (z) = 1 if pf (z) 6= pg(z)

= 0 if pf (z) = pg(z).

Let n∗(r, a; f, g) =
∑

|z|≤r νf (z) andN∗(r, a; f, g) be the integrated counting function ob-
tained fromn∗(r, a; f, g) in the usual manner.

ClearlyN∗(r, a; f, g) ≡ N∗(r, a; g, f).
Rubel-Yang [8], Mues-Steinmetz [7], Gundersen [2], Yang [9] considered the uniqueness

problem of entire functions with their first andkth derivatives involving two CM or IM values.
R. Brück [1] considered the uniqueness problem of an entire function when it shares a single

value CM with its derivative and proved the following theorem.

Theorem A. [1] Let f be a nonconstant entire function. Iff andf ′ share the value 1 CM and
N(r, 0; f ′) = S(r, f) then f ′−1

f−1
is a nonzero constant.

For entire functions of finite order Yang [10] improved Theorem A and proved the following
result.

Theorem B. [10] Let f be a nonconstant entire function of finite order and leta(6= 0) be a

finite constant. Iff , f (k) share the valuea CM thenf (k)−a
f−a

is a nonzero constant, wherek(≥ 1)
is an integer.

Zhang [12] extended Theorem A to meromorphic functions and proved the following results.

Theorem C. [12] Letf be a nonconstant meromorphic function. Iff andf ′ share 1 CM and if

(1.1) N(r,∞; f) +N(r, 0; f ′) < {λ+ o(1)}T (r, f ′)

for some constantλ ∈ (0; 1/2), thenf ′−1
f−1

is a nonzero constant.

Theorem D. [12] Letf be a nonconstant meromorphic function. Iff andf (k) share 1 CM and
if

(1.2) 2N(r,∞; f) +N(r, 0; f ′) +N(r, 0; f (k)) < {λ+ o(1)}T (r, f (k))

for some constantλ ∈ (0; 1), thenf (k)−1
f−1

is a nonzero constant.

Consideringf(z) = 1 + tan z we can verify that in Theorems C and D it is not possible to
relax simultaneously the conditions (1.1) and (1.2) respectively and the nature of sharing the
value from CM to IM. Naturally one will desire to see how far it is possible to relax the nature
of sharing the value 1. In the paper we deal with this problem with the aid of the notion of
weighted sharing of values as introduced in [4, 5] and we see that it is indeed possible to some
extent, at the cost of some change in the condition (1.2).

Zheng-Wang [13] considered the uniqueness problem of entire functions sharing two small
functions CM with their derivatives. Recently Yu [11] considered the uniqueness problem of an
entire or meromorphic function when it shares one small function with its derivative. He proved
the following two theorems.
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Theorem E. [11] Let f be a nonconstant entire function anda ≡ a(z) be a meromorphic
function such thata 6≡ 0,∞ andT (r, a) = o{T (r, f)} asr →∞. If f − a andf (k) − a share
the value 0 CM andδ(0; f) > 3/4 thenf ≡ f (k), wherek is a positive integer.

Theorem F. [11] Let f be a nonconstant nonentire meromorphic function anda ≡ a(z) be a
meromorphic function such thata 6≡ 0,∞ andT (r, a) = o{T (r, f)} asr →∞. If

(i) f anda have no common pole,
(ii ) f − a andf (k) − a share the value 0 CM,

(iii ) 4δ(0, f) + 2(8 + k)Θ(∞; f) > 19 + 2k,

thenf ≡ f (k), wherek is a positive integer.

Yu [11] further showed that the condition (i) of Theorem F can be dropped ifk is an odd
integer. In the same paper Yu [11] posed the following open questions:

(1) Can CM shared value be replaced by an IM shared value ?
(2) Can the conditionδ(0; f) > 3/4 of Theorem E be further relaxed ?
(3) Can the condition(iii) of Theorem F be further relaxed ?
(4) Can, in general, the condition (i) of Theorem F be dropped ?

Although the fourth question is still open, in the paper we give some affirmative answers to
the first three questions imposing some restrictions on the zeros and poles ofa. In the following
definition we explain the idea of weighted sharing of values which measures how close a shared
value is to be shared IM or to be shared CM.

Definition 1.3. [4, 5] Let k be a nonnegative integer or infinity . Fora ∈ C ∪ {∞} we denote
by Ek(a; f) the set of alla-points off where ana-point of multiplicitym is countedm times
if m ≤ k andk + 1 times ifm > k. If Ek(a; f) = Ek(a; g), we say thatf, g share the valuea
with weightk.

The definition implies that iff , g share a valuea with weightk thenzo is ana-point of f
with multiplicity m(≤ k) if and only if it is ana-point of g with multiplicity m(≤ k) andzo

is ana-point of f with multiplicity m(> k) if and only if it is ana-point of g with multiplicity
n(> k) wherem is not necessarily equal ton.

We writef , g share(a, k) to mean thatf , g share the valuea with weightk. Clearly if f , g
share(a, k) thenf , g share(a, p) for all integersp, 0 ≤ p < k. Also we note thatf , g share a
valuea IM or CM if and only if f , g share (a, 0) or (a,∞) respectively.

Definition 1.4. We denote byδp(a; f) the quantity

δp(a; f) = 1− lim sup
r→∞

Np(r, a; f)

T (r, f)
,

wherep is a positive integer.

Clearlyδp(a; f) ≥ δ(a; f).
We now state the main results of the paper.

Theorem 1.1. Let f be a nonconstant meromorphic function andk be a positive integer. Iff ,
f (k) share(1, 2) and

(1.3) 2N(r,∞; f) +N2(r, 0; f (k)) +N2(r, 0; f ′) < {λ+ o(1)}T (r, f (k))

for r ∈ I, where0 < λ < 1 andI is a set of infinite linear measure, thenf (k)−1
f−1

is a nonzero
constant.

The following corollary follows from Theorem 1.1 fork = 1 and improves Theorem C.
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Corollary 1.2. Theorem C holds if the condition (1.1) is replaced by the following

N(r,∞; f) +N2(r, 0; f ′) < {λ+ o(1)}T (r, f ′)

for some constantλ ∈ (0, 1/2).

Theorem 1.3. Let f be a nonconstant meromorphic function andk be a positive integer. Iff ,
f (k) share(1, 1) and

(1.4) 2N(r,∞; f) +N2(r, 0; f (k)) + 2N(r, 0; f ′) < {λ+ o(1)}T (r, f (k))

for r ∈ I, where0 < λ < 1 andI is a set of infinite linear measure, thenf (k)−1
f−1

is a nonzero
constant.

If f , f (k) share(1, 0), it is clear thatf does not possess any 1-point with multiplicity greater
thank. So if in Theorem 1.1 and in Theorem 1.3 we respectively putk ≤ 2 andk = 1, it
follows thatf , f (k) practically share(1,∞). It then follows from the proof that in these cases
we can replace each of the conditions (1.3) and (1.4) by the following

2N(r,∞; f) +N2(r, 0; f (k)) +N(r, 0; f ′) < {λ+ o(1)}T (r, f (k))

for r ∈ I, where0 < λ < 1 andI is a set of infinite linear measure.
It is clear that iff andf (k) satisfy the conclusions of Theorems 1.1, 1.3 thenf = Aeµz +1−

1/c, whereA, c are nonzero constants andµ is akth root of c. So it follows that the conditions
of the theorems are necessary.

Theorem 1.4. Let f be a nonconstant meromorphic function andk be a positive integer. Let
a ≡ a(z) ( 6≡ 0,∞) be a meromorphic function such thatT (r, a) = S(r, f). If

(i) a has no zero (pole) which is also a zero (pole) off or f (k) with the same multiplicity,
(ii) f − a andf (k) − a share(0, 2),

(iii) 2δ2+k(0; f) + (4 + k)Θ(∞; f) > 5 + k, thenf ≡ f (k).

2. L EMMAS

In this section we present some lemmas which will be needed in the sequel.

Lemma 2.1. [3, p. 55]. Letf be a nonconstant meromorphic function. Then

T (r, f (k)) ≤ (1 + k)T (r, f) + S(r, f).

Lemma 2.2. If f is a nonconstant meromorphic function andf , f (k) share(1, 0) then

T (r, f) ≤
(
k + 2 +

1

1 + k

)
T (r, f (k)) + S(r, f),

wherek is a positive integer.

Proof. By Milloux’s basic result [3, p. 57] we get

T (r, f) ≤ N(r,∞; f) +N(r, 0; f) +N(r, 1; f (k))−N0(r, 0; f (1+k)) + S(r, f),

whereN0(r, 0; f (1+k)) is the counting function of those zeros off (1+k) which are not the zeros
of f (k) − 1.

Since
N(r, 0; f)−N0(r, 0; f (1+k)) ≤ (1 + k)N(r, 0; f)

and
(1 + k)N(r,∞; f) ≤ N(r,∞; f (k)) ≤ T (r, f (k)),
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it follows that

T (r, f) ≤ 1

1 + k
T (r, f (k)) + (1 + k)N(r, 0; f) +N(r, 1; f (k)) + S(r, f).

Applying this inequality tof − 1 and noting thatf , f (k) share(1, 0) we obtain

T (r, f) ≤ 1

1 + k
T (r, f (k)) + (1 + k)N(r, 1; f) +N(r, 1; f (k)) + S(r, f)

≤
(

2 + k +
1

1 + k

)
T (r, f (k)) + S(r, f).

This proves the lemma. �

Lemma 2.3. Letf be a nonconstant meromorphic function andk be a positive integer. Then

N2(r, 0; f (k)) ≤ kN(r,∞; f) +N2+k(r, 0; f) + S(r, f).

Proof. By the first fundamental theorem and the Milloux theorem [3, p. 55] we get

N
(
r, 0; f (1) | f 6= 0

)
= N

(
r, 0;

f (1)

f

)
≤ N

(
r,∞;

f (1)

f

)
+ S(r, f)

= N(r,∞; f) +N(r, 0; f) + S(r, f).

Also for a positive integerp

Np(r, 0; f (1) | f = 0) = N(r, 0; f |≤ p)−N(r, 0; f |≤ p) + pN(r, 0; f |≥ 1 + p).

So we get

Np(r, 0; f (1)) ≤ N(r, 0; f (1) | f 6= 0) +Np(r, 0; f (1) | f = 0)

≤ N(r,∞; f) +Np+1(r, 0; f) + S(r, f).(2.1)

Forp = 2 we get from (2.1)

N2(r, 0; f (1)) ≤ N(r,∞; f) +N2+1(r, 0; f) + S(r, f),

which is the lemma fork = 1.
Suppose that the lemma is true fork = m. Then in view of (2.1) forp = 2 +m and Lemma

2.1 we get

N2(r, 0; f (m+1)) = N2(r, 0;
(
f (1)

)(m)
)

≤ mN(r,∞; f (1)) +N2+m(r, 0; f (1)) + S(r, f (1))

≤ (m+ 1)N(r,∞; f) +N2+(m+1)(r, 0; f) + S(r, f),

which is the lemma fork = m+ 1. So by mathematical induction the lemma is proved. �

Lemma 2.4. [5] Let f and g be two meromorphic functions sharing(1, 2). Then one of the
following holds:

(i) T (r) ≤ N2(r, 0; f)+N2(r, 0; g)+N2(r,∞; f)+N2(r,∞; g)+S(r, f)+S(r, g), where
T (r) = max{T (r, f), T (r, g)};

(ii ) fg ≡ 1;
(iii ) f ≡ g.
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Lemma 2.5. [6] Let f be a transcendental meromorphic function andα(6≡ 0,∞) be a mero-
morphic function such thatT (r, α) = S(r, f). Suppose thatb andc are any two finite nonzero
distinct complex numbers. Ifψ = α (f)n (

f (k)
)p

, wheren(≥ 0), p(≥ 1) and k(≥ 1) are
integers, then

(p+ n)T (r, f) ≤ (p+ n)N(r, 0; f) +N(r, b;ψ) +N(r, c;ψ)

−N(r,∞; f)−N(r, 0;ψ′) + S(r, f).

Lemma 2.6. Let f be a nonconstant meromorphic function andk be a positive integer. Iff ,
f (k) share(1, 0) and f (k) = Af+B

Cf+D
, whereA,B,C,D are constants, thenf

(k)−1
f−1

is a nonzero
constant.

Proof. Sincef is nonconstant andf , f (k) share(1, 0), f (k) is also nonconstant and soAD −
BC 6= 0. If z0 is a pole off with multiplicity p thenz0 is either a regular point or a pole with
multiplicity p of Af+B

Cf+D
but z0 is a pole off (k) with multiplicity p + k. Sof andf (k) have no

pole.
Now we consider the following cases.

Case1. LetC 6= 0. Sincef (k) has no pole, it follows thatf +D/C has no zero. Differentiating
f (k) = Af+B

Cf+D
we get

f (1+k)

f (1)
=
AD −BC

(Cf +D)2
.

This shows thatf
(1+k)

f (1) has no zero and pole. Now in view of Lemma 2.1 we get

N(r, 1; f (k)) = N(r, 1; f) ≤ N

(
r,
AD −BC

(C +D)2
;
f (1+k)

f (1)

)
≤ T

(
r,
f (1+k)

f (1)

)
= m

(
r,
f (1+k)

f (1)

)
= S(r, f).

Hence in view of the second fundamental theorem we getD+C = 0. Sof − 1 has no pole and
no zero and we can putf − 1 = exp(g), whereg is an entire function. Sincef (1) = g(1) exp(g),
it follows thatN(r, 0; f (1)) = N(r, 0; g(1)) = S(r, exp(g)) = S(r, f).

Now we get by Lemmas 2.1, 2.2 and 2.3

N(r, 0; f (k)) ≤ N2(r, 0; f (k)) ≤ (k − 1)N(r,∞; f (1)) +N1+k(r, 0; f (1)) + S(r, f (1))

≤ N(r, 0; f (1)) + S(r, f) = S(r, f) = S(r, f (k)),

which implies a contradiction becausef (k) has no pole and no1-point.

Case2. LetC = 0. Then clearlyAD 6= 0 and

(2.2) f (k) = γf + δ,

whereγ = A/D andδ = B/D.
First we suppose thatf and sof (k) has no 1-point. Ifγ + δ = 0 thenf (k) = γ(f − 1) and so

f (k) has no zero. Hencef (k) has no zero, pole and 1-point, which is impossible.
Let γ+ δ 6= 0. Sincef has no pole and no1-point, it follows from (2.2) thatf (k) has no pole,

1-point and(γ + δ)-point. So in view of the second fundamental theorem we getγ + δ = 1 and
from (2.2) we see thatf (k) = γf + 1− γ.

Finally we suppose thatf andf (k) has at least one 1-point. Then from (2.2) we getγ+ δ = 1
and sof (k) = γf + 1− γ. This proves the lemma.

�
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Lemma 2.7. [5] Letf , g be meromorphic functions sharing(1, 1) and

h =

(
f ′′

f ′
− 2f ′

f − 1

)
−

(
g′′

g′
− 2g′

g − 1

)
.

ThenN(r, 1; f |≤ 1) = N(r, 1; g |≤ 1) ≤ N(r, h) + S(r, f) + S(r, g).

3. PROOFS OF THE THEOREMS

Proof of Theorem 1.4.Let φ = f/a andψ = f (k)/a. Thenφ andψ share(1, 2). If possible,
suppose that

T (r, φ) ≤ N2(r, 0;φ) +N2(r, 0;ψ) +N2(r,∞;φ) +N2(r,∞;ψ) + S(r, φ) + S(r, ψ).

Then it follows in view of Lemmas 2.1 and 2.3 that

T (r, f) ≤ N2(r, 0; f) +N2(r, 0; f (k)) + 4N(r,∞; f) + S(r, f)

≤ 2N2+k(r, 0; f) + (4 + k)N(r,∞; f) + S(r, f)

and so

2δ2+k(0; f) + (4 + k)Θ(∞; f) ≤ 5 + k,

a contradiction.
If possible, suppose thatφψ ≡ 1. So

(3.1) ff (k) ≡ a2.

If f is a rational function thena becomes a nonzero constant. So from (3.1) we see thatf has
no zero and pole. Sincef is nonconstant, this is a contradiction.

If f is transcendental then by Lemma 2.5 we get in view of (3.1)

2T (r, f) ≤ 2N(r, 0; f) + 2T (r, ff (k)) + S(r, f)

= 2N(r, 0; f) + S(r, f)

≤ 2N(r, 0; a2) + S(r, f)

= S(r, f),

a contradiction.
Therefore by Lemma 2.4 we getφ ≡ ψ and sof ≡ f (k). This proves the theorem. �

Proof of Theorem 1.3.Let

H =

(
f ′′

f ′
− 2f ′

f − 1

)
−

(
f (2+k)

f (1+k)
− 2f (1+k)

f (k) − 1

)
.

We denote byN0(r, 0; f (1+k)) the reduced counting function of those zeros off (1+k) which
are not the zeros off ′(f (k) − 1)f (k). LetH 6≡ 0. SinceH has only simple poles, it follows that

(3.2) N(r,H) ≤ N(r,∞; f) +N∗(r, 1; f, f (k)) +N(r, 0; f (k) |≥ 2)

+N(r, 0; f ′)−N(r, 1; f |≥ 2) +N0(r, 0; f (1+k)).
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Now by Lemmas 2.1, 2.2 and 2.7 we get from (3.2) becausef , f (k) share(1, 1) and so
N∗(r, 1; f, f (k)) ≤ N(r, 1; f |≥ 2)

N(r, 1; f (k)) = N(r, 1; f)(3.3)

= N(r, 1; f |≤ 1) +N(r, 1; f |≥ 2)

≤ N(r,H) +N(r, 1; f |≥ 2) + S(r, f (k))

≤ N(r,∞; f) +N(r, 0; f (k) |≥ 2) +N(r, 0; f ′)

+N(r, 1; f |≥ 2) +N0(r, 0; f (1+k)) + S(r, f (k))

≤ N(r,∞; f) + 2N(r, 0; f ′) +N(r, 0; f (k) |≥ 2)

+N0(r, 0; f (1+k)) + S(r, f (k)).

By the second fundamental theorem we get in view of (3.3)

T (r, f (k)) ≤ N(r, 0; f (k)) +N(r, 1; f (k)) +N(r,∞; f (k))−N(r, 0; f (1+k)) + S(r, f (k))

≤ 2N(r,∞; f) + 2N(r, 0; f ′) +N2(r, 0; f (k)) + S(r, f (k)),

which contradicts the given condition.
HenceH ≡ 0 and sof (k) = Af+B

Cf+D
, whereA,B,C,D are constants. Now the theorem

follows from Lemma 2.6. �

Proof of Theorem 1.1.LetH be given as in the proof of Theorem 1.3 andH 6≡ 0. Sincef , f (k)

share(1, 2) and soN∗(r, a; f, f
(k)) ≤ N(r, 1; f |≥ 3), we get from (3.2) by Lemmas 2.1, 2.2

and 2.7

N(r, 1; f (k)) = N(r, 1; f)(3.4)

= N(r, 1; f |≤ 1) +N(r, 1; f |≥ 2)

≤ N(r,H) +N(r, 1; f |≥ 2) + S(r, f (k))

≤ N(r,∞; f) +N(r, 0; f (k) |≥ 2) +N(r, 0; f ′)

+N(r, 1; f |≥ 3) +N0(r, 0; f (1+k)) + S(r, f (k))

≤ N(r,∞; f) +N(r, 0; f (k) |≥ 2) +N(r, 0; f ′)

+N(r, 0; f ′ |≥ 2) +N0(r, 0; f (1+k)) + S(r, f (k))

= N(r,∞; f) +N2(r, 0; f ′) +N(r, 0; f (k)) |≥ 2)

+N0(r, 0; f (1+k)) + S(r, f (k)).

By the second fundamental theorem we get in view of (3.4)

T (r, f (k)) ≤ N(r, 0; f (k)) +N(r, 1; f (k)) +N(r,∞; f (k))−N(r, 0; f (1+k)) + S(r, f (k))

≤ 2N(r,∞; f) +N2(r, 0; f ′) +N2(r, 0; f (k)) + S(r, f (k)),

which contradicts the given condition.
HenceH ≡ 0 and sof (k) = Af+B

Cf+D
, whereA,B,C,D are constants. Now the theorem

follows from Lemma 2.6. �
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