journal of inequalities in pure and
applied mathematics

http://jipam.vu.edu.au
issn: 1443-5756

Volume 10 (2009), Issue 4, Article 112, 6 pp. © 2009 Victoria University. All rights reserved.

ON CERTAIN PROPERTIES OF NEIGHBORHOODS OF MULTIVALENT
FUNCTIONS INVOLVING THE GENERALIZED SAITOH OPERATOR

HESAM MAHZOON AND S. LATHA

DEPARTMENT OFSTUDIES IN MATHEMATICS
MANASAGANGOTRI UNIVERSITY OF MYSORE- INDIA.
mahzoon hesam@yahoo.com

DEPARTMENT OFMATHEMATICS
Y UVARAJA'S COLLEGE UNIVERSITY OF MYSORE-INDIA.
drlatha@gmail.com

Received 10 June, 2009; accepted 03 November, 2009
Communicated by S.S. Dragomir

ABSTRACT. In this paper, we introduce the generalized Saitoh opet&aiéd, ¢, 7) and using
this operator, the new subclassési? (a,c,n), £0Y, (a,c,n;p), HES*(a,c,n) and

L2Y(a,c,n; ) of the class of multivalent functions denoted Hy(n) are defined. Further
for functions belonging to these classes, certain properties of neighborhoods are studied.
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1. INTRODUCTION

Let.A4,(n) be the class of normalized functiofi®f the form

(1.1) f)=2+ > wz*,  (n,peN),

k=n+p

which are analytic ang-valent in the open unitdist{ = {z € C : |z| < 1}.
Let 7,(n) be the subclass o, (n), consisting of functiong of the form

(12) f(Z) =2 — i akzka (a'k’ > 07 n,pe N)a

k=n+p

which arep-valent inl{.
The Hadamard product of two power series

f(z) =2+ Z arpz® and g(z) = 22 + Z b2"

k=n+p k=n+p
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is defined as .
k=n+p
Definition 1.1. Fora € R, ¢ € R\ Z;, whereZ; = {...,—2,—1,0} andn € R (n > 0), the
operatorL,(a,c,n) : A,(n) — A,(n), is defined as
(13) Lp(a7 C» U)f(z) = ¢p(a7 Cv Z) * D”]f(z)v
where

DM@%ﬁl—mﬂ@+g#%% (1>0, 2 €U)

and
ng(acz—z’W—Z kpk zel
k= n+p
and(z); denotes the Pochammer symbol given by
1 if £=0,
(@) = _
rz+1)---(x+k—-1) if ke N={1,23,..}.

In particular, we havel, (a,c,n) = L(a, c,n).
Further, if f(z) = 22 + "2 ax 2", then

o=+ £ o1

k=n+p

—-p

Remark 1. Forn = 0 andn = 1, we obtain the Saitoh operatar [7] which yields the Carlson -
Shaffer operator [1] fon = 0 andn = p = 1.

For any functionf € 7,(n) andoé > 0, the (n, §)-neighborhood off is defined as,

(1.4) N,s(f) = {g €T,(n):glz)=2"— > bz* and Y klay— b < 5}.

k=n+p k=n+p
For the functionh(z) = 27, (p € N) we have,

(1.5) Nos(h) = {g €T,(n):g(z) =2" — i brz®  and i k|bg| < (5} .

k=n+p k=n+p
The concept of neighborhoods was first introduced by Goodiman [2] and then generalized by
Ruscheweyh [6] .

Definition 1.2. A function f € 7,(n) is said to be in the clas&%? (a,c,n) if
1 {z2(Ly(a,c, 2))mHD)
z<<p( () .
(Lp(a, c,m) f(2))

wherepe N, me Ny, a>0,n>0, p>m, be C\ {0} andz € U.
Definition 1.3. A function f € 7,(n) is said to be in the clas§?? (a,c,n; ;1) if

L,(a,c, 2)\ ™ m
pl1 - ) (2D +M@A@amﬂa%+”—@—mi

z

(1.6)

<1,

1

b
wherep e N, me Ny, a>0, >0, p>m, u>0, be C\ {0} andz € U.

(1.7)

< p—m,
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2. COEFFICIENT BOUNDS

In this section, we determine the coefficient inequalities for functions to be in the subclasses
HED (a,c,n) and LB (a,c,n; ).

Theorem 2.1.Let f € 7,(n). Then, f € H2® (a,c,n) if and only if

2.1) k%[“(g‘l)"]%@ <k+\by—p>akgyb|(i).

Proof. Let f € M2, (a, ¢, n). Then, by(L.6) and(1.7) we can write,
Sy (14 (5= 1) ] =2 )(p — k)agh?
(2) = Sy {1+ (£-1)n] = () awztr

Takingz = r, (0 <r < 1)in (2.2), we see that the expression in the denominator on the left
hand side of[2.2), is positive forr = 0 and for allr, 0 < r < 1. Hence, by letting +— 1~
through real values, expressih2) yields the desired assertig®.1).
Conversely, by applying the hypothegisI)) and letting|z| = 1, we obtain,
2 (Ly(a, ¢, n) f(2) ™
(Lp(a, e,m) f(2)™

S |1+ (5= 1) n) B2 (5 (0 — Wz

22) R

—lol, (zeu).

—(p—m)

oo (a) —p (k
(:1) B Zk:n—i-p |:1 + ( B 1) (c):,p (m) Ak
= [b].
Hence, by the maximum modulus theorem, we hgive H2? (a, c, 7). O

On similar lines, we can prove the following theorem.

Theorem 2.2. A function f € L2, (a,c,n; 1) if and only if

(2.3) i {1+ (%—1) n] %C“?;l) [k — 1) + 1] ay

k=n-+p ()
o 2 ()]

3. INCLUSION RELATIONSHIPS INVOLVING (n,0)-NEIGHBORHOODS

In this section, we prove certain inclusion relationships for functions belonging to the classes
HED (a,c,n) and LB (a,c,n; ).

Theorem 3.1.1If
(n+p)b|(?)

(3.1) 5 = ,
(n+ 1o]) (14 20) 42 ("47)

J. Inequal. Pure and Appl. Mathl0(4) (2009), Art. 112, 6 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

4 HESAM MAHZOON AND S. LATHA

then H2? (a,c,n) C Nos(h).

m

Proof. Let f € M2 (a, c,n). By Theorenj 2L, we have,

,m

o (1) 2 (127) £ e =n(2)

k=n+p

which implies

(3.2) i 0 < Bl (%) |
ke (o) (1 2g) &2 ()

Using (2.1)) and(3.2), we have,
n \ (@) (n+p\ w—
(i) o (") 32 o

k=n-+p
n(n+1\ <
<wl(2) i (1 20) e (" 0P) 3
m o\ m ) 2
p n \ (a), (n+p 101 (,,
<l(2) + 1o (1+20) 2 (" 27 w)____
" P/ @k m ool (14 ) (82 (757)
— bl )
B m/)n+|b|
That is,
> ks —A0EB) 5y
k=n-+p (n+10]) (1 + %77> N ("0
Thus, by the definition given bfi.5), f € N, s(h). O

Similarly, we prove the following theorem.
Theorem 3.2.If

(3.3) 5=

then£P? (a,c,n; 1) C Nys(h).

,m

4. FURTHER NEIGHBORHOOD PROPERTIES

In this section, we determine the neighborhood properties of functions belonging to the sub-
classest2(a, c,n) and LY (a, ¢, n; ).

For0 < a < p and z € U, a function f is said to be in the clasagvf,’;;”(a, c,n) if there
exists a functiony € H%? (a, ¢, n) such that

fz) _
9(2)
For 0 < a < p and z € U, a function f is said to be in the clas&?“(a, c,n; 1) if there

exists a functiong € L2, (a, ¢, n; ;1) such that the inequalitfd. 1) holds true.

(4.1) <p-—oa.
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Theorem 4.1.1f g € H2? (a,c,n) and
(n+ o) (14 2n) 2= (747)
(n+p) |(n -+ 1)) (14 20) 492 () = PI(2)|
then N, 5(g9) € Hi5(a, ¢, m).
Proof. Let f € N, 5(g). Then,

(4.2) a=p—

(4.3) > klag — b <6,

k=n+p
which yields the coefficient inequality,

o0

0
4.4 — b < —— )
(4.4) kz |a k|_n+p7 (n €N)
it
Sinceg € H:Y,(a, ¢, n), by (3.2) we have,
16l ()
(4.5) Z b <
e (e (o) (14 2n) 82 (75)
so that,
‘f(z) _ 1‘ _ D henp |k — by
g(Z) 1- Zzozn-‘rp b
_ (n+ 1ol) (1+ 2n) (2 (27)
TP [ jol) (1 2n) @2 00) — eI(3)]
=p—a.
Thus, by definition,f € H2%:2(a, c,n) for o given by ([4.2). O

On similar lines, we prove the following theorem.

Theorem 4.2.1f g € LP? (a,c,n; ) and
(4.6)

Slu(n+p—1) +1] (1 + %n) (1)
o) [t o=+ 13 (1 5) 2007 = =) (554 ()]

then\;, 5(g) C L2 (a, ¢, n; ).

a=p—
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