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ABSTRACT. Considering two given real parameters3 which satisfy the conditiof < o < 3,

D.D. Stancu ([11]) constructed and studied the linear positive opermﬁ’g) : C([0,1]) —
C(]0,1]), defined for anyf € C([0,1]) and anym € N by

(@B ) (x) = 3 mk (2 Fia .
(Pir1) @)= 3 p 0 (o5)

In this paper, we are dealing with the Kantorovich form of the above operators. We construct the

linear positive operatorK,(,?’B) : L1([0,1]) — C([0,1]), defined for anyf € L4 ([0, 1]) and any

m € N by

(Kr(,f’ﬁ)f) ()= (m+p+1) me,k(x) /*::p f(s)ds
k=0 mEAEL

and we study some approximation properties of the sequ%f(éé’m} .
me

Key words and phrased:inear positive operators, Bernstein operator, Kantorovich operator, Stancu operator, First order mod-
ulus of smoothness, Shisha-Mond theorem.

2000Mathematics Subject Classificat o41A36, 41A25.

1. PRELIMINARIES

Starting with two given real parametetis§ satisfying the condition8 < a < (in 1968,

D.D. Stancu (seé [11]) constructed and studied the linear positive operafds: c([0,1]) —
C([0,1]) defined for anyf € C([0,1]) and anym € N by

(L.1) (PO ) =3 prus(a)f (k * O‘) ,
k=0

m—+p
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2 DAN BARBOSU

wherep,, ,(z) = (Z‘)m’f(l — x)™* are the fundamental Bernstein polynomials ([5]).

The operatorg (I}1) are known in mathematical literature as "the operators of D.D. Stancu"
(see ([2])).
Note that fora = 5 = 0, the operatoPﬁ?’O) is the classical Bernstein operatBy, ([5]).

In 1930, L.V. Kantorovich constructed and studied the linear positive operatrsL, ([0, 1])
— ([0, 1]) defined for anyf € L,([0, 1]) and any non-negative integer by

k+1

(12) (Ko f) (2) = (m+ 1 mek / f(s)ds.

m—+1
The operatorg (I}2) are known as the Kantorowch operators. These operators are obtained from
the classical Bernstein operatofrs (1.1), replacing there the ydluen) of the approximated
function by the integral of in a neighborhood of /m.

Following the ideas of L.V. Kantorovich(([7]), let us consider the operaldﬁéﬁ : L1([0, 1))
— (C([0,1]), defined for anyf € C([0,1]) and anym € N by

(1.3) (KD f) (@) = (m+B+1)D pmp(z) / ;ﬂ:w F(s)ds
k=0 m+G8+1

obtained from the Stancu type operat¢rs](1.1).

Section[ 2 provides some interesting approximation properties of operftofs (1.3), called
"Kantorovich-Stancu type operators” because they are obtained starting from the Stancu type
operators[(1]1) following Kantorovich’s ideas (see also G.G. Lorentz [9]).

A convergence theorem for the sequer{dé,(,‘f"ﬁ)f}meN is proved and the rate of conver-

gence under some assumptions on the approximated fungteoavaluated.
2. MAIN RESULTS

Lemma 2.1. The Kantorovich-Stancu type operatdrs {1.3) are linear and positive.
Proof. The assertion follows from definitiofi (1.3). O

In what follows we will denote by, (s) = s*, k € N, the test functions.
Lemma 2.2. The operatorg (1]3) verify
(21) (KPeg) (x) =1,

m a m+ (3

m+ﬁ+1$+m+ﬁ+1 * 2(m+ B +1)%

(2.2) (Kﬁf’mel) () =

() _ 1 2.2 B 2am* o (3m + f)

(Km 62)(x)—<m+ﬁ+1)2{mx + ma(1 x>+m—|—5+ o
1

23) MR ESVEAR S e R

foranyz € [0, 1].
Proof. It is well known (seel[111]) that the Stancu type operators (1.1) satisfy
(Pé,f"’ﬁ)eo) (x)=1

(o,8) S a
(P 61)(x)—m+ﬂ:£+m+6
(@) _ 1 5 o B am? 3am
(P 2)(x)——(m+ﬁ>2{mx + ma(1 x)+2m+ﬁx+m+ﬁ
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Next we apply the definitiorj (2.1).
Lemma 2.3. The operatorg(1]3) satisfy

(B+1)? 22 m
(m+ B +1)2 (m+ B +1)2

+ (m+5+1)2(m+ﬁ){m+2a(m—6—1)}x

302(3m + B) + (m + 8)(1 — 3m — 33)
3(m+ B)(m+ B+ 1)

24) K59 ((er—2)%a) = z(1 - )

foranyz € [0, 1].
Proof. From the linearity of\*? | we get

KGO ((er —a)’sx) = (KiPes) (x) = 20 KO eq; ) + 2 (K Vey) ()

Next, we apply Lemmpa 2.2.

Theorem 2.4. The sequenc{Kfﬁ"ﬁ)f} converges tof, uniformly on[0, 1], for any f €
me
Ly([0,1]).

Proof. Using Lemma 2.3, we get

lim K ((e; — )% 2) =0

m—0o0

uniformly on [0, 1]. We can then apply the well known Bohman-Korovkin Theorem (see [6]
and [8]) to obtain the desired result. 0J

Next, we deal with the rate of convergence for the sequa{rfé%”’ﬂ)f} , under some as-

sumptions on the approximated functignin this sense, the first order r?%%ulus of smoothness
will be used.

Letusrecall thatif C R is an interval of the real axis anfis a real valued function defined
on [ and bounded on this interval, the first order modulus of smoothnegsifothe function
wi : [0,400) — R, defined for any) > 0 by

(2.5) wi(f;0) =sup{|f(2') = f(z")] : 2',a" € I, [a" —2"| < 6}
For more details, see for example [1].

Theorem 2.5.For any f € L,([0,1]), any«, 8 > 0 satisfying the conditiom: < 3 and each
z € [0, 1] the Kantorovich-Stancu type operatdfs {1.3) satisfy

26) (K91 ()~ )] 201 (302 70) )
where
2.7 oD (@) = K (e — 2)*; )
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Proof. From Lemma 22 follows

m—+p k+a+1

@8 (KO @ - 1@ <mrsr0 Y [T ) - swlds

k+a
k=0 ¥ m+p8+1

On the other hand
[f(s) = f(@)] < wi(fsls —]) < (1+07%(s — 2)*)wr(f;9).
For|s — z| < 6, the lost increase is clear. Fgr— x| > §, we use the following properties
wi(f;20) < (1+ Nwi(f;0) < (1+ A)wi(f;9),

where we choosg = 6! - |s — z|.
This way, after some elementary transformati-(2 8) implies

2.9) [ (K9 f) (@) = f@)| < {(KiPeo) (2) + 02K ((er — @)% 2} wi(f56)

for anyd > 0 and eachr € [O, 1].
Using next Lemma 2|2 and Lemma 2.3, frdm {2.9) one obtains

(2.10) | (KD f) () = f(@)| < (146720500 (@) wi(f36)
foranyd > 0 and eachr € [0, 1].
Taking into account Lem E 1, it follows th&ﬁ“ﬂ ) > 0 for eachz € [0, 1]. Consequently,

we can take := ') (x)in (2 ), arriving at the deswed result. O
Theorem 2.6.For any f € L,([0, 1]) and anyz € [0, 1] the following

(2.11) [ (KE21) (2) = f(@)] < 201 (f; 5, 1)

holds, where

(B m?(2a + 1) N m
S (m+B+1)2 (m+B)(m+B+1)2 Am+ B+ 1)2
302(3m + B) + (m + B)(1 — 3m — 33)
3(m+ B)(m+ B+ 1)2 ‘

(2.12) o\

Proof. For anyz € [0, 1], the inequality
K@ ((ey — z)%2) < 89
holds. Consequently, applying Theorpm| 2.5 we [get {2.11). O

Remark 2.7. Theorenj 2.5 gives us the order of local approximation (in each poinf0, 1]),

while Theorenj 2J6 contains an evaluation for the global order of approximation (in any point
x € [0,1]).

Because the maximum af;"” (x) from ) depends on the relations betweeand j3, it
follows that it can be refined further.

Taking into account the inclusiofi([0,1]) C L4([0, 1]), as consequences of Theorem 2.5 and
Theorenj 2.5, follows the following two results.

Corollary 2.8. For any f € C([0,1]), anya, 8 > 0 satisfying the conditiom < 3 and each
z € [0,1], the inequality[(2]6) holds.

Corollary 2.9. For any f € C([0,1]), anya, 8 > 0 satisfying the conditiomw <  and any
z € [0,1], the inequality[(2.11) holds.

Further, we estimate the rate of convergence for smooth functions.
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Theorem 2.10.For any f € C([0, 1]) and eachr € [0, 1] the operators|(1]3) verify
(2.13) [ (K57f) (x) = f(2)]
<I7@)l- |3

m+ B B+1 x'
(m+8+1)? (m+p3+1)?

+24/20507 (2)w, ( 1 5575:@(3;)) ,

wheres's””) () is given in ).
Proof. Applying a well known result due to O. Shisha and B. Mond (seé [10]), it follows that

(2.14) [ (K7 f) (2) = f(2)| < [f(@)] - | (K Peo) () — 1]

@) | (K9De) (2) — 2 (K&Dey) (2)] + / KSP ((e1 — 2)2 2)

x {\/ (K,(,f“’ﬁ)eo> (z) + 5—1\/ K5 ((ey — x)%; x)} w1 (f';6).

From [2.14), using Lemnja 2.2 and Lemma| 2.3, we get

(2.15) | (K57 f) () = f(2)| < [f' ()] - ’<mT;f1)2 " m +ﬁﬁ+—|—11)2x

+\/559(a) {1 Loy/ae? <x>} wn(F'39).

Choosing = 5&’5)(@ in (2.13), we arrive at the desired result. O

Theorem 2.11.For any f € C*([0,1]) and anyz € [0, 1] the operators[(1]3) verify

(c,3) _ < m+ 6 /.
@16) | (KEV) () = @) < o M 2VEe (£55).
where
— ! - (a,0)
My = max |f(@)], 0 max 0 ().
Proof. The assertion follows from Theorgm 2]10. O

Remark 2.12. Because depends on the relation betweeandg, (2.16) can be further refined,
following the ideas of D.D. Stancu [11,112].
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