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ABSTRACT. The aim of this paper is to study the existence, uniqueness and other properties
of solutions of certain Volterra integral and integrodifferential equations in two variables. The
tools employed in the analysis are based on the applications of the Banach fixed point theorem
coupled with Bielecki type norm and certain integral inequalities with explicit estimates.
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1. INTRODUCTION

Let R™ denote the reah-dimensional Euclidean space with appropriate norm denoted by
|-|. We denote byl, = [a,0), Ry = [0,00), the given subsets @&, the set of real num-
bers,E = {(z,y,m,n):a<m<xr<oo, b<n<y<oo}andA = I, x I,. Forz,y €
R, the partial derivatives of a function(z,y) with respect tor,y and xy are denoted by
Dz (z,y), Dyz (x,y) and Do D1z (z,y) = D1Doz (z,y) . Consider the Volterra integral and
integrodifferential equations of the forms:

(1.1) u(z,y) = f(z,y,u(zy), (Ku)(z,y)),
and
(12) Dngu(x,y) :f(m,y,u(m,y),(Ku) (:E7y))7
with the given initial boundary conditions
(1.3) u ($7 0) =0 (ZE) ) u (O7y) =T (y) ) u (07 O) =0,
for (z,y) € A, where

. u) (x = wykzx m,n,u(m,n))dndm
(1.4) (K)o = [ [ kGegomnumm) dudm,
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ke C(ExR"R"), f € C(AxR"xR"R"), o € C([,,R"), 7 € C([,,R"). By a solution
of equation|(1.]L) (or equations (1.2)[— (1.3)) we mean a funetienC' (A, R") which satisfies
the equation (1]1) (or equatioris ([1.2] —{1.3)).

In general, existence theorems for equations of the above forms are proved by the use of one
of the three fundamental methods (see [1], [3] - [9],! [12] = [16]): the method of successive
approximations, the method based on the theory of nonexpansive and monotone mappings and
on the theory exploiting the compactness of the operator often by the use of the well known fixed
point theorems. The aim of the present paper is to study the existence, uniqueness and other
properties of solutions of equatiorjs (1.1) aphd](1.2) —|(1.3) under various assumptions on the
functions involved therein. The main tools employed in the analysis are based on applications
of the well known Banach fixed point theorem (see [3] - [5], [8]) coupled with a Bielecki type
norm (seel[2]) and the integral inequalities with explicit estimates given_in [11]. In fact, our
approach here to the study of equatigns|(1.1) (112) }- (1.3) leads us to obtain new conditions
on the qualitative properties of their solutions and present some useful basic results for future
reference, by using elementary analysis.

2. EXISTENCE AND UNIQUENESS

We first construct the appropriate metric space for our analysisy te0, 3 > 0 be constants

and consider the space of continuous functiohg\,R") such that( s%pA M'ﬁgﬁ% < 00
x,y)e
for u (z,y) € C'(A,R™) and denote this special space®@y; (A,R™) with suitable metric

|U(l‘,y) —v (xay)|
cole—a) 1A

dos (u,v) = sup
(zy)€A
and a norm defined by
W = sy Ju@0)
a,fB (@ y)IE)A ea(z—a)+B(y=b)"

The above definitions af’’; and]-\zjﬁ are variants of Bielecki’'s metric and norm (se& [2, 5]).
The following variant of the lemma proved in [5] holds.

Lemma 2.1.If « > 0, 3 > 0 are constants, theéCa,ﬁ (A,R"™), \-|Z‘fﬁ) is a Banach space.

Our main results concerning the existence and uniqueness of solutions of eqiiations (1.1) and
(1.7) — [1.3) are given in the following theorems.

Theorem 2.2.Leta > 0,3 >0, L > 0,M > 0, > 1 be constants witlvG = L~. Suppose
that the functiond, & in equation [(1.]L) satisfy the conditions

(2.1) 1 (2.y,u,0) = f (2,9,8,0)] < M [Ju—a| + v — 2],
(22) |l€($,y,m,n,u)—k(x,y,m,n,v)] SL’U—U‘,
and

1
(2.3) dy = sup —m—sme s [f (2,9, 0, (KO) (2, 9))] < oo

(zy)en €%

If M <1 + %) < 1, then the equatio.l) has a unique solutioa C,, 5 (A,R").
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Proof. Letu € C, 5 (A,R") and define the operatdr by

(2.4) (Tu) (z,y) = f(z,y,u(z,y), (Ku) (2,y)).

Now we shall show thal’ mapsC, s (A,R") into itself. From ) and using the hypotheses,
we have

1
Tuls < S iy I (9,0, (0) )
x,y)€

bosup e | (e (o) (Ku) (29) — (2,90, (KO) (2.)

(z,y)eA €%

1 Y
<d;+ sup oo M {|u(x,y)|+/a /b L]u(m,n)|dndm}

(@y)en €

u(z,y)]

(oroa €XE—ATBD)

a(m—a)+pP(n—b) 1P \""H V)1 \u(m n)’
+(:;;12A ea(x a)+B(y— b)/ / Le eoz(m a)+B(n— dndm

=di+M

<d1—|—M|U| 1+ L sup W

(z.y)eA €%

Ty
> / / ea(m—a)-i-ﬁ(n—b)dndm]
a b

S d1 —l—M]u\sz |:1+

L
af

o 1
:d1+M|U|aﬂ |:1+;

< Q.

This proves that the operatdrmapsC, s (A,R™) into itself.
Now we verify that the operatdf is a contraction map. Let, v € Cy, 5 (A,R"). From [2.4)
and using the hypotheses, we have

dos (Tu, Tv)
1
= ( S%pA cale—a)+5(y—b) |f (1'7 Yy, u (1'7 y) ’ (KU) (ZE, y))
x,y)eE

—f (=, y,( y), (Kv) (z,9))]

< supA e a)—l—,@(y 5 [|u(x y) —v(x,y \—l—/ / L|u(m,n) (m,n)|dndm}

(zy)€
o |U(I‘,y)—’U(I,y)|
=M (zS,;J;Ie)A ea(z—a)+B(y—b)
a(m— a+ﬁnb’u(mn) U(mn)|
+L (xS;J)IE)A ea(z—a)+B(y—b) / / ec(m—a)+B(n—b) dndm
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1 "
< Md> 1+ 1L SN im0 dnd
= a,p (w,0) |1+ (s;;IGDA e(@—a)+B(y—b) /a /b ’ o

= Mdy 5 (u,v) [1 + %]

1
=M 1+—) o5 (u,v).
( v)

SinceM (1 + %) < 1, it follows from the Banach fixed point theorem (sek [3]- [5], [8]) that

has a unique fixed point i@t 5 (A,R™) . The fixed point ofl" is however a solution of equation
(1.3). The proof is complete. O

Theorem 2.3.Let M, L, «, 3, be as in Theorem 2.2. Suppose that the functjoisin equa-
tion (1.2) satisfy the conditiong (2.1), (R.2) and

! 0(93)+T(y)+/$ /byf(s,t,(),(KO) (5.1)) dtds

(25) dy = sup a(e—a) 1 B(y—b) < 00,

(zy)ea €7
whereo, T are as in ). If% <1 + %) < 1, then the equatlon. 2) l 3) have a unique
solutionu € Cy 5 (AR").

Proof. Letu € C, 5 (A,R") and define the operatéf by

(Su) (z,y) =0 (x //fstust (Ku) (s,t)) dtds,

for (z,y) € A. The proof thatS mapsC, s (A,R") into itself and is a contraction map can be
completed by closely looking at the proof of Theorem 2.2 given above with suitable modifica-
tions. Here, we leave the details to the reader. OJ

Remark 1. We note that the problems of existence and uniqueness of solutions of special
forms of equationd (I}1) anfl (1.2) - (IL.3) have been studied under a variety of hypotheses in
[16]. In [7] the authors have obtained existence and uniqueness of solutions to general integral-
functional equations involving variables by using the comparative method (see also([1], [6],
[12] - [15]). The approach here in the treatment of existence and uniqueness problems for equa-
tions (1.1) and[(1]2) 4 (1.3) is fundamental and our results do not seem to be covered by the
existing theorems. Furthermore, the ideas used here can be extendéirtensional versions

of equations[(1]1) andl (1.2) F (1.3).

3. ESTIMATES ON THE SOLUTIONS

In this section we obtain estimates on the solutions of equatfiors (1.1]) ahd (f.2) — (1.3) under
some suitable assumptions on the functions involved therein.

We need the following versions of the inequalities given_in [11, Remark 2.2.1, p. 66 and p.
86]. For similar results, see [10].

Lemma 3.1. Letu € C (AR,), 7, Dir, Dor, DoDyr € C'(E,R,) andc > 0 be a constant. If

T ry
3.1) ww) <er [ [r@ysmuen i
for (z,y) € A, then
(3.2) u(z,y) < cexp (/x /yA (s,t) dtds) :

a b

J. Inequal. Pure and Appl. Math10(4) (2009), Art. 108, 10 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

VOLTERRA INTEGRAL AND INTEGRODIFFERENTIALEQUATIONS 5

for (x,y) € A, where
(3.3) A(x,y)ZT(fv,ymy)Jr/ Dyr (z,y,€,y) d€

Y x Y
+/ Dzr(w,y,w,n)dnJr/ / DyDyr (z,y,&, 1) dnd€.
b a b

Lemma 3.2. Letu,e,p € C (A, R+) and r, Dir, Dor, DoDyr € C(ER,). If e(x,y) is
nondecreasing in each variable, y) € A and

(3.4) u(x,y) <e(zr,y)+ // (s,t)

t
X {u (s,t) +/ / r(s,t,m,n)u(m,n) dndm] dtds,
a Jb
for (z,y) € A, then

(3.5) u(z,y) <e(x,y) {1 + /: /byp(s,t)
X exp ( / S /b b (mom) + A ()] dndm) dtds} ,

for (z,y) € A, whereA(z, y) is defined by[(33).

First, we shall give the following theorem concerning an estimate on the solution of equation
@.3).
Theorem 3.3. Suppose that the functiorfsk in equation|[(1.]1) satisfy the conditions

(3.6) 1f (@9 u,0) = f(2,y,8,0)| < N [lu—al + v -1,
(37) ’k (:B?y? m?”?“) —k (l’, Y, m,n,’u)\ <r (xayv man> ‘u - U’ ’
where0 < N < 1is aconstant ana, D;r, Dor, DoDyr € C (E,R,). Let
(3.8) ¢ = sup |f(z,,0,(K0)(z,y))| < oc.

(z,y)EA

If u(z,y), (x,y) € Ais any solution of equatiof (1.1), then

(3.9) ju (2, )] < (m) exp ( [ [ B dtds) ,

for (x,y) € A, where

N
(3.10) B(z,y) = T4 (2,9),
in which A(z, y) is defined by[ (3]3).

Proof. By using the fact that(z, y) is a solution of equatior (1.1) and the hypotheses, we have

(3.11) lu(z,y)| < |f (z,y,u(x,y), (Ku) (z,y)) — f(2,9,0,(KO0) (z,y))|
+|f (2,9,0, (K0) (z,y))|

x )
<et N e+ [ [ ) lutm )] dodn]
a b
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From (3.11) and using the assumptidr. N < 1, we observe that
C1

N [T
A2 < .
1) el (725) oy [ @ m utn) o
Now a suitable application of Lemma B.1 fo (3.12) yie(ds](3.9). O
Next, we shall obtain an estimate on the solution of equatfons (1[2)]- (1.3).

Theorem 3.4. Suppose that the functighin equation|(1.R) satisfies the condition

(313) |f (.T, Y, u, U) - f (x>y7 071_})‘ <p (xay) Hu - ﬂ' + ‘1} B ’DH )
wherep € C'(A,R,) and the functiork in equation|(1.R) satisfies the conditign (3.7). Let
(3.14) Co = sup

JSup o(z)+7(y) +/a /b f(s,t,0,(KO0)(s,t))dtds
If u(z,y), (xz,y) € Ais any solution of equationf (1.2) |- (..3), then
3.15) |u (x Co e s, t)ex [ m,n)+ A(m,n)|dndm | dtds| ,
@18) luteal <o |1+ [ [pses ([ [ o+ A ] i) avas]

for (z,y) € A, whereA(z, y) is defined by (3]3).

Proof. Using the fact that(z, y) is a solution of equation$ (3.2) - (1.3) and the hypotheses, we
have

(3.16)  |u(z,y)

o(x)+7(y) +/ﬂf /byf(s,t,(), (KO0) (s,t))dtds

< oQ.

<

+/a /b |f (s, t,u(s,t),(Ku)(s,t)) — f(s,t0,(KO0) (s,t))|dtds

T Yy s t
< ¢y —I—/ / p(s,t) {|u(s,t)| +/ / r(s,t,m,n)|u(m,n)| dndm] dtds.
a b a Jb
Now a suitable application of Lemma B.2 fo (3.16) yie(ds (B.15). O

Remark 2. We note that the results in Theorens| 3.3 3.4 provide explicit estimates on the
solutions of equations (J.1) and ([L.2)[— (1.3) and are obtained by simple applications of the
inequalities in Lemmas 3.1 and B.2. If the estimates on the right hand sides]in (3.9) and (3.15)
are bounded, then the solutions of equatipng (1.1)[anfl (1[2)]- (1.3) are bounded.

4. APPROXIMATE SOLUTIONS

In this section we shall deal with the approximation of solutions of equations (1.1) and (1.2)
— (1.3). We obtain conditions under which we can estimate the error between the solutions and
approximate solutions.
We call a functionu € C (A,R") ane-approximate solution of equation (IL.1) if there exists
a constant > 0 such that
’u (I,y) - f <I7y7u <x7y) ) (KU) (I7y))‘ < &

forall (z,y) € A. Letu € C (A,R"), D,D;u exists and satisfies the inequality

‘DQDlu (.Z',y) - f(x,y,u(x,y) ) (KU) (JI,y))’ <g,

for a given constant > 0, where it is supposed thdt (1.3) holds. Then we e&ll, y) an
e-approximate solution of equation (IL.2) wifh ([1.3).
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The following theorems deal with estimates on the difference between the two approximate

solutions of equation$ (1.1) ar{d ([L.2) wifh (1.3).

Theorem 4.1. Suppose that the functiorfsand & in equation [(1.]) satisfy the conditions (3.6)
and [3.7). Fori = 1,2, letw; (z,y) be respectively;-approximate solutions of equation (IL.1)
onA. Then

(4.1) ur () — s (2, )| < (il_*fj) exp ( | / "Bs,1) dtds) |

for (z,y) € A, whereB(z, y) is given by[(3.10).

Proof. Sinceu; (z,y) (i = 1,2) for (x,y) € A are respectively;-approximate solutions to
equation|[(1.J1), we have

(4.2) |ui (z,y) = f (@, 5, ui (2, y) , (Kuwi) (2, 9))] < &
From (4.2) and using the elementary inequalities- z| < |v|+|z| and|v| —|z| < v — 2|, we
observe that
(4.3) 1+ > |ur (,y) — [z, y,u (2,y), (Kw) (2,))]
+ luz (2, y) = (2, y,u2 (2,y) , (Kuz) (2,9))]
> Hur (2,9) = f (2,9, w1 (2, y), (Kua) (2,9))}
—{uz (2, y) = f (z,5,u2 (2, 9) , (Kuz) (,9)) }]
> |uy (z,y) — w2 (z,9)| = [f (2,5, u1 (2,y) , (K1) (,9))
—f(z,y,u2 (2, y), (Kup) (z,9))]

Let w(z,y) = |w (2, y) — us2 (z,y)|, (z,y) € A. From [4.8) and using the hypotheses, we
observe that

@y
(4.4) w(z,y) <e+e2+ N [w (x,y) + / / r(x,y,m,n)w(m,n)dndm| .
a Jb

From (4.4) and using the assumption that N < 1, we observe that
€1+ &9 N r Y
. < .
(4.5) w(m,y)_(l_N)+1_N/a /br(x,y,m,n)w(m,n)dndm
Now a suitable application of Lemma B.1 [o (4.5) yields](4.1). O

Theorem 4.2. Suppose that the functiorfsand & in equation|(1.R) satisfy the conditions (3.13)
and [3.7). Fori = 1,2, letw; (z,y) be respectively;-approximate solutions of equation (IL.2)
on A with

(4.6) U (I, 0) = Oy (I) J Ui (07 y) = 0; <y> ) Ui (07 0) =0,
whereq; € C (1,,R"), 5; € C (1,,R™) such that
(4.7) an (2) — a2 () + B (y) — B2 ()] <6,

whered > 0 is a constant. Then

@8) Jui (o)~ el et |1+ [ [ ot

s t
X exp (/ / [p(m,n) + A(m,n)] dmdn) dtds] ,
a b
for (z,y) € A, where

(4.9) e(z,y) =(e1+¢e2)(x —a)(y—b)+ 4.
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Proof. Sinceu; (z,y) (i = 1,2) for (z,y) € A are respectively;-approximate solutions of
equation[(1.R) with[(4]6), we have

(410) |D2D1ui (ZL’, y) - f ((L’,y, Uj (ZL‘,y) ) (Kul) (Iv y))| <é&;.

First keepingr fixed in (4.10), setting = ¢ and integrating both sides ovefrom b to y, then
keepingy fixed in the resulting inequality and setting= s and integrating both sides over
from « to « and using[(46), we observe that

gi(x—a)(y—0b)

/ / |DaDyu; (s,t) — f(s,t,u; (s,t), (Ku;) (s,t))| dtds

/b {DyDyu; (s,t) — f (s,t,u; (s,t), (Kw;) (s,t))} dtds

~{wt -t + s - [ [ ro b muw sl

The rest of the proof can be completed by closely looking at the proof of Thgorém 4.1 and using
the inequality in Lemmp 3]2. Here, we omit the details. O

Remark 3. Whenu, (x, ) is a solution of equatior (1.1) (respectively equatidns| (1.2) § (1.3)),
then we have; = 0 and from [4.1) (respectively (4.8)) we see thaf{z,y) — u; (z,y) as
gy — 0 (respectivelye, — 0 andé — 0). Furthermore, if we put; = &, = 0in (4.1)
(respectivelys; = e = 0, a; (z) = s (2), i (y) = P2 (y), i.e. 6 = 0in (4.9)), then the
uniqueness of solutions of equati¢n (1.1) (respectively equafioris (1.2) — (1.3)) is established.

Consider the equations (1.1)), (I1.2)[— {1.3) together with the following Volterra integral and
integrodifferential equations

(4.12) v(z,y) = f(z,y,0(2,y), (Kv)(2,9)),

and

(412) D2D1U (.T,y) :f(x,y,v(x,y),(Kv) (ZL’,y))7
with the given initial boundary conditions

(4.13) v(z,0)=a(x), vy =5, v(0,0)=0,

for (z,y) € A, whereK is given by [1.) andf € C(AxR"xR"R"), & € C (I,,R"),
B e C(I,R").
The following theorems show the closeness of the solutions to equdtions [1.1), (4.11) and

(€.2)-[1.3).[4.12) {(4.13).

Theorem 4.3. Suppose that the functiorfsk in equation|(1.11) satisfy the conditions (3.6), {3.7)
and there exists a constant> 0, such that

(414) }f(x,y,u,w) —f(x,y,u,w)| <e,

wheref, f are as given in[(1]1) and (4.111). Letz, y) andv(z,y) be respectively the solutions
of equations[(1]1) andi (4.11) féx, y) € A. Then

(4.15) 0 (@) — 0 (2,9)] < (m) exp ( [ [ B dtds> ,

for (x,y) € A, whereB(z, y) is given by/|(3.10).
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Proof. Letz (z,y) = |u (z,y) — v (z,y)|for (x,y) € A. Using the facts thai(x, y) andv(z, y)
are the solutions of equationjs ([L.1) apd (4.11) and the hypotheses, we observe that

(4.16)  z(z,y) <|f(z,y,u(z,y), (Ku)(2,y)) — f (2,9, (2,y), (Kv) (z,9))|
+ | f (@,y,0 (2,y), (Kv) (2,9) — [ (2,y,0 (z,9), (Kv) (2,9))]

@y
Se—l—N[z(m,y)—O—/ / r(s,t,m,n)z(m,n)dndm| .
a Jb

From [4.16) and using the assumption that N < 1, we observe that

€ N A
. < .
(4.17) Z(m,y)_l_N—i—l_N/a /b r(s,t,m,n) z (m,n)dndm
Now a suitable application of Lemma B.1 fo (4.17) yie[ds (4.15). O

Theorem 4.4. Suppose that the functiorfsk in equation [(1.R) are as in Theorém }4.2 and there
exist constants > 0,0 > 0 such that the conditior (4.114) holds and

(4.18) la(z) —a(z)+B8(y) — B <4,

wherea, 3 and @, 3 are as in [1.8) and[(4.13). Let(x,y) and v(z,y) be respectively the
solutions of equation$ (1.2) |- (1.3) and (4.12) — (4.13)(fery) € A. Then

@19) Ju(e.p) (el < elo) 14 [ [ (s

s t
X exp (/ / [p(m,n) + A(m,n)] dndm) dtds] :
a Jb
for (z,y) € A, where

(4.20) é(z,y)=c(z—a)ly—>)+0,
and A(z, y) is given by[(3.B).

The proof can be completed by rewriting the equivalent integral equations corresponding to
the equationd (1}2) + (1.3) arid (4.12) — (4.13) and by following the proof of Theorem 4.3 and

using Lemma 3]2. We leave the details to the reader.

Remark 4. It is interesting to note that Theorem |4.3 (respectively Thedrem 4.4) relates the
solutions of equation$ (1.1) ar{d (4.11) (respectively equations (1.2)|- (1.3) and (4.12)- (4.13))

in the sense that if is close tof, (respectivelyf is close tof, « is close ta, 3 is close to3),
then the solutions of equatioris ([1.1) and (4.11) (respectively solutions of equatigns [1.2) — (1.3)

and [4.12) —{(4.13)) are also close together.
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