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ABSTRACT. The aim of this paper is to study the existence, uniqueness and other properties
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1. I NTRODUCTION

Let Rn denote the realn-dimensional Euclidean space with appropriate norm denoted by
|·|. We denote byIa = [a,∞) , R+ = [0,∞), the given subsets ofR, the set of real num-
bers,E = {(x, y, m, n) : a ≤ m ≤ x < ∞, b ≤ n ≤ y < ∞} and∆ = Ia × Ib. For x, y ∈
R, the partial derivatives of a functionz(x, y) with respect tox, y and xy are denoted by
D1z (x, y) , D2z (x, y) andD2D1z (x, y) = D1D2z (x, y) . Consider the Volterra integral and
integrodifferential equations of the forms:

(1.1) u (x, y) = f (x, y, u (x, y) , (Ku) (x, y)) ,

and

(1.2) D2D1u (x, y) = f (x, y, u (x, y) , (Ku) (x, y)) ,

with the given initial boundary conditions

(1.3) u (x, 0) = σ (x) , u (0, y) = τ (y) , u (0, 0) = 0,

for (x, y) ∈ ∆, where

(1.4) (Ku) (x, y) =

∫ x

a

∫ y

b

k (x, y, m, n, u (m,n)) dndm,
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k ∈ C (E×Rn,Rn) , f ∈ C (∆×Rn×Rn,Rn) , σ ∈ C (Ia,Rn) , τ ∈ C (Ib,Rn) . By a solution
of equation (1.1) (or equations (1.2) – (1.3)) we mean a functionu ∈ C (∆,Rn) which satisfies
the equation (1.1) (or equations (1.2) – (1.3)).

In general, existence theorems for equations of the above forms are proved by the use of one
of the three fundamental methods (see [1], [3] – [9], [12] – [16]): the method of successive
approximations, the method based on the theory of nonexpansive and monotone mappings and
on the theory exploiting the compactness of the operator often by the use of the well known fixed
point theorems. The aim of the present paper is to study the existence, uniqueness and other
properties of solutions of equations (1.1) and (1.2) – (1.3) under various assumptions on the
functions involved therein. The main tools employed in the analysis are based on applications
of the well known Banach fixed point theorem (see [3] – [5], [8]) coupled with a Bielecki type
norm (see [2]) and the integral inequalities with explicit estimates given in [11]. In fact, our
approach here to the study of equations (1.1) and (1.2) – (1.3) leads us to obtain new conditions
on the qualitative properties of their solutions and present some useful basic results for future
reference, by using elementary analysis.

2. EXISTENCE AND UNIQUENESS

We first construct the appropriate metric space for our analysis. Letα > 0, β > 0 be constants
and consider the space of continuous functionsC (∆,Rn) such that sup

(x,y)∈∆

|u(x,y)|
eα(x−a)+β(y−b) < ∞

for u (x, y) ∈ C (∆,Rn) and denote this special space byCα,β (∆,Rn) with suitable metric

d∞α,β (u, v) = sup
(x,y)∈∆

|u (x, y)− v (x, y)|
eα(x−a)+β(y−b)

,

and a norm defined by

|u|∞α,β = sup
(x,y)∈∆

|u (x, y)|
eα(x−a)+β(y−b)

.

The above definitions ofd∞α,β and|·|∞α,β are variants of Bielecki’s metric and norm (see [2, 5]).
The following variant of the lemma proved in [5] holds.

Lemma 2.1. If α > 0, β > 0 are constants, then
(
Cα,β (∆, Rn) , |·|∞α,β

)
is a Banach space.

Our main results concerning the existence and uniqueness of solutions of equations (1.1) and
(1.2) – (1.3) are given in the following theorems.

Theorem 2.2. Let α > 0, β > 0, L > 0, M ≥ 0, γ > 1 be constants withαβ = Lγ. Suppose
that the functionsf, k in equation (1.1) satisfy the conditions

(2.1) |f (x, y, u, v)− f (x, y, ū, v̄)| ≤ M [|u− ū|+ |v − v̄|] ,

(2.2) |k (x, y, m, n, u)− k (x, y, m, n, v)| ≤ L |u− v| ,

and

(2.3) d1 = sup
(x,y)∈∆

1

eα(x−a)+β(y−b)
|f (x, y, 0, (K0) (x, y))| < ∞.

If M
(
1 + 1

γ

)
< 1, then the equation (1.1) has a unique solutionu ∈ Cα,β (∆,Rn) .
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Proof. Let u ∈ Cα,β (∆,Rn) and define the operatorT by

(2.4) (Tu) (x, y) = f (x, y, u (x, y) , (Ku) (x, y)) .

Now we shall show thatT mapsCα,β (∆,Rn) into itself. From (2.4) and using the hypotheses,
we have

|Tu|∞α,β ≤ sup
(x,y)∈∆

1

eα(x−a)+β(y−b)
|f (x, y, 0, (K0) (x, y))|

+ sup
(x,y)∈∆

1

eα(x−a)+β(y−b)
|f (x, y, u (x, y) , (Ku) (x, y))− f (x, y, 0, (K0) (x, y))|

≤ d1 + sup
(x,y)∈∆

1

eα(x−a)+β(y−b)
M

[
|u (x, y)|+

∫ x

a

∫ y

b

L |u (m,n)| dndm

]
= d1 + M

[
sup

(x,y)∈∆

|u (x, y)|
eα(x−a)+β(y−b)

+ sup
(x,y)∈∆

1

eα(x−a)+β(y−b)

∫ x

a

∫ y

b

Leα(m−a)+β(n−b) |u (m, n)|
eα(m−a)+β(n−b)

dndm

]

≤ d1 + M |u|∞α,β

[
1 + L sup

(x,y)∈∆

1

eα(x−a)+β(y−b)

×
∫ x

a

∫ y

b

eα(m−a)+β(n−b)dndm

]
≤ d1 + M |u|∞α,β

[
1 +

L

αβ

]
= d1 + M |u|∞α,β

[
1 +

1

γ

]
< ∞.

This proves that the operatorT mapsCα,β (∆,Rn) into itself.
Now we verify that the operatorT is a contraction map. Letu, v ∈ Cα,β (∆,Rn) . From (2.4)

and using the hypotheses, we have

d∞α,β (Tu, Tv)

= sup
(x,y)∈∆

1

eα(x−a)+β(y−b)
|f (x, y, u (x, y) , (Ku) (x, y))

−f (x, y, v (x, y) , (Kv) (x, y))|

≤ sup
(x,y)∈∆

1

eα(x−a)+β(y−b)
M

[
|u (x, y)− v (x, y)|+

∫ x

a

∫ y

b

L |u (m,n)− v (m, n)| dndm

]
= M

[
sup

(x,y)∈∆

|u (x, y)− v (x, y)|
eα(x−a)+β(y−b)

+L sup
(x,y)∈∆

1

eα(x−a)+β(y−b)

∫ x

a

∫ y

b

eα(m−a)+β(n−b) |u (m, n)− v (m, n)|
eα(m−a)+β(n−b)

dndm

]
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≤ Md∞α,β (u, v)

[
1 + L sup

(x,y)∈∆

1

eα(x−a)+β(y−b)
×

∫ x

a

∫ y

b

eα(m−a)+β(n−b)dndm

]
= Md∞α,β (u, v)

[
1 +

L

αβ

]
= M

(
1 +

1

γ

)
d∞α,β (u, v) .

SinceM
(
1 + 1

γ

)
< 1, it follows from the Banach fixed point theorem (see [3] – [5], [8]) thatT

has a unique fixed point inCα,β (∆,Rn) . The fixed point ofT is however a solution of equation
(1.1). The proof is complete. �

Theorem 2.3. LetM, L, α, β, γ be as in Theorem 2.2. Suppose that the functionsf, k in equa-
tion (1.2) satisfy the conditions (2.1), (2.2) and

(2.5) d2 = sup
(x,y)∈∆

1

eα(x−a)+β(y−b)

∣∣∣∣σ (x) + τ (y) +

∫ x

a

∫ y

b

f (s, t, 0, (K0) (s, t)) dtds

∣∣∣∣ < ∞,

whereσ, τ are as in (1.3). IfM
αβ

(
1 + 1

γ

)
< 1, then the equations (1.2) – (1.3) have a unique

solutionu ∈ Cα,β (∆,Rn) .

Proof. Let u ∈ Cα,β (∆,Rn) and define the operatorS by

(Su) (x, y) = σ (x) + τ (y) +

∫ x

a

∫ y

b

f (s, t, u (s, t) , (Ku) (s, t)) dtds,

for (x, y) ∈ ∆. The proof thatS mapsCα,β (∆,Rn) into itself and is a contraction map can be
completed by closely looking at the proof of Theorem 2.2 given above with suitable modifica-
tions. Here, we leave the details to the reader. �

Remark 1. We note that the problems of existence and uniqueness of solutions of special
forms of equations (1.1) and (1.2) – (1.3) have been studied under a variety of hypotheses in
[16]. In [7] the authors have obtained existence and uniqueness of solutions to general integral-
functional equations involvingn variables by using the comparative method (see also [1], [6],
[12] – [15]). The approach here in the treatment of existence and uniqueness problems for equa-
tions (1.1) and (1.2) – (1.3) is fundamental and our results do not seem to be covered by the
existing theorems. Furthermore, the ideas used here can be extended ton dimensional versions
of equations (1.1) and (1.2) – (1.3).

3. ESTIMATES ON THE SOLUTIONS

In this section we obtain estimates on the solutions of equations (1.1) and (1.2) – (1.3) under
some suitable assumptions on the functions involved therein.

We need the following versions of the inequalities given in [11, Remark 2.2.1, p. 66 and p.
86]. For similar results, see [10].

Lemma 3.1. Letu ∈ C (∆,R+), r, D1r, D2r, D2D1r ∈ C (E,R+) andc ≥ 0 be a constant. If

(3.1) u (x, y) ≤ c +

∫ x

a

∫ y

b

r (x, y, ξ, η) u (ξ, η) dηdξ,

for (x, y) ∈ ∆, then

(3.2) u (x, y) ≤ c exp

(∫ x

a

∫ y

b

A (s, t) dtds

)
,
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for (x, y) ∈ ∆, where

(3.3) A (x, y) = r (x, y, x, y) +

∫ x

a

D1r (x, y, ξ, y) dξ

+

∫ y

b

D2r (x, y, x, η) dη +

∫ x

a

∫ y

b

D2D1r (x, y, ξ, η) dηdξ.

Lemma 3.2. Let u, e, p ∈ C (∆,R+) and r, D1r, D2r, D2D1r ∈ C (E,R+). If e(x, y) is
nondecreasing in each variable(x, y) ∈ ∆ and

(3.4) u (x, y) ≤ e(x, y) +

∫ x

a

∫ y

b

p (s, t)

×
[
u (s, t) +

∫ s

a

∫ t

b

r (s, t, m, n) u (m, n) dndm

]
dtds,

for (x, y) ∈ ∆, then

(3.5) u (x, y) ≤ e(x, y)

[
1 +

∫ x

a

∫ y

b

p (s, t)

× exp

(∫ s

a

∫ t

b

[p (m, n) + A (m,n)] dndm

)
dtds

]
,

for (x, y) ∈ ∆, whereA(x, y) is defined by (3.3).

First, we shall give the following theorem concerning an estimate on the solution of equation
(1.1).

Theorem 3.3.Suppose that the functionsf, k in equation (1.1) satisfy the conditions

(3.6) |f (x, y, u, v)− f (x, y, ū, v̄)| ≤ N [|u− ū|+ |v − v̄|] ,

(3.7) |k (x, y, m, n, u)− k (x, y, m, n, v)| ≤ r (x, y, m, n) |u− v| ,
where0 ≤ N < 1 is a constant andr, D1r, D2r, D2D1r ∈ C (E,R+) . Let

(3.8) c1 = sup
(x,y)∈∆

|f (x, y, 0, (K0) (x, y))| < ∞.

If u(x, y), (x, y) ∈ ∆ is any solution of equation (1.1), then

(3.9) |u (x, y)| ≤
(

c1

1−N

)
exp

(∫ x

a

∫ y

b

B (s, t) dtds

)
,

for (x, y) ∈ ∆, where

(3.10) B (x, y) =
N

1−N
A (x, y) ,

in whichA(x, y) is defined by (3.3).

Proof. By using the fact thatu(x, y) is a solution of equation (1.1) and the hypotheses, we have

|u (x, y)| ≤ |f (x, y, u(x, y), (Ku) (x, y))− f (x, y, 0, (K0) (x, y))|(3.11)

+ |f (x, y, 0, (K0) (x, y))|

≤ c1 + N

[
|u (x, y)|+

∫ x

a

∫ y

b

r (x, y, m, n) |u (m, n)| dndm

]
.
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From (3.11) and using the assumption0 ≤ N < 1, we observe that

(3.12) |u (x, y)| ≤
(

c1

1−N

)
+

N

1−N

∫ x

a

∫ y

b

r (x, y, m, n) |u (m, n)| dndm.

Now a suitable application of Lemma 3.1 to (3.12) yields (3.9). �

Next, we shall obtain an estimate on the solution of equations (1.2) – (1.3).

Theorem 3.4.Suppose that the functionf in equation (1.2) satisfies the condition

(3.13) |f (x, y, u, v)− f (x, y, ū, v̄)| ≤ p (x, y) [|u− ū|+ |v − v̄|] ,
wherep ∈ C (∆,R+) and the functionk in equation (1.2) satisfies the condition (3.7). Let

(3.14) c2 = sup
(x,y)∈∆

∣∣∣∣σ (x) + τ (y) +

∫ x

a

∫ y

b

f (s, t, 0, (K0) (s, t)) dtds

∣∣∣∣ < ∞.

If u(x, y), (x, y) ∈ ∆ is any solution of equations (1.2) – (1.3), then

(3.15) |u (x, y)| ≤ c2

[
1 +

∫ x

a

∫ y

b

p (s, t) exp

(∫ s

a

∫ t

b

[p (m,n) + A (m, n)] dndm

)
dtds

]
,

for (x, y) ∈ ∆, whereA(x, y) is defined by (3.3).

Proof. Using the fact thatu(x, y) is a solution of equations (1.2) – (1.3) and the hypotheses, we
have

|u (x, y)|(3.16)

≤
∣∣∣∣σ (x) + τ (y) +

∫ x

a

∫ y

b

f (s, t, 0, (K0) (s, t)) dtds

∣∣∣∣
+

∫ x

a

∫ y

b

|f (s, t, u (s, t) , (Ku) (s, t))− f (s, t, 0, (K0) (s, t))| dtds

≤ c2 +

∫ x

a

∫ y

b

p (s, t)

[
|u (s, t)|+

∫ s

a

∫ t

b

r (s, t, m, n) |u (m,n)| dndm

]
dtds.

Now a suitable application of Lemma 3.2 to (3.16) yields (3.15). �

Remark 2. We note that the results in Theorems 3.3 and 3.4 provide explicit estimates on the
solutions of equations (1.1) and (1.2) – (1.3) and are obtained by simple applications of the
inequalities in Lemmas 3.1 and 3.2. If the estimates on the right hand sides in (3.9) and (3.15)
are bounded, then the solutions of equations (1.1) and (1.2) – (1.3) are bounded.

4. APPROXIMATE SOLUTIONS

In this section we shall deal with the approximation of solutions of equations (1.1) and (1.2)
– (1.3). We obtain conditions under which we can estimate the error between the solutions and
approximate solutions.

We call a functionu ∈ C (∆,Rn) anε-approximate solution of equation (1.1) if there exists
a constantε ≥ 0 such that

|u (x, y)− f (x, y, u (x, y) , (Ku) (x, y))| ≤ ε,

for all (x, y) ∈ ∆. Let u ∈ C (∆,Rn), D2D1u exists and satisfies the inequality

|D2D1u (x, y)− f (x, y, u (x, y) , (Ku) (x, y))| ≤ ε,

for a given constantε ≥ 0, where it is supposed that (1.3) holds. Then we callu(x, y) an
ε-approximate solution of equation (1.2) with (1.3).
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The following theorems deal with estimates on the difference between the two approximate
solutions of equations (1.1) and (1.2) with (1.3).

Theorem 4.1. Suppose that the functionsf andk in equation (1.1) satisfy the conditions (3.6)
and (3.7). Fori = 1, 2, let ui (x, y) be respectivelyεi-approximate solutions of equation (1.1)
on∆. Then

(4.1) |u1 (x, y)− u2 (x, y)| ≤
(

ε1 + ε2

1−N

)
exp

(∫ x

a

∫ y

b

B (s, t) dtds

)
,

for (x, y) ∈ ∆, whereB(x, y) is given by (3.10).

Proof. Sinceui (x, y) (i = 1, 2) for (x, y) ∈ ∆ are respectivelyεi-approximate solutions to
equation (1.1), we have

(4.2) |ui (x, y)− f (x, y, ui (x, y) , (Kui) (x, y))| ≤ εi.

From (4.2) and using the elementary inequalities|v − z| ≤ |v|+ |z| and|v|− |z| ≤ |v − z| , we
observe that

ε1 + ε2 ≥ |u1 (x, y)− f (x, y, u1 (x, y) , (Ku1) (x, y))|(4.3)

+ |u2 (x, y)− f (x, y, u2 (x, y) , (Ku2) (x, y))|
≥ |{u1 (x, y)− f (x, y, u1 (x, y) , (Ku1) (x, y))}

− {u2 (x, y)− f (x, y, u2 (x, y) , (Ku2) (x, y))}|
≥ |u1 (x, y)− u2 (x, y)| − |f (x, y, u1 (x, y) , (Ku1) (x, y))

−f (x, y, u2 (x, y) , (Ku2) (x, y))| .
Let w (x, y) = |u1 (x, y)− u2 (x, y)|, (x, y) ∈ ∆. From (4.3) and using the hypotheses, we
observe that

(4.4) w (x, y) ≤ ε1 + ε2 + N

[
w (x, y) +

∫ x

a

∫ y

b

r (x, y, m, n) w (m,n) dndm

]
.

From (4.4) and using the assumption that0 ≤ N < 1, we observe that

(4.5) w (x, y) ≤
(

ε1 + ε2

1−N

)
+

N

1−N

∫ x

a

∫ y

b

r (x, y, m, n) w (m, n) dndm.

Now a suitable application of Lemma 3.1 to (4.5) yields (4.1). �

Theorem 4.2.Suppose that the functionsf andk in equation (1.2) satisfy the conditions (3.13)
and (3.7). Fori = 1, 2, let ui (x, y) be respectivelyεi-approximate solutions of equation (1.2)
on∆ with

(4.6) ui (x, 0) = αi (x) , ui (0, y) = βi (y) , ui (0, 0) = 0,

whereαi ∈ C (Ia,Rn), βi ∈ C (Ib,Rn) such that

(4.7) |α1 (x)− α2 (x) + β1 (y)− β2 (y)| ≤ δ,

whereδ ≥ 0 is a constant. Then

(4.8) |u1 (x, y)− u2 (x, y)| ≤ e (x, y)

[
1 +

∫ x

a

∫ y

b

p (s, t)

× exp

(∫ s

a

∫ t

b

[p (m, n) + A (m, n)] dmdn

)
dtds

]
,

for (x, y) ∈ ∆, where

(4.9) e (x, y) = (ε1 + ε2) (x− a) (y − b) + δ.
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Proof. Sinceui (x, y) (i = 1, 2) for (x, y) ∈ ∆ are respectivelyεi-approximate solutions of
equation (1.2) with (4.6), we have

(4.10) |D2D1ui (x, y)− f (x, y, ui (x, y) , (Kui) (x, y))| ≤ εi.

First keepingx fixed in (4.10), settingy = t and integrating both sides overt from b to y, then
keepingy fixed in the resulting inequality and settingx = s and integrating both sides overs
from a to x and using (4.6), we observe that

εi (x− a) (y − b)

≥
∫ x

a

∫ y

b

|D2D1ui (s, t)− f (s, t, ui (s, t) , (Kui) (s, t))| dtds

≥
∣∣∣∣∫ x

a

∫ y

b

{D2D1ui (s, t)− f (s, t, ui (s, t) , (Kui) (s, t))} dtds

∣∣∣∣
=

∣∣∣∣{ui (x, y)− [αi (x) + βi (y)]−
∫ x

a

∫ y

b

f (s, t, ui (s, t) , (Kui) (s, t))

}∣∣∣∣ .

The rest of the proof can be completed by closely looking at the proof of Theorem 4.1 and using
the inequality in Lemma 3.2. Here, we omit the details. �

Remark 3. Whenu1 (x, y) is a solution of equation (1.1) (respectively equations (1.2) – (1.3)),
then we haveε1 = 0 and from (4.1) (respectively (4.8)) we see thatu2 (x, y) → u1 (x, y) as
ε2 → 0 (respectivelyε2 → 0 and δ → 0). Furthermore, if we putε1 = ε2 = 0 in (4.1)
(respectivelyε1 = ε2 = 0, α1 (x) = α2 (x) , β1 (y) = β2 (y) , i.e. δ = 0 in (4.8)), then the
uniqueness of solutions of equation (1.1) (respectively equations (1.2) – (1.3)) is established.

Consider the equations (1.1), (1.2) – (1.3) together with the following Volterra integral and
integrodifferential equations

(4.11) v (x, y) = f̄ (x, y, v (x, y) , (Kv) (x, y)) ,

and

(4.12) D2D1v (x, y) = f̄ (x, y, v (x, y) , (Kv) (x, y)) ,

with the given initial boundary conditions

(4.13) v (x, 0) = ᾱ (x) , v (0, y) = β̄ (y) , v (0, 0) = 0,

for (x, y) ∈ ∆, whereK is given by (1.4) andf̄ ∈ C (∆×Rn×Rn,Rn), ᾱ ∈ C (Ia,Rn) ,
β̄ ∈ C (Ib,Rn) .

The following theorems show the closeness of the solutions to equations (1.1), (4.11) and
(1.2) – (1.3), (4.12) – (4.13).

Theorem 4.3.Suppose that the functionsf, k in equation (1.1) satisfy the conditions (3.6), (3.7)
and there exists a constantε ≥ 0, such that

(4.14)
∣∣f (x, y, u, w)− f̄ (x, y, u, w)

∣∣ ≤ ε,

wheref, f̄ are as given in (1.1) and (4.11). Letu(x, y) andv(x, y) be respectively the solutions
of equations (1.1) and (4.11) for(x, y) ∈ ∆. Then

(4.15) |u (x, y)− v (x, y)| ≤
(

ε

1−N

)
exp

(∫ x

a

∫ y

b

B (s, t) dtds

)
,

for (x, y) ∈ ∆, whereB(x, y) is given by (3.10).
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Proof. Let z (x, y) = |u (x, y)− v (x, y)| for (x, y) ∈ ∆. Using the facts thatu(x, y) andv(x, y)
are the solutions of equations (1.1) and (4.11) and the hypotheses, we observe that

z (x, y) ≤ |f (x, y, u (x, y) , (Ku) (x, y))− f (x, y, v (x, y) , (Kv) (x, y))|(4.16)

+
∣∣f (x, y, v (x, y) , (Kv) (x, y))− f̄ (x, y, v (x, y) , (Kv) (x, y))

∣∣
≤ ε + N

[
z (x, y) +

∫ x

a

∫ y

b

r (s, t, m, n) z (m,n) dndm

]
.

From (4.16) and using the assumption that0 ≤ N < 1, we observe that

(4.17) z (x, y) ≤ ε

1−N
+

N

1−N

∫ x

a

∫ y

b

r (s, t,m, n) z (m, n) dndm.

Now a suitable application of Lemma 3.1 to (4.17) yields (4.15). �

Theorem 4.4.Suppose that the functionsf, k in equation (1.2) are as in Theorem 4.2 and there
exist constantsε ≥ 0, δ ≥ 0 such that the condition (4.14) holds and

(4.18)
∣∣α (x)− ᾱ (x) + β (y)− β̄ (y)

∣∣ ≤ δ,

whereα, β and ᾱ, β̄ are as in (1.3) and (4.13). Letu(x, y) and v(x, y) be respectively the
solutions of equations (1.2) – (1.3) and (4.12) – (4.13) for(x, y) ∈ ∆. Then

(4.19) |u (x, y)− v (x, y)| ≤ ē (x, y)

[
1 +

∫ x

a

∫ y

b

p (s, t)

× exp

(∫ s

a

∫ t

b

[p (m, n) + A (m, n)] dndm

)
dtds

]
,

for (x, y) ∈ ∆, where

(4.20) ē (x, y) = ε (x− a) (y − b) + δ,

andA(x, y) is given by (3.3).

The proof can be completed by rewriting the equivalent integral equations corresponding to
the equations (1.2) – (1.3) and (4.12) – (4.13) and by following the proof of Theorem 4.3 and
using Lemma 3.2. We leave the details to the reader.

Remark 4. It is interesting to note that Theorem 4.3 (respectively Theorem 4.4) relates the
solutions of equations (1.1) and (4.11) (respectively equations (1.2) – (1.3) and (4.12) – (4.13))
in the sense that iff is close tof̄ , (respectivelyf is close tof̄ , α is close toᾱ, β is close toβ̄),
then the solutions of equations (1.1) and (4.11) (respectively solutions of equations (1.2) – (1.3)
and (4.12) – (4.13)) are also close together.
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