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ABSTRACT. In this paper, we obtain a subordination result for a class of meromorphic functions.
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1. I NTRODUCTION AND M AIN RESULT

Let Σ be the class of functions of the form

f(z) =
1

z
+

∞∑
n=0

anz
n,

which areanalytic in the punctured unit discE = {z : 0 < |z| < 1}. LetA be the class of all
functionsp(z) = 1 + p1z + p2z

2 + · · · which are analytic in∆ = {z : |z| < 1}. The classP
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of Caratheodory functionsconsists of functionsp(z) ∈ A having positive real part. A function
f(z) ∈ Σ is meromorphic starlike of orderα if f(z) 6= 0 and

−<zf ′(z)

f(z)
> α, (α < 1; z ∈ ∆).

Similarly the functionf(z) is meromorphic convex of orderα if f ′(z) 6= 0 and

−<
(

1 +
zf ′′(z)

f ′(z)

)
> α, (α < 1; z ∈ ∆).

The classes of these functions are denoted byMS∗(α) andMC(α) respectively. The class
Σ∗γ(α) of γ-meromorphic convex of orderα consists of functionsf(z) with f(z)f ′(z) 6= 0
satisfying

−<
[
(1− γ)

zf ′(z)

f(z)
+ γ

(
1 +

zf ′′(z)

f ′(z)

)]
> α, (α < 1; z ∈ ∆).

Nunokawa and Ahuja [2] have proved the following:

Theorem 1.1.Letα < 0. If

f ∈ MC

(
α(3− 2α)

2(1− α)

)
,

thenf ∈ MS∗(α).

Theorem 1.2.Letα < 0 andγ ≥ 0. If

f ∈ Σ∗γ

(
2α− 2α2 + γα

2(1− α)

)
,

thenf ∈ MS∗(α).

Our main result is the following generalization of Theorem 1.1 and Theorem 1.2:

Theorem 1.3.Let q(z) be univalent andq(z) 6= 0 in 4 and
(1) zq′(z)/q(z) is starlike univalent in4, and

(2) <
[
1 + zq′′(z)

q′(z)
− zq′(z)

q(z)
− q(z)

γ

]
> 0 for z ∈ 4, γ 6= 0.

If f(z) ∈ Σ and

−
[
(1− γ)

zf ′(z)

f(z)
+ γ

(
1 +

zf ′′(z)

f ′(z)

)]
≺ q(z)− γ

zq′(z)

q(z)
,

then

−zf ′(z)

f(z)
≺ q(z)

andq(z) is the best dominant.

2. PROOF OF THEOREM 1.3

To prove our Theorem 1.3, we need the following result of Miller and Mocanu:

Lemma 2.1. [1, p. 132, Theorem 3.4h]Let q(z) be univalent in the unit disk4 andθ andφ be
analytic in a domainD containingq(4) with φ(w) 6= 0 whenw ∈ q(4). Set

Q(z) := zq′(z)φ(q(z)), h(z) := θ(q(z)) + Q(z).

Suppose that eitherh(z) is convex, orQ(z) is starlike univalent in4. In addition, assume that

<zh′(z)

Q(z)
> 0 (z ∈ 4).
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If p(z) is analytic in∆, with p(0) = q(0), p(∆) ⊆ D and

(2.1) θ(p(z)) + zp′(z)φ(p(z)) ≺ θ(q(z)) + zq′(z)φ(q(z)),

thenp(z) ≺ q(z) andq(z) is the best dominant.

By applying Lemma 2.1, we first prove the following:

Lemma 2.2. Let q(z) ∈ A satisfyq(z) 6= 0 and the conditions (1) and (2) in Theorem 1.3.
If p(z) ∈ A satisfiesp(z) 6= 0 and

(2.2) p(z)− γ
zp′(z)

p(z)
≺ q(z)− γ

zq′(z)

q(z)
,

thenp(z) ≺ q(z) andq(z) is a best dominant.

Proof. Define the functionsθ andφ by

θ(w) := w and φ(w) := − γ

w
.

Thenθ andφ are analytic inC \ {0} andφ(w) 6= 0. Define the functionsQ(z) andh(z) by

Q(z) := zq′(z)φ(q(z)) = −γ
zq′(z)

q(z)

and

h(z) := θ(q(z)) + Q(z) = q(z)− γ
zq′(z)

q(z)
.

In view of our assumptions, the functionsQ(z) andh(z) satisfy the conditions of Lemma 2.1.
Since the subordination (2.2) can be written as the subordination (2.1), the result now follows
by an application of Lemma 1.1. �

Proof of Theorem 1.3.Define the functionp(z) by

p(z) := −zf ′(z)

f(z)
(z ∈ ∆).

Then a computation shows that

p(z)− γ
zp′(z)

p(z)
= −

[
(1− γ)

zf ′(z)

f(z)
+ γ

(
1 +

zf ′′(z)

f ′(z)

)]
.

The result of Theorem 1.3 now follows from Lemma 2.2. �

3. A SPECIAL CASE

By setting

q(z) =
1 + (1− 2α)z

1− z
in Theorem 1.3, we have the following:

Corollary 3.1. Letα < 0, γ 6= 0. If f(z) ∈ Σ and

−
[
(1− γ)

zf ′(z)

f(z)
+ γ

(
1 +

zf ′′(z)

f ′(z)

)]
≺ 1 + 2[1− γ + (α− 1)γ]z + (1− 2α)2z2

1− 2αz − (1− 2α)z2
,

then−< zf ′(z)
f(z)

> α.
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Remark 3.2. Fairly straightforward calculation shows that the image of|z| < 1 under

w(z) :=
1 + 2[1− γ + (α− 1)γ]z + (1− 2α)2z2

1− 2αz − (1− 2α)z2

contains the half plane<w(z) > 2α−2α2+γα
2(1−α)

. Therefore we see that Theorem 1.2 now follows
from Corollary 3.1. Theorem 1.1 is indeed a special case of Theorem 1.2 whenγ = 1.
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