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ABSTRACT. In this paper we extend the Hermite-Hadamard inequality

f

(
p + q

2

)
≤ 1

q − p

∫ q

p

f(x)dx ≤ f(p) + f(q)
2

for convex-concave symmetric functions. As consequences some new inequalities for Gini and
Stolarsky means are also derived.
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1. I NTRODUCTION

The so-called Hermite-Hadamard inequality [7] is one of the most investigated classical in-
equalities concerning convex functions. It reads as follows:

Theorem 1.1. Let I ⊂ R be an interval andf : I → R be a convex function. Then, for all
subintervals[p, q] ⊂ I,

(1.1) f

(
p + q

2

)
≤ 1

q − p

∫ q

p

f(x)dx ≤ f(p) + f(q)

2
,
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2 P. CZINDER AND ZS. PÁLES

while in the case whenf is concave all the inequalities are reversed, i.e.,

(1.2) f

(
p + q

2

)
≥ 1

q − p

∫ q

p

f(x)dx ≥ f(p) + f(q)

2
.

holds.

An account on the history of this inequality can be found in [9]. Surveys on various gen-
eralizations and developments can be found in [10] and [4]. The description of best possible
inequalities of Hadamard-Hermite type are due to Fink [5]. A generalization to higher-order
convex functions can be found in [1], while [2] offers a generalization for functions that are
Beckenbach-convex with respect to a two dimensional linear space of continuous functions.

In this form (1.1) and (1.2) are valid only for functions that are purely convex or concave
on their whole domain. In Section 2 we will see that under appropriate conditions the same
inequalities can be stated for a much larger family of functions. It will turn out that the results,
obtained for this situation, can be applied for the Gini and Stolarsky means. In this way, we will
obtain new inequalities for these classes of two variable homogeneous means.

2. THE EXTENSION OF THE HERMITE -HADAMARD I NEQUALITY

Let I ⊂ R be an arbitrary real interval andm ∈ I. A functionf : I → R is calledsymmetric
with respect to pointm if the equation

(2.1) f(m− t) + f(m + t) = 2f(m)

holds for allt ∈ (I−m)∩ (m− I). Observe that whenm is one of the endpoints of the interval
I, then(I −m) ∩ (m − I) is either empty or the singleton{m}, therefore (2.1) does not mean
any restriction onf .

Concerning symmetric functions, we have the following obvious statement.

Lemma 2.1. Letf : I → R be symmetric with respect to an elementm ∈ I. Then∫ m+α

m−α

f(x)dx = 2αf(m)

for any positiveα in (I−m) ∩ (m− I).

Proof. By splitting the integral at the pointm and applying substitutionsx = m − t andx =
m + t, respectively, we get that∫ m+α

m−α

f(x)dx =

∫ 0

α

−f(m− t)dt +

∫ α

0

f(m + t)dt

=

∫ α

0

(
f(m− t) + f(m + t)

)
dt.

Due to the symmetry off , the integrand equals2f(m), which completes the proof. �

Theorem 2.2. Let f : I → R be symmetric with respect to an elementm ∈ I, furthermore,
suppose thatf is convex over the intervalI∩ (−∞, m] and concave overI∩ [m,∞). Then, for
any interval[p, q] ⊂ I

(2.2) f

(
p + q

2

)
≥

(≤)

1

q − p

∫ q

p

f(x)dx
≥

(≤)

f(p) + f(q)

2

holds if p+q
2

≥
(≤)

m.
(In (2.2) the reversed inequalities are valid iff is concave over the intervalI∩ (−∞, m] and

convex overI ∩ [m,∞)).
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AN EXTENSION OF THEHERMITE-HADAMARD INEQUALITY FOR GINI AND STOLARSKY MEANS 3

Proof. Suppose first thatp+q
2
≥ m. The casep, q ≥ m has no interest, since then Theorem 1.1

could be applied. Therefore, we may assume thatp < m < q.
First we show the left hand side inequality in (2.2)

f

(
p + q

2

)
≥ 1

q − p

∫ q

p

f(x)dx.

For this purpose, we split the integral into two parts:∫ q

p

f(x)dx =

∫ 2m−p

p

f(x)dx +

∫ q

2m−p

f(x)dx.

Applying Lemma 2.1 withα = m − p, the first integral is equal to2(m − p)f(m). Moreover,
due to the assumptionsp < m < q and p+q

2
≥ m, we have thatm < 2m − p ≤ q. Therefore

the functionf is concave over the interval[2m − p, q], thus, by Theorem 1.1, the value of the
second integral is less than or equal to(q − 2m + p)f( q+2m−p

2
). That is, we have shown that∫ q

p

f(x)dx ≤ 2(m− p)f(m) + (q − 2m + p)f

(
q + 2m− p

2

)
.

Using the concavity off over the interval[m, q+2m−p
2

], we obtain

2
m− p

q − p
f(m) +

q − 2m + p

q − p
f

(
q + 2m− p

2

)
≤ f

(
2
m− p

q − p
·m +

q − 2m + p

q − p
· q + 2m− p

2

)
= f

(
p + q

2

)
.

This inequality combined with previous one, immediately yields (2.2) and thus proof of the first
part is complete.

Now we prove the right hand side inequality in (2.2). Using the symmetry off and the
concavity over the interval[2m− p, q], Lemma 2.1 and Theorem 1.1 yield∫ q

p

f(x)dx =

∫ 2m−p

p

f(x)dx +

∫ q

2m−p

f(x)dx

≥ 2(m− p)f(m) + (q − 2m + p)
f(2m− p) + f(q)

2
.

To complete the proof of (2.2), it is enough to show that

(2.3) (2m− 2p)f(m) + (q − 2m + p)
f(2m− p) + f(q)

2
≥ (q − p)

f(p) + f(q)

2
.

For, we use, again, the concavity off over the interval[m, q]. Thus,

f(2m− p) = f

(
q − 2m + p

q −m
·m +

m− p

q −m
· q

)
(2.4)

≥ q − 2m + p

q −m
f(m) +

m− p

q −m
f(q).

Substitutingf(p) by 2f(m)− f(2m− p) in (2.3), one can easily check that (2.4) and (2.3) are
equivalent inequalities. Consequently, (2.3) follows from (2.4).

An analogous argument leads also to the result in the casep+q
2
≤ m. Finally, if f is concave

over the intervalI∩ (−∞, m] and convex overI∩ [m,∞) then, applying what we have already
proven for−f , the statement follows. �

Remark 2.3. Theorem 1.1 can be considered as a special case of Theorem 2.2. For, one has to
takem to be one of the endpoints ofI.
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4 P. CZINDER AND ZS. PÁLES

3. AN APPLICATION FOR GINI AND STOLARSKY M EANS

Given two real parametersa, b, if x, y are positive numbers, then their Gini meanGa,b (cf.
[6]) is defined by:

Ga,b(x, y) =


(

xa+ya

xb+yb

) 1
a−b

if a 6= b,

exp
(

xa log x+ya log y
xa+ya

)
if a = b,

while their Stolarsky meanSa,b (cf. [14], [15]) is the following:

Sa,b(x, y) =



(
b(xa−ya)
a(xb−yb)

) 1
a−b

if (a− b)ab 6= 0, x 6= y,

exp
(
− 1

a
+ xa log x−ya log y

xa−ya

)
if a = b 6= 0, x 6= y,(

xa−ya

a(log x−log y)

) 1
a

if a 6= 0, b = 0, x 6= y,
√

xy if a = b = 0,

x, if x = y.

These definitions create a continuous, moreover, infinitely many times differentiable function

(a, b, x, y) 7→ Ma,b(x, y)

on the domainR2 × R2
+, whereMa,b(x, y) can stand for eitherGa,b(x, y) or Sa,b(x, y).

Nevertheless the cases in the definitions seem quite different, we will see that they all can
be derived from the case of equal parameters, which – in a sense – plays a central role in our
treatment. The following lemma is true:

Lemma 3.1. Let the positive numbersx andy be fixed. Then for any real numbersa, b (a 6= b)
the following formula holds:

(3.1) log Ma,b(x, y) =
1

a− b

∫ a

b

log Mt,t(x, y)dt.

Proof. For Gini means, we have

1

a− b

∫ a

b

ln Gt,t(x, y)dt =
1

a− b

∫ a

b

xt ln x + yt ln y

xt + yt
dt

=
1

a− b

[
ln

(
xt + yt

) ]a

b

=
1

a− b
ln

xa + ya

xb + yb
= ln Ga,b(x, y).

In the Stolarsky case we will assume thatx > y anda > b. If 0 < b < a or b < a < 0 then

1

a− b

∫ a

b

ln St,t(x, y)dt =
1

a− b

∫ a

b

(
−1

t
+

xt log x− yt log y

xt − yt

)
dt

=
1

a− b

[
ln

(
xt − yt

t

)]a

b

=
1

a− b
ln

xa−ya

a
xb−yb

b

= ln Sa,b(x, y).
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AN EXTENSION OF THEHERMITE-HADAMARD INEQUALITY FOR GINI AND STOLARSKY MEANS 5

If 0 = b < a or b < a = 0 then we can apply the continuity of the integral as the function of its
limits. For example,

1

a

∫ a

0

ln St,t(x, y)dt = lim
b→0+

(
1

a− b

∫ a

b

(
−1

t
+

xt log x− yt log y

xt − yt

))
dt

=
1

a
lim

b→0+

[
log

(
xt − yt

t

)]a

b

=
1

a

(
log

xa − ya

a
− lim

b→0+
log

xb − yb

b

)
=

1

a

(
log

xa − ya

a
− log(log x− log y)

)
= log Sa,0(x, y).

Finally, in the caseb < 0 < a

1

a− b

∫ a

b

ln St,t(x, y)dt =
1

a− b

(∫ 0

b

log St,t(x, y)dt +

∫ a

0

ln St,t(x, y)dt

)
=

1

a− b

(
a
1

a

(
log

xa − ya

a
− log(log x− log y)

)
− b

1

b

(
log

xb − yb

b
− log(log x− log y)

))
= log Sa,b(x, y).

�

In the sequel, the following results will prove to be useful.

Lemma 3.2. For any positivex 6= 1,

(3.2)
x(x + 1)

2
<

(
x− 1

log x

)3

.

Proof. By Karamata’s classical inequality (see [8, p. 272]), we have that

(3.3)
x + x1/3

1 + x1/3
<

x− 1

log x
.

Thus, it suffices to show that

(3.4)
x(x + 1)

2
<

(
x + x1/3

1 + x1/3

)3

.

Dividing both sides byx, then multiplying them by2(1 + x1/3)3, finally, collecting the terms
on the right side, one can easily check that (3.4) becomes

0 < (x2/3 + x1/3 + 1)(x1/3 − 1)4,

which is obviously true for all positivex 6= 1. �

The inequality stated in the above lemma can be translated to an inequality concerning the
geometric, arithmetic and logarithmic means.

Corollary 3.3. For all x, y > 0,

(3.5) S2
0,0(x, y) · S2,1(x, y) ≤ S3

1,0(x, y).
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6 P. CZINDER AND ZS. PÁLES

Proof. If x = y, then (3.5) is obvious. Ifx 6= 1 andy = 1, then (3.5) is literally the same
as (3.2), hence (3.5) holds in this case, too. Now replacingx by x/y in (3.2), and using the
homogeneity of the Stolarsky means, we get that (3.5) is valid for all positivex 6= y. �

Remark 3.4. Arguing in the same way as in the proof of Corollary 3.4, one can deduce that the
inequalities (3.3) and (3.4) are equivalent to

S2
0,0(x, y) ·G 2

3
, 1
3
(x, y) ≤ S3

1,0(x, y)

and
S2,1(x, y) = G0,1(x, y) ≤ G 2

3
, 1
3
(x, y)

respectively. The latter inequality can also be derived from the comparison theorem of two
variable Gini means (cf. [12], [13], [3]).

Our aim is to apply the results in Theorem 2.2 for Gini and Stolarsky means. For this purpose
we will show that, for fixed positivex, y, the function

(3.6) µx,y : R → R, t 7→ log Mt,t(x, y)

satisfies the assumptions of Theorem 2.2.

Lemma 3.5. Letx, y be arbitrary positive numbers. Then the functionµx,y defined in (3.6) has
the following properties:

(i) µx,y(t) + µx,y(−t) = 2µx,y(0) (t ∈ R),
(ii) µx,y is convex overR− and concave overR+.

Proof. (i) For Gini means:

µx,y(t) + µx,y(−t) =
xt log x + yt log y

xt + yt
+

x−t log x + y−t log y

x−t + y−t

=
xt log x + yt log y

xt + yt
+

yt log x + xt log y

yt + xt

=
xt log(xy) + yt log(xy)

xt + yt

= log(xy) = 2µx,y(0),

while for Stolarsky means – assuming thatt 6= 0 –

µx,y(t) + µx,y(−t) = −1

t
+

xt log x− yt log y

xt − yt
+

1

t
+

x−t log x− y−t log y

x−t − y−t

=
xt log x− yt log y

xt − yt
+

yt log x− xt log y

yt − xt

=
xt log(xy)− yt log(xy)

xt − yt

= log(xy) = 2µx,y(0).

(ii) If x = y, thenµx,y(t) = x for all t ∈ R, henceµx,y is convex-concave everywhere.
Therefore, we may assume thatx 6= y.

In the case of Gini means,

t3µ′′x,y(t) = −xtyt(log xt − log yt)3(xt − yt)

(xt + yt)3
.

Since the sign ofxt − yt is the same as that oflog xt − log yt, therefore,t3µ′′x,y(t) ≥ 0
for all t ∈ R. Thus,µx,y is convex overR− and concave overR+.
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AN EXTENSION OF THEHERMITE-HADAMARD INEQUALITY FOR GINI AND STOLARSKY MEANS 7

In the setting of Stolarsky means, we have that

t3µ′′x,y(t) = −2 +
xtyt(log xt − log yt)3(xt + yt)

(xt − yt)3

= −2

(
1−

S2
0,0(x

t, yt)S2,1(x
t, yt)

S3
1,0(x

t, yt)

)
.

In view of Corollary 3.4, it follows thatt3µ′′x,y(t) ≥ 0 for all t ∈ R. Therefore,µx,y is
convex overR− and concave overR+ in this case, too.

�

As a consequence of Lemma 3.5 and Theorem 2.2, we can provide a lower and an upper
estimate forMa,b in terms of the meansMa+b

2
and

√
Ma,a ·Mb,b.

Theorem 3.6. Leta, b be real numbers so thata + b ≥
(≤)

0. Then

Ga+b
2

, a+b
2

(x, y)
≥

(≤)
Ga,b(x, y)

≥
(≤)

√
Ga,a(x, y)Gb,b(x, y)

and

Sa+b
2

, a+b
2

(x, y)
≥

(≤)
Sa,b(x, y)

≥
(≤)

√
Sa,a(x, y)Sb,b(x, y)

hold for any positive numbersx, y.

Proof. Let x, y be fixed positive numbers. By Lemma 3.5, the functionµx,y is symmetric with
respect tom = 0 and is convex (concave) onR− (on R+). Therefore, Theorem 2.2 can be
applied tof := µx,y. Then, by (2.2),

µx,y

(
a + b

2

)
≥

(≤)

1

a− b

∫ a

b

µx,y(t)dt
≥

(≤)

µx,y(a) + µx,y(b)

2

if a+b
2

≥
(≤)

0. Thus, by the definition ofµx,y and in view of Lemma 3.1, the following inequality
holds:

log Ma+b
2

, a+b
2

(x, y)
≥

(≤)
log Ma,b(x, y)

≥
(≤)

log Ma,a(x, y) + log Mb,b(x, y)

2

if a + b ≥
(≤)

0. Applying the exponential function to this inequality, we get that

Ma+b
2

, a+b
2

(x, y)
≥

(≤)
Ma,b(x, y)

≥
(≤)

√
Ma,a(x, y)Mb,b(x, y)

if a + b ≥
(≤)

0. Hence the stated inequalities follow in the Gini and Stolarsky means setting,
respectively. �
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