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ABSTRACT. In this paper we extend the Hermite—Hadamard inequality

(5= L e 2

for convex-concave symmetric functions. As consequences some new inequalities for Gini and
Stolarsky means are also derived.
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1. INTRODUCTION

The so-called Hermite-Hadamard inequality [7] is one of the most investigated classical in-
equalities concerning convex functions. It reads as follows:

Theorem 1.1.LetJ C R be an interval andf : J — R be a convex function. Then, for all
subintervalgp, q] C J,

(L.1) f (p—gq) < qip/qf($)dx§ f(p)‘;f(Q),
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2 P. CZINDER AND ZsS. PALES

while in the case whelfiis concave all the inequalities are reversed, i.e.,

holds.

An account on the history of this inequality can be found_in [9]. Surveys on various gen-
eralizations and developments can be found_ in [10] and [4]. The description of best possible
inequalities of Hadamard-Hermite type are due to Firk [5]. A generalization to higher-order
convex functions can be found inl[1], whilel [2] offers a generalization for functions that are
Beckenbach-convex with respect to a two dimensional linear space of continuous functions.

In this form (1.1]) and[(1]2) are valid only for functions that are purely convex or concave
on their whole domain. In Sectidr} 2 we will see that under appropriate conditions the same
inequalities can be stated for a much larger family of functions. It will turn out that the results,
obtained for this situation, can be applied for the Gini and Stolarsky means. In this way, we will
obtain new inequalities for these classes of two variable homogeneous means.

2. THE EXTENSION OF THE HERMITE -HADAMARD | NEQUALITY

LetJ C R be an arbitrary real interval and € J. A function f : J — R is calledsymmetric
with respect to pointn if the equation
(2.1) fm—=1t)+ f(m+1t) =2f(m)
holds for allt € (J—m) N (m —1J). Observe that whem is one of the endpoints of the interval
J,then(J — m) N (m — J) is either empty or the singletopmn}, therefore[(2]1) does not mean

any restriction ory.
Concerning symmetric functions, we have the following obvious statement.

Lemma 2.1. Let f : 3 — R be symmetric with respect to an element J. Then

[ s = 2asm

m—«

for any positivex in (3 —m) N (m — 7).

Proof. By splitting the integral at the point. and applying substitutions = m — ¢t andz =
m + t, respectively, we get that

/T::a f(x)de = /ao —f(m — t)dt + /Oa Fm +t)dt

- / (F(m —t)+ f(m+1))dt.
0
Due to the symmetry of, the integrand equalsf (m), which completes the proof. O

Theorem 2.2.Let f : 3 — R be symmetric with respect to an elemente J, furthermore,
suppose thaf is convex over the intervaln (—oo, m] and concave overn [m, oo). Then, for
any interval[p, q] C J
p+qy = 1 [¢ = flp)+ flq
(2.2) / (—) [ty o)+ 7ta)
2 ) (S)a-pJy (<) 2

holds if 244 é)m.

(In (2.2) the reversed inequalities are validfiis concave over the intervain (—oo, m] and
convex ovefl N [m, 00)).
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Proof. Suppose first thaﬁ% > m. The case, ¢ > m has no interest, since then Theo@ 1.1
could be applied. Therefore, we may assume gphatm < q.
First we show the left hand side inequality [in (2.2)

p+q I
f (_) S
5 p— (z)
For this purpose, we split the integral into two parts:

/p " () do = /p " e+ /2 i_p f(x)dz.

Applying Lemmd 2.L withh = m — p, the first integral is equal t&(m — p) f(m). Moreover,
due to the assumptions< m < ¢ and’% > m, we have thain < 2m — p < ¢. Therefore
the functionf is concave over the intervélm — p, ¢|, thus, by Theore.l, the value of the
second integral is less than or equaldo- 2m + p) f(£%"=2). That is, we have shown that

q
q—+2m —
[ @it < 2m = ) fm) + (q - 2m+ )y (T2FL).
p
Using the concavity of over the intervalm, q”#],we obtain
m—p qg—2m+p . [(q+2m—p
2™ =P () 1l )
q—>p q—>p 2
§f<2m—p.m+q—2m+p'q+2m—p) :f(p-i—q).
q—>p q—p 2 2

This inequality combined with previous one, immediately yields|(2.2) and thus proof of the first
part is complete.

Now we prove the right hand side inequality [n (2.2). Using the symmetry afd the
concavity over the intervdm — p, ¢, Lemmg 2.1 and Theoregm 1.1 yield

/p " () de = /,, T e /;_p f(x)dz

> 2(m —p) f(m) + (¢ — 2m +p)

fem —p) + fla)

2
To complete the proof of (2.2), it is enough to show that
2m —p) + +
@3)  (2m—2p)f(m) + (g - 2m 4 p EOZDIID ) SR,
For, we use, again, the concavity pbver the intervalm, ¢|. Thus,
—2m + m —
(2.4) f@m—m=f<1———£wn+ pq)
q—m qg—m
> IZINED ) 4 P g ),
q—m q—m

Substitutingf (p) by 2f(m) — f(2m — p) in (2.3), one can easily check that (2.4) and](2.3) are
equivalent inequalities. Consequently, {2.3) follows from|(2.4).

An analogous argument leads also to the result in the &gise m. Finally, if f is concave
over the interval N (—oo, m| and convex ovef N [m, co) then, applying what we have already
proven for— f, the statement follows. O

Remark 2.3. Theorenj 1.J1 can be considered as a special case of Thgorem 2.2. For, one has to
takem to be one of the endpoints &f
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3. AN APPLICATION FOR GINI AND STOLARSKY MEANS

Given two real parameters b, if =,y are positive numbers, then their Gini me@p, (cf.
[6]) is defined by:

sy | 5T if a #0,
Ga,b (377 y) = (xb+yb )
exp (lg+glgy) if @ — b,
while their Stolarsky meas, ; (cf. [14], [15]) is the following:
_1
(Med)™ i (a—b)ab#0, 2 #y,
exp (—1 + lomztlons) it g = b £ 0, 5 4y,
Sa,b(xa 3/) = o % .
(a(logm—ylogy)> if a 7é 07 b= 07 z 7é Y,
Ty ifa=0b=0,
L 7, if x =y.

These definitions create a continuous, moreover, infinitely many times differentiable function

(0'7 ba x, y) = a,b(xa y)

on the domaiR? x R?, where)/, ,(z,y) can stand for eithe®, ;(x, y) or S, 4(z, ).

Nevertheless the cases in the definitions seem quite different, we will see that they all can
be derived from the case of equal parameters, which — in a sense — plays a central role in our
treatment. The following lemma is true:

Lemma 3.1. Let the positive numbersandy be fixed. Then for any real numbersh (a # b)
the following formula holds:

1 a
3.1) log Ma(,y) = — [ log Myy(aw.y)dr
b

a —

Proof. For Gini means, we have

e Lot '
/mGt,t(:p,y)dt: / rrty my
b b

a—>b a—>b xt + gyt
1 a
_ 1 ¢ ti|
),
1 l.a_|_ya

= |
a—>b nxb—i—yb

=InGup(x,y).

In the Stolarsky case we will assume that y anda > 0. If 0 < b < aorb < a < 0 then

1 ¢ 1 /1 atlogz —y'logy
In S dt = —— dt
a—b/b el Y) a—b/b ( P zt —yt

S ()],
= In
a—>b t b

1 f ol a

-y

= mlnﬁyb = hl Sa,b<$7y)'
b

J. Inequal. Pure and Appl. Mathb(2) Art. 42, 2004 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

AN EXTENSION OF THEHERMITE-HADAMARD INEQUALITY FOR GINI AND STOLARSKY MEANS 5

If 0 =5b < aorb< a=0then we can apply the continuity of the integral as the function of its
limits. For example,

1 [ . 1 [*( 1 a'logz—y'logy
5/0 lnSt’t(x,y)dt—bli%lJr (a—b/b (—;—i- xt—yt o

1 ' l’t _ yt a
= — lim |log
a b—0+ t b

1 | T — ya i | .Tb _ yb
= — O — 11m 10
a & a b0+ & b

1 a __ ,,a
= - (log Ty log(log z — log y))
a a

= log Sao(,y).
Finally, inthe cas®é < 0 < a

1 [ 1 0 “
/ In S (z,y)dt = —— (/ log Stt(%l/)dt‘i‘/ In Stt<xvy)dt)
a—>b b ' a—b b 7 0 7

1 1 a a
= (a— (10g Ty log(log z — log y))
a—b a

a

1 b__ b
_bg (logx by —log(loga:—logy)))

= 1Og Sa,b(l‘7 y)

In the sequel, the following results will prove to be useful.
Lemma 3.2. For any positiver # 1,
1 -1\°
(3.2) wetl) (o .
2 log =
Proof. By Karamata's classical inequality (sé¢ [8, p. 272]), we have that

x + zl/3 < r—1
1+2% ~ logx

(3.3)

Thus, it suffices to show that
z(z+1) x+ 23\’
A4 .

Dividing both sides byr, then multiplying them by2(1 + x'/%)3, finally, collecting the terms
on the right side, one can easily check that|(3.4) becomes

0 < (1,2/3 —I—flfl/g + 1)(1’1/3 . 1)47
which is obviously true for all positive # 1. O

The inequality stated in the above lemma can be translated to an inequality concerning the
geometric, arithmetic and logarithmic means.

Corollary 3.3. Forall z,y > 0,
(3.5) Soo(a,y) - Son(z,y) < S74(2,y).
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Proof. If x = y, then [3.5) is obvious. I # 1 andy = 1, then [3.5) is literally the same

as [3.2), hencd (3.5) holds in this case, too. Now replaciby =/y in (3.3), and using the
homogeneity of the Stolarsky means, we get thai (3.5) is valid for all positi¥e;. O

Remark 3.4. Arguing in the same way as in the proof of Corollary|3.4, one can deduce that the
inequalities[(3.8) and (3.4) are equivalent to
S(Q),O($= y) ’ G%,é(‘%y) < S?,O(‘T?y)
and

52,1(‘%‘7 y) - GO,l(xJ y) < G%,%<I7y)
respectively. The latter inequality can also be derived from the comparison theorem of two
variable Gini means (cf. [12], [13].[3]).

Our aim is to apply the results in Theorém|2.2 for Gini and Stolarsky means. For this purpose
we will show that, for fixed positive;, y, the function

(3.6) Poy R =R, ¢+ log M (x,y)
satisfies the assumptions of Theoienj 2.2.

Lemma 3.5. Letx, y be arbitrary positive numbers. Then the functjon, defined in[(3.6) has
the following properties:

() fray(t) + pray (1) = 2004(0) (£ € R),
(i) 1, is convex oveR_ and concave oveR,.

Proof. (i) For Gini means:
t t —t —t
Py () + tzy(—1) = > IOg;: i zt gy + & lofj 1 z—t sy
2tlogz +yllogy yllogx + xtlogy
- xt +yt * Yyt + ot
a'log(zy) + y' log(xy)
- xt+yt

= log(zy) = 2414,4(0),
while for Stolarsky means — assuming that 0 —
1 zflogx —yllogy 1 a7 llogz —y tlogy

N%y(t) + /’LQ?»y(_t) = _Z + It . yt + ; + .T_t . y_t
2tlogx —ytlogy y'logx — ztlogy
- ot — yt + yt — ot
~ 2'log(zy) — y'log(wy)
- zt —yt

= log(zy) = 24t4,4(0).
(i) If x =y, thenpy, ,(t) = « for all t € R, hencey,, is convex-concave everywhere.
Therefore, we may assume that~ y.
In the case of Gini means,
z'y'(log a* —logy")*(a* — ')
(I’t + yt)3
Since the sign of’ — 3" is the same as that &g z* — logy’, therefores ., (t) > 0
forall t € R. Thus,u, , is convex ovelR_ and concave oveR . .

t3ug,y (t> =
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In the setting of Stolarsky means, we have that
Pl () = 2+ z'y'(log 2" — logy")*(«' + ')
) (It _ yt)3
_ (1 ) S&,Ouﬁyt)&,l(xayt))
SiO (xta yt) .
In view of Corollary[3.4, it follows that®; (t) > 0 for all t € R. Thereforey,, is
convex ovelR__ and concave oveR, in this case, too.

0J
As a consequence of Lemra]3.5 and Theorem 2.2, we can provide a lower and an upper
estimate for)/, ;, in terms of the meanMaTH, and\/M, . - M.
Theorem 3.6. Leta, b be real numbers so that+ b(i)o. Then

>
<

Ga b at

a+b b
2 2

>
(Qf, y) ( )Ga,b(gja y) (S) \/Ga,a(xa y)Gb,b(gja y)

and

> >
S‘%H’,‘LT‘*'P’CU? y) (;) Sa,b(xv y) (2) \/Saﬂ(xa y)Sb,b(xv y)
hold for any positive numbers y.

Proof. Let =, y be fixed positive numbers. By Lemrpa3.5, the functiqn, is symmetric with
respect ton = 0 and is convex (concave) dR_ (onRR.). Therefore, Theoretn 3.2 can be

applied tof := y,,. Then, by[(2.P),

a_—i—b > L “ > Mm,y(a)‘i‘ﬂx,y(b)
,Ux,y( 2 ) (S)G_b/b ,u:v,y(t)dt(§> 2

if aT“’ é)o. Thus, by the definition of., , and in view of Lemml, the following inequality
holds:

> > logMa,a T,y +lOgM, z,y
log Mags s (2, y) (<) log Mo p(z,y) (<) (@,3) 5 sal,)
if a-+ b(i)o. Applying the exponential function to this inequality, we get that

= >
(§>Ma,b(l‘,y>(§)\/Ma’a(x,y)Mb’b(g;jy)

if a+ b(i)o. Hence the stated inequalities follow in the Gini and Stolarsky means setting,
respectively. O

Magp oo (7, y)
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