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ABSTRACT. The main objective of this paper is some new special Hilbert-type and Hardy-
Hilbert-type inequalities ifR™)* with k£ > 2 non-conjugate parameters which are obtained
by using the well known Selberg’s integral formula for fractional integrals in an appropriate
form. In such a way we obtain extensions over the whole set of real numbers, of some earlier
results, previously known from the literature, where the integrals were taken only over the set of
positive real numbers. Also, we obtain the best possible constants in the conjugate case.

Key words and phrasednequalities, multiple Hilbert’s inequality, multiple Hardy-Hilbert's inequality, equivalent inequal-
ities, non-conjugate parameters, gamma function, Selberg’s integral, the best possible constant,
symmetric-decreasing function, general rearrangement inequality, hypergeometric function.
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1. INTRODUCTION

In order to obtain our general results, we need to present the definitions of non-conjugate
parameters. Lei;, i = 1,2, ..., k, be the real parameters which satisfy

k

1
(1.2) E —>1 and p;>1, i=1,2 ... k.
— Di
1=1
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Further, the parameters, : = 1,2, ..., k are defined by the equations
1 1
(1.2) —+==1, i=12,... k.
bi D;
Sincep; > 1,i=1,2,...,k, itis obvious thap, > 1,7 =1,2,... k. We define

(1.3) Z —

11p2

It is easy to deduce that< )\ < 1. Also, we introduce parametegs i = 1,2, ..., k, defined
by the relations

1 1

(1.4) —=A-—, i=12..,k
q; p;

In order to obtain our results we require

(1.5) >0 i=1,2,... k.

It is easy to see that the above conditions do not automatically ifnply (1.5). The above conditions
were also given by Bonsall (se€ [2]). It is easy to see that

1 .
A= Zq and —+1—/\_p‘ i=1,2,... k.
Zl K T

Of course, if\ = 1, thenzZ 15, = 1,80 the conditions 1 1) -. 4) reduce to the case of
conjugate parameters.

Considering the two-dimensional case of non-conjugate parametets ¢), Hardy, Lit-
tlewood and Polya, (se€l[7]), proved that there exists a congfartependent only on the
parameter®; andp, such that the following Hilbert-type inequality holds for all non-negative
measurable functiong € L' ({0, c0)) andg € L2 ({0, 00)) :

a [ [ %dxdy <K ( I fm(x)dx) " ( | o (y)dy) "

Hardy, Littlewood and Pdlya did not give a specific value for the congtaimt the previous
inequality. An alternative proof by Levin (se€€ [9]) established tiat: B* (Sm” o ) where

B is the beta function, but the paper did not determine whether this was the best possible
constant. This question still remains open. The inequdlity (1.6) was also generalized by F.F.
Bonsall (seel[2]).

Hilbert and Hardy-Hilbert type inequalities (sée [2]) are very significant weight inequalities
which play an important role in many fields of mathematics. Similar inequalities, in operator
form, appear in harmonic analysis where one investigates the boundedness properties of such
operators. This is the reason why Hilbert's inequality is so popular and is of great interest to
numerous mathematicians.

In the last century Hilbert-type inequalities have been generalized in many different directions
and numerous mathematicians have reproved them using various techniques. Some possibilities
of generalizing such inequalities are, for example, various choices of non-negative measures,
kernels, sets of integration, extension to the multi-dimensional case, etc. Several generaliza-
tions involve very important notions such as Hilbert’s transform, Laplace transform, singular
integrals, Weyl operators.

In this paper we refer to a recent paper of Broett al, [4], where a general Hilbert-type
and Hardy-Hilbert-type inequalities were obtained for non-conjugate parameters,ivhete
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with positive c—finite measures of2. However, we shall keep our attention on a result with
Lebesgue measures and a special homogeneous function of degrékis is contained in:

Theorem 1.1.Letk > 2 be an integerp;, p},q;, © = 1,2,..., k, be real numbers satisfying

.) — .) anozz 1 Ai; = 0,7 =1,2,..., k. Then the following inequalities hold and are
equivalent:

1
i

oo . "
/ xzp (k—1— 8)+pza1fpl( z)d%

0

(1.7) wul/mlﬁﬁiﬁﬁlmauxmk<Klll

0

/

Py

(18) / (1 )‘pk)k 1-s)— pkOék / / H ) dxl dl‘k,1 dxk
0

Fl ot oo 1
Py
< KH {/ g FTIRP gy |

0

e

where
k

k
1 1
K= F(S)A | | F(S—k—Fl—inéi—'—inii)qi | | F(inij—Fl)qi,
i=1 4,5=1,i#j

:ZleWA > i # jand A, —a; > =L

7

Our main objective is to obtain inequalities similar to the inequalities in Theprgm 1.1, which
will include the integrals taken over the whole set of real numbers.

The techniques that will be used in the proofs are mainly based on classical real analysis,
especially on the well known Hdolder inequality and on Fubini’s theorem.

Conventions. Throughout this paper we suppose that all the functions are non-negative and
measurable, so that all integrals converge. Further, the Euclidean norm of thexwectR”
will be denoted byx|.

2. PRELIMINARIES

The main results in this paper will be based on the well-known Selberg formula for the
fractional integral

(2.1) . 31 %5 " |% — Ko |1 X1 — Xz 2T kg — X [T
(R™)
k
Cxp =y T dxdXy L dxy = MMZLO a—n

L'y (Zf:o O‘l’)

for arbitraryk,n € N and0 < «; < n such that) < Zf:o a; < n. The constant’,(«)
introduces thes.—dimensional gamma function and is defined by the formula

m22°T (%)
IG5

2 2

(2.2) [(a) = 0<a<n,
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wherel is the well known gamma function. Further, from the definition ofithedimensional
gamma function it easily follows that
(2m)"
I(a)’
In the book[[13], Stein derived the formu[a (R.1) with two parameters using the Riesz potential.
Multiple integrals similar to the one if (2.1) are known as Selberg’s integrals and their exact
values are useful in representation theory and in mathematical physics. These integrals have
only been computed for special cases. For a treatment of Selberg’s integral, the reader can

consult Section 17.11 of [11].
Now, by using the integral equality (2.1), we can easily compute the integral

k=1 1-8i
/ %dxldX2 e ka—la
(R)k—1 ’ i—1 Xi

where0 < 3; < n,0 < s < n and

k-1 k—1
(k—l)n—Zﬁi <3<kn—Zﬁi.
i=1 i=1

Such an integral will be more suitable for our computations. Namely, by using the substitution
x; =t —xxandx; =t; —t;_ 1,1 =2,3,...,k — 1 (see also[5]), one obtains the formula

(2.3) Lh(n—a)= 0<a<n.

’?_1 | =B
(2.4) Hl;—xludxldxz Xy
(Rn)k—l ‘Zi:l X;

_ Ly(n —s) Hf;ll I'n(n — 6) |Xk|(k—1)n—s—2§;11 ﬂi’
L (kn— s — X4 )
where0 < 3 < n,0 < s <nand(k—1)n— S\ i < s < kn — X'~ ;. Obviously, if
0 < B <nand0 < s < n then the condition < kn — 3! 3; is trivially satisfied.

We shall use the relation (2.4) in the next section, to obtain generalizations of the multiple
Hilbert inequality, over the set of real numbers.

xk#O

3. BAsIC RESULT

As we have already mentioned, we shall obtain some extensions of the multiple Hilbert in-
equality on the whole set of real numbers. We also obtain the equivalent inequality, usually
called the Hardy-Hilbert inequality. For more details about equivalent inequalities the reader
can consult([7]. To obtain our results we introduce the real paraméters, j = 1,2,...,k
satisfying

(3.1) d A;=0, j=12. .k
We also define
k
(32) OéZ:ZA”, 221,2,,]{7
j=1

The main result of this paper is as follows:
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Theorem 3.1.Letk > 2 be an integer ang;, p., ¢;, t = 1,2, ..., k, be real numbers satisfying
(T.1) - [1.5). Further, letA;;, i,j = 1,2,..., k be real parameters defined Hy (8.1) ahd3.2).
Then the following inequalities hold and are equivalent:

ay [ o

1
i(k—1)n—p; E
e dxydXg . dxy < KH {/ ES TR +pza1fpz (x;)dx;

=1

and

(3_4) {/ ‘Xk —ﬁ[(lﬂ 1)n—s]—pi'ax

Pk Pk
k—1
/ i fZ(X;Z dx1dxs ... dXx_q dXy
Rkt Zle X5
k—1 p;i(k—1)n—p;s Ty ) i
<kl U Pl T P )
,L:]- n
forany0 < s <n, A;; € (—g, O) — A, < =" where the constark’ is given by the
formula
k
1
H Ln(n + qidij) % HFH(S — (k= 1n — gioy + ¢ Ay) % .
z] 1,i#j i=1

Proof. We start with the inequality (3.3). The left-hand side of the inequdlity (3.3) can easily
be transformed in the following way

[, fi(x:) p

X1dXs . .. dXk

As
Rk le X;

1

k A k A q;
|X, pl 117 H A: . . |X,|q1 1] o )
= J e | T o e )
(R™)" 4 ’Zj:l X;
% 1-)\
. [H |x; [P (F )P (%) dx1dxs . .. dxy,
i=1
where

qiAij
—dx1dXsy ... dX;_1dXi1q . .. dXy

HI?=1 ji#i 1%
(B ’Zj:l Xj

Now by using Selberg’s integral formula (2.4) it follows easily that

k L

oy n+ A (n—s) | % (k=Dn=s 4

(35) E(Xl) _ H]_l,];éz ( q ]) ( ) Xi| a4 +a; Azz.
Ly (kn + goy — i Ay — )
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Further, sin(:er:1 qi +1-XA=1,¢>0 and() < A < 1, we can apply Holder’s inequality
with conjugate parameters, ¢o, . . . , ¢ and—, on the above transformation. In such a way,
we obtain the inequality

[T, fi(x:)

S|
i=1%i
=1

k
<]I [/ i (P i) dxl}
k L

since_- +1— A = .. Finally, by using deflnltlor.S) of the functiod, i = 1,2, ..., k, one
obtalns the inequality (3.3).

Let us show that the inequalitigs (B.3) and [3.4) are equivalent. Suppose that the inequality
(3.3) is valid. If we put the functiotf,, : R — R, defined by

1)\'

dx1dxs . .. dXy

1-X

S

10 [ g

’ k—1
(i) = [ege| o [ msl o / iy Jix) fZ(Xl>dX1dX2 CdXy—1

(R

in the inequality[(3.B), we obtain

pi(k=1)n—p;s ) Pi P
Xk pk < KH |:/ |Xl 4 +Pza1fipz (Xi)dxi} [(Xk)pz,

whereI(xy) denotes the left-hand side of the inequality (3.4). This gives the ineqyality (3.4).

It remains to prove that the inequalify (B.3) is a consequence of the ineq{iality (3.4). For this
purpose, let us suppose that the inequdlity| (3.4) is valid. Then the left-hand side of the inequality
(3.3) can be transformed in the following way:

(k—1)n—s oy
Xm dXz ka = ‘Xk‘ 9k fk (Xk)

|Xx| 9% dx1dXs ... dxXyx_1 | dxy.

_=Un=s_ / M
(Rn)k 1

Applying Hoélder’s inequality with conjugate parametgrsandp);, to the above transformation,
we have
1

pp(k—1)n—pys Tppak

dxldx2 dx < [/ X | ok fpk(Xk)ka} " I (xx),
(Rm)* n

and the result follows from (3.4). Hence, we have shown that the inequdlities (3.3) gnd (3.4) are
equivalent. Since the first inequality is valid, the second one is also valid. This completes the
proof. O
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Clearly, by puttingn = 1 in Theorenf 3.]L, we obtain inequalities which are similar to the
inequalities in Theorem 1.1. The integrals are taken over the whole set of real numbers, the
weight functions are the same and the constant is of the same form as in Thedrem 1.1, where
the ordinary gamma function is replaced with«).

Remark 1. Observe that equality in the inequalify (8.3) holds if and only if it holds in Holder’s
inequality. By using the notation from Theor¢m|3.1, it means that the functions

k
2%
i=1

—S8

EP0(x) 7 (x4), =12,k

k

i Aii H ‘Xj

=1

qi Aij

|x;

and

PA(FL ()

k
S
i=1

are effectively proportional. So, if we suppose that the functionis= 1,2, ..., k are not equal
to zero, straightforward computation (see also [4, Remark 1]) leads to the condition

k
2%
i=1

where(C' is an appropriate constant, and that is a contradiction. So equality in Theorem 3.1
holds if and only if at least one of the functiorisis identically equal to zero. Otherwise, for
non-negative and non-zero functions, the inequalifies (3.3)[and (3.4) are strict.

—S

k
_ k—1)n—s+q;(o; —Aq;
= O] st
i=1

Remark 2. If the parameterg;, i = 1,2, ..., k are chosen in such a way that
(3.6) ¢; >0, forsomej € {1,2,...n}, ¢ <0,i#j and A<1
or

(3.7) ¢ <0, 1=1,2,....n

then the exponents from the proof of Theoren] 3.1 fulfill the conditions for the reverse Holder
inequality (for details see e.d. [12, Chapter V]), which gives the reverse of the inequflities (3.3)

and [3.4).

4., THE BEST POSSIBLE CONSTANTS IN THE CONJUGATE CASE

In this section we shall focus on the case of the conjugate exponent, to obtain the best possible
constants in Theorem 3.1, for some general cases. It seems to be a difficult problem to obtain
the best possible constant in the case of non-conjugate parameters.

It follows easily that the constai from the previous theorem, in the conjugate case-(1,
pi = q;), takes the form

k k
1 1
Fnl(s) 4 H Fn(n —f-piAZ'j)Fi ];[Fn<8 — (]{5 — 1)n — PiQ; 4‘]?114“)E
1,7=1,i#j =1
However, we shall deal with an appropriate form of the inequalities obtained in the previous

section in the conjugate case. The main idea is to simplify the above cohStaet to obtain
the constant without exponents. For this sake, it is natural to consider real pararhgters
satisfying the following constraint

(41) S_(k_l)n_l_pzAn_pzaz:n+ijjza ]7&27 Za] € {17277k}

K =
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In this case, the above constdittakes the form

k
1 —
4.2 K* = Fn AZ )
(4.2) ) 121 (n+ 4))
where
(4.3) A =p;A;, j#£i and —n<A; <0,
)
It is easy to see that the parametglg$atisfy the relation
k —~
(4.4) > Aj=s—kn.
=1
Further, the inequalitie§ (3.3) ar{d (8.4) with the paramefegyssatisfying [(4.1L), become
k k . >
(45) 1_[iLfZ(XQXmdXQ c. ka < K* H |:/ ‘Xi‘inipiAifipi (xi)dxi
Rk Zle X; i=1 L/R"
and
k—1 P’ !
(4.6) / g (P i) / Wit i) s s | ds
" (Rn)F=1 Zle X

k-1 1
<K ]] {/ | A ) |
i=1 "

We shall see that the constaiit in (4.5) and[(4.B) is the best possible in the sense that we
cannot replace the constafit in inequalities[(4.5) and (4.6) with the smaller constant, so that
inequalities are fulfilled for all non-negative measurable functions. Before we prove the facts
we have to establish the following two lemmas:

Lemma4.l. Letk > 2 be an integerx, € R, andxy # 0. We define

A;
G dX2 R ka,:l Xm,

k-1

_ i1 1A

I5 (xx) :/ |y |41 / —HZ_:‘
Kn(e) (Rn)F—2 Z -1 Xi

wheree > 0, K"(¢) is the closed—dimensional ball of radiug and parametersd;, i =
1,2,...,k are defined by (4]3). Then there exists a positive constasuch that

4.7) [£(xi) < Cpe™ i xp | 2414 when e — 0.

Proof. We treat two cases. If = 2 we have

Ay
]16(X2) = /K |X1—|dX1.

n(g) |X1 + X2|s

By lettinge — 0, we easily conclude that there exists a positive constasiich that

IT(XQ) S CQ’XQ’S/ ‘X1|AldX]_.

K" (c)
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The previous integral can be calculated by usingdimensional spherical coordinates. More
precisely, we have

K" (e

"(e)
T T 27 e N
= / ‘e / / / PP AT lgn" =20, 1sin™ 0,y - - - sin Oodrdf; . . . db,_;
0 o Jo Jo
g

:/ r"J“Tl_ldr/ a5 = 1S
0 Sn n+A1

where|S,,| = 2r:T'7!(2) is the Lebesgue measure of the unit sphe®inConsequently,

ColS, 6”+Xl _
If(xg) < 23T +’ el
n 1

so the inequality holds when— 0, since—2n — Zl — ANQ = —s holds fork = 2. Further, if

k > 2, then by lettinge — 0, since|x;| — 0, we easily conclude that there exists a positive
constant;, such that

A;

3 ng Ce ka—l

i [15 xs
(4.9) I5 (xx) < ¢ [/ |x1|A1dX1} / 1li=2 1
K (e) (R)k=2 | §F

i=2 Xi

We have already calculated the first integral in the inequality (4.9), and the second one is the
Selberg integral. Namely, by using the formulas}(2[3),|(2.4) (4.4) we have

k=1y 14
(4.10) Himo Iil™ ) s
RS, X
_ Lt A+ AT T+ A) o
Ly (s)
Finally, by using[(4.B),[(4]9) andl (4.110), we obtain the inequality| (4.7) and the proof is com-
pleted. O

Similarly, we have
Lemma 4.2. Letk > 2 be an integer anay, € R". We define

A;
—dXy ...dxx_1| dXq,

k—1
- A o | Xi
I3 1<Xk) :/ |X1|A1 / Hz—;
R™\K"(s~1) R)F2 AN X

wheres > 0 and parameterélvi, 1=1,2,...,karedefined b3). Then there exists a positive
constantD;, such that

(4.11) I (xi) < Dye™™ ™, when = — 0.

Proof. We treat again two cases.df= 2 we have

Ay
[f_1<X2) = / &dxl
R

n\K" (e~ 1) |X1 + X2|S
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If ¢ — 0, then|x;| — oo, SO we easily conclude that there exists a positive congtasitich
that

Ii:_l(Xz) S dg/ |X1’Avlist1,
R™\K" (e~ 1)

and by using spherical coordinates for calculating the integral on the right-hand side of the
previous inequality, we obtain

Further, ifk > 2, then by using[(2]3)[ (214) and (4.4), we have

Rl 1A
(4.12) / Ui i ) s
(R~ Ef:l Xi
To(2n+ A+ A) [T, Ta(n + 4))

_ Dixey + x| 20 A=A,

Fn(s)
So, we get
Lo(2n + Ay + A TT, Ta(n + A))
Ly (s)

(4.13) I§ ' (xi) =

: 117x1 k| —A— Ay 1-
/ ‘X |A ’X +x | 2n Al—AkdX
Rn\Kn(Efl)

By lettinge — 0, then|x;| — oo, SO there exists a positive constadptsuch that

I (xi) < dy, / |2 |27 Ak .
R"\K”(571)
Since, B
/ |X1|_2n_AkdX1 = —’ ’5 -,
RM\K" (e~ 1) n+ A
the inequality[(4.1]1) holds. O

Now, we are able to obtain the main result, i.e. the best possible constants in the inequalities
(4.3) and [(4.p). Clearly, inequalities (#.5) afd [4.6) do not contain paraméigrs, j =
1,2,...,k, sowe can regard these inequalities withi = 1,2, ..., k, as primitive parameters.
More precisely, we have
Theorem 4.3. Suppose&-, i =1,2,...,k, are real parameters fulfilling constrai.4) and
—n < E <0,7=1,2,...,k. Then, the constanmt™ is the best possible in both inequalities
(4.3) and[(4.B).

Proof. Let us denote b¥"(¢) the closed.—dimensional ball of radius with the center irD.

Let0 < e < 1. We define the functiongé :R"— R,1=1,2,...,kinthe following way

= x4, x; € KM(e™) \ K™(¢e),
filx) :{ ’0, | otherwis(e. R

If we put defined functions in the inequality (#.5), then the right-hand side of the inequality
(4.5) becomes

k

1
Py
K~ H </ |Xi|_”dxi> = K*/ |Xi|_ndXi.
K (e=1)\K"(e) K" (em)\K"(¢)

i=1
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By usingn—dimensional spherical coordinates we obtain for the above integral

1

.
1

/ |xi| " dx; =/ r_ldr/ dS = 1S,|In =,
K"(e=1)\K" () e n €

where|S,| = 2r2I~!(2) is the Lebesgue measure of the unit spherR'n So for the above
choice of functionsf; the right-hand side of the inequalify (4.5) becomes

1
(4.14) K*|S,|In =
£

Now let J denote the left-hand side of the inequallty {4.5). By using Fubini’'s theorem, for the
above choice of functiong;, we have

Foox A
J = deldX2 . ka
K )O\K @) |3 %

-/ el
Km(e71)\K"(e)

Hf:_ll Xi‘Ai
/(Kn(al)\Kn(e))’“—1 Ty 7P B |

k
> i1 Xi

Note that the integral can be transformed in the following way:= J; — J, — J3, where

A
—dx1dXsy ... dXyx_1| dXy,

k—1
e o [ X4

Jl :/ |Xk|Ak / H’L—kl |
Km(em1)\K"(e) R > i1 Xi

J2 :/ ‘Xk‘;(k [?<Xk)ka,
Kn (e~ 1)\K"(2) 20
k-1

J3 :/ ‘Xk‘;‘v’c [?_1<Xk)dxk.
Kr (e~ )\K"(9) 2.1

j=1

Here, forj =1,2,...,k — 1, the integrals’5 (xy) and];‘l(xk) are defined by

1A
I5(xx) = Ly b sdx1dxy ... dxXy_q,
Pj Zf:l Xj
satisfyingP; = {(U1,Us, ..., Ux—1);U; = K"(e), U, = R", 1 # j}, and
k=1 1A
];71 (Xk) = ]'_LLXlsdxlClX2 e ka—17
U | X

satisfyingQ; = {(U1,Us, ..., Ux—1);U; = R*\ K"(¢71),U, = R", [ # j}.
Now, the main idea is to find the lower bound fér The first part/; can easily be com-
puted. Namely by using Selberg’s integral formylaj2.4) and since the relatign (4.4) holds for

parametersi;, it easily follows that

k=15 A —
/ - %dxld)q codXgq = K*|xk|*A’f”,
(R™)" i=1 Xi
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and consequently, by using-dimensional spherical coordinates, as we did for computing the

right-hand side of the inequality (4.5), we obtain that
(4.15) Ji = K*|S,|In 12
9

Now we shall show that the parfs and.J; converge when — 0. For that sake, without loss
of generality, it is enough to estimate the integrals

/ i I (x) e and i 75 () dx.
K" (e~ 1)\K"(e) K" (e~ 1)\K"(e)
By using Lemmé& 4]1 and—dimensional spherical coordinates we obtain

/ |xk|kaIf(xk)ka < Ck5n+AN1/ |Xk|_2n_21dxk
K" (e7D\K"(e) Kn(e~1)\K"(¢)

—1
—~ € —~
= Cy|S,|e"™ / /s

€

= —Ck,sﬂ (1 — 52(’““;1)) .
n + Al
Further, we use Lemnja 4.2 to estimate the second integral

/ [ I7 () dxc
K" (e~ 1)\K"(e)

Similarly to before, by using spherical coordinates we obtain the inequality
/ i 15 (s e < DkE"HT’“/ i | i
K" (e7H)\K"(e) Kn(e~1)\K"(¢)

— Dk“?”v’ <1 _ 52(n+AMk)> .
n+ A

Now, sincen + A; > 0, i = 1,2,..., k, the above computation shows that+ J; < O(1)
whene — 0. Hence, for the right-hand side of the inequaljty {4.5), by using {4.15), we obtain

1
(4.16) J > K*|S,|ln - — O(1), when ¢— 0.
€

Now, let us suppose that the constéit is not the best possible. That means that there exists
a smaller positive constart®, 0 < L* < K*, such that the inequality (4.5) holds, if we
replaceK™ with L*. In that case, for the above choice of functigighe right hand-side of the
inequality [4.5) becomes*|S,|In &. SinceL*|S,|In & > J, by using [(4.1B), we obtain the
inequality

(4.17) (K* — L*)|S,| 1nl2 <O0(1), when — 0.
g

Now, by lettinge — 0, we obtain from[(4.1]7) a contradiction, since the left hand side of the
inequality goes to infinity. This contradiction shows that the congkénits the best possible in
the inequality[(4.p).

Finally, the equivalence of the inequaliti¢s (4.5) gnd](4.6) means that the coRstaalso
the best possible in the inequalify (4.6). That completes the proof. O

Remark 3. In the papers [|3] and [8] we have also obtained the best possible constants, but only
for n = 1 and for the inequalities which involve the integrals taken over the set of non-negative
real numbers.
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5. SOME APPLICATIONS

In this section we shall consider some special choices of real paramegters = 1,2, ...k,
in Theorenj 3.]L. In such a way, we shall obtain some extensions (on the set of real numbers) of
the numerous versions of multiple Hilbert’'s and Hardy-Hilbert’s inequality, previously known
from the literature. Further, in the conjugate case we shall obtain the best possible constants in
some cases.

To begin with, let us define real parametets, i,j = 1,2,...,k, by A; = (nk — s)2%,1

andA;; = (s — nk:)# i#3j,i,7 =12, ..., k. Thenwe have Z

ZAU_Z k—l—(nk—s)(/\%;l):S_nk<il—)\>:O,

G 7 \“=

for j = 1,2,...,k. Clearly, the parameterd;; are symmetric and it directly follows that
= 2?21 A;j =0,forj =1,2,... k. Insuch away we obtain the following result:

Corollary 5.1. Letk > 2 be an integer ang;, p, ¢;,i = 1,2, ..., k, be real numbers satisfying
(1.7) — [1.5). Then the following inequalities hold and are equivalent:

k k 1
i . . i (k— l)n i ;i
(5.1) ) deldxz Codx < LH {/ |x; ’ . 1P (x;)dx; "
(R™)” Y Xy i=1 "
=1 “*1
and
1
i’ K’
k—1
/ |Xk —ﬁ[(k—l)n—s] / HZZI fZ( ;2 dx dX2 ka_l ka
n (R Zle X;

1

P (k— 1)" P;is D
< LH {/ |x; fpl(xl)dxl] :

where0 < nk —s < nmin{p;,q;,7,7 = 1,2,...,k} and the constanL is defined by the
formula
k 1
nk —s nk — s\«
= g (o ) e ()

=1

The equality in both inequalities holds if and only if at least one of the functfgns =
1,2,...,k, is equal to zero.

Remark 4. Straightforward computation shows that parametgrsrom Corollary[5.1, in the
conjugate case, satisfy equation {4.1). Hence, the constémaim the previous corollary be-
comes

and that is the best possible constant in the conjugate case.
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Remark 5. Similar to the previous corollary, if we define the parametérsby A;; = 2341

)\qiz
andA;; = —ﬁ i#7,1,7€{1,2,...,k}, then we have
k
n(Ag; — 1) n 1
Ay = J =—— — =] =0,
Z =2 qu Ag;? Agj <Z gi )
1] =1
forj =1,2,..., k. Since the parameters; are symmetric one obtaing = Z?Zl A;; =0, for

Jj=1,2,... k. So, by putting these parameters in Theorerh 3.1 we obtain the same inequalities
as those in Corollary 5.1, with the constdnteplaced by

k A— L 1
1 n 4 n a
L= r (- T k-1
FM@II"(MJ II”(&+Mf (k ”)’

=1 i=1
where(k — 1)n — s < { ,<nz 1,2,... k.

It is important to mention that the results in this section, as well as Theorém 3.1, are exten-
sions of our papers [3] andi[4], obtained by using Selberg’s integral formula.

6. TRILINEAR VERSION OF A STANDARD BETA INTEGRAL

As we know, Selberg’s integral formula is tte-fold generalization of a standard beta in-
tegral onR™. A few years ago, by using a Fourier transform (see [6]), the following trilinear
version of a standard beta integral was obtained:

el x -yl
6.1) / Blo g,m) I
R [X — B[y —tlﬂ x|~ Ply |~

wherex,y e R", x #y #0,0< o, <n,a+ [ >nand

LD (559 T (552 T (=41)
NCHONED

2 2
By using the definition[(2]2) of the—dimensional gamma function we easily obtain that

Lp(n—a)ly(n — 5)

B(a7/67n> =m

(6.2) B(a, (,n) = T 2n—o—J)
We also define

()T,
(6.3) B*(a, B,n) = %.

It is still unclear whether or not there is a correspondingold analogue of[(6]1). In spite
of that, we shall use the trilinear formu(a (6.1) to obtai+-&old inequality of Hilbert type for
the kernelK (x,y) = |x — y|*™"|x + y|°~™, where0 < o, 8 < n, a + 3 < n.

In the2—dimensional case we denote non-conjugate exponents in the followingpwayp,
pe = q, p) = p' andp), = ¢’. So, with the above notation, we have the following result:

Theorem 6.1.Leta and G be real parameters satisfying< «, 3 < nanda + 3 < n. Then,
the following inequalities hold and are equivalent

fx)g(y)
4
©4) ®2 [x =y [x + y M) ey

<N {/ |X|(p—l)(a+ﬂ+n)—pn/\fp(x)dx} ! {/ |y| q—1)(a+B+n)—gn q ( )dy
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and

/ dx ¢ qfl/
6.5 n(Ag'—1)—a—p / f(X) d
©9 {/R ¥l ®n) [x = y[Prmo)|x 4 y[An=h) Y

<N {/ ’X|(p1)(a+6+n)pn/\fp(x)dx} ? ’

where the constanV is defined byV = 2*(@+5=7) B*(q, 3,n).

Proof. The main idea is the same as in Theofen 3.1, i.e. to reduce the case of non-conjugate
exponents to the case of conjugate exponents. Note that the right-hand side of the first inequality
(6.4) can be transformed in the following way:

x 11 _
/ A(];(_azg(y) oy dxdy = / P, 7 Pyi' Py dxdy,
®ye [X— Y] x + ] (R")2

where
_ |X|(p71)(a+6)|y|fafﬁ

Pl - fp(x)7
x —y|"x +y["F
P |y|(q71)(a+ﬂ)|x|fafﬂ

= q
-y et yo? )
Py = |X’(pfl)(a+ﬁ)|y|(q71)(a+ﬂ)fp(x)gq(y).

Therefore, respectively, by applying Holder’s inequality with conjugate expomrénts ﬁ
and Fubini’'s theorem, we obtain the inequaljty {6.4).

Let us show that the inequalitigs (5.4) and [6.5) are equivalent. To this aim, suppose that the
inequality [6.4) is valid. If we put the function

_ n(A¢'—1)—a—p f(X) d
g(y> ‘y, |:/Rn |X — y|’\(”—"‘)]x T yW”‘ﬁ) X

/
9
q

in the inequality[(6.}4), then the left-hand side[of {6.4) becorheshere ] is the left-hand side
of the inequality[(6.p). Also, the second factor on the right-hand side ineqyality (6.4) becomes
ﬁ, SO ) follows easily.

It remains to prove thaf (§.4) is a consequencg of (6.5). For this purpose, let's suppose that
the inequality[(6.5) is valid. Then the left-hand side of the inequdlity (6.4) can be transformed
in the following way:

/ fx)g(y) dxdy
w2 [X = yPOmOx 4y Ped)
B a+5/+n —n\ _w_m)\ f(X)
= /n ’y| q g(}’) |:b’| a4 /R" |X_y|>\(n—a)|x_|_y|>\(n—ﬁ)dx dy.

Finally, by applying Holder’s inequality with conjugate exponendsdg’ on the previous trans-
formation, and by using the inequalify (6.5) one easily obtaing (6.4). Hence, the inequalities are
equivalent and the proof is completed. O

Real parameters andg in (6.4) and[(6.p) satisfy the conditient-3 < n. In what follows we
shall obtain similar inequalities which are, in some way, complementary to the inequglities (6.4)
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and [6.5). The first step is to consider the case when the fungtienL?(R") is symmetric-
decreasing, that ig;(x) > ¢(y) wheneverx| < |y|. Sinceq > 1, for such a function and
y € R",y # 0, we have

1
|B(lyl)] B(ly|)
1 n
>~ TS5/ I~ qu d}(:_y_—ngq7
Byl Ja "0 X = gy llgll

whereB(|y|) denotes the ball of radidg| in R™, centered at the origin, an&(|y|)| = |y|”%
is its volume.

Theorem 6.2. Let & and § be real parameters satisfyimy< o« < n,0 < 8 <n,a+ (8 =
% + 5) > n. If f andg are nonnegative functions such thiae L?(R"), g € L1(R"), then
the following inequalities hold and are equivalent

1-X
61 [ iy < () Caa sl

and

F(x)dx ]q’ v < n )“
(68) {/n |:/R” |X_y|nfo¢|x+y|n7ﬂ dy} S |Sn‘ (p7Q> 7ﬁ7 )Hf”Pa

with the constant

_n
|x| " adx

6.9) Cp, g v, Bim) = /R

n |e1 — x|”—a|el + X|n_ﬁ’
wheree; = (1,0,...,0) € R" and|S,| is the Lebesgue measure of the unit sphe®'in

Proof. Since we shall use a general rearrangement inequality (see e.g. [10]) itis enough to prove
the inequality for symmetric-decreasing functighandg. First, using Holder’s inequality with
parameterg’, p’ and— we have

(6.10) / f(x)g(y) Sdxdy < IV I3 11,
Rz [X — y["x +y |
where
x| ¥ |y| "%
I = / 2(x) dxdy,
o e gy )
x| |y |7
I =/ g (y)dxdy,
R27L X _y‘niayx_'_y’niﬁ ( )
x| |y |7
I3 :/ fP(x)g!(y)dxdy.
o Iy y[rB ) )
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Further, using the substitution = |x|u (sody = |x|"du) and rotational invariance of the
Lebesgue integral iR™ we easily get:

5 [y~
= [ e [ dydx
- o Py o pr y
:/n|X|;’_Z+a+ﬁ—an(X)/n N n|_ll| 1 n_ﬁdudx

u o u
x| x| T

lu| " du »
- n—o n—_3 Hpr
R" |€; — u| le; + ul

n
lu|" 7 du
? R €1 —u" % |e; + u]"_ﬂ Iglls

_n
n lu| vdu

1Sn| Jre |€1 — 1" |e; + vl
It remains to prove that

/ x| dx B / x| v dx
re |1 —x["ler +x["7  Jga e — x|"0er +x[n0

We transform the left integral in polar coordinates using= t0, t > 0, § € S, and the
substitutiont = < to obtain:

/ x| pdx
ro |€1 — X2 %|e; + x| 0
o0 t ptn—ldt
= [
. le; — tO|»—|eq + tO|»—B

/ de/ t ot
. 1+t2—2t<e1,0)) “(1+12 4 2t{ey, 0))"F"

Analogously,

and, by [6p),

I <

=g 15 gl

—a—f ur 1
/ d9/ du _
n 1—|—u2—2u(e1,9>)T(1—|—u2+2u<e1,9>)T

_/ x| v dx
~ Jre o1 — x|"ole; 4 x|n8

To complete the proof, we need to consider the general case, that is, for arbitrary nonneg-
ative functionsf andg. Sincex — |x|"~%, x — |x|"~# are symmetric-decreasing functions
vanishing at infinity, the general rearrangement inequality implies that

fX)g(y) / [ )9 (y)
6.11 / dxdy < dxdy.
O o Ty Pl t gAY = Jo oy P
Clearly, by [6.1D), the right-hand side T (6] 11) is not greater than

n

1-X n 1-X
6.12 To | » g5 O 0] - p - =\ 7o » g5 ¢, 0] p Q>
612 (&) Coaasmlf sl = (g)  Coaa sl

whereC(p, ¢; o, 3;n) is the constant from the right-hand side [of {6.7). To achieve equality in
(6.12), we used the fact that the symmetric-decreasing rearrangement is norm preserving.
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On the other hand, by putting the function

B f(%) g
ay) = [/R ey

in the inequality[(6.]7) we obtaif (6.8). The equivalence of the inequalties (6.7] and (6.8) can
be shown in the same way as in Theofenj 6.1. O

The caser = 1 of the previous theorem is interesting as for that case the cordstant; o, 3; n)
can be expressed in terms of the hypergeometric function. More precisely, using the definition
of hypergeometric functions (for more details s€e [1]) it is easy to see that the following identity
holds for0 < dy,ds,ds < 1, dy + dy + d3 > 1:

/ 791 — ¢| 7% |1 + |~ dt
R

=B(1 —dy, 1 —d3)F(dy,1 —d9;2 — dy — d3; —1)
+ B(1 —dy, 1 —dy)F(ds, 1 —d9;2 —dy — dy;—1)
+ B(dy +do+ds — 1,1 — d3)F(dy,dy + dy + d3 — 1;dy + da; —1)
+ B(dy +dy+ds — 1,1 — dy)F(ds,dy + dy + d3 — 1;d3 + do; —1).
Hence, form = 1 we have

Corollary 6.3. Leta and 3 be real parameters satisfyiig< o < 1,0 < < 1, a+ (§ =
% + é > 1. If f andg are nonnegative functions such thatc L?(R), g € L/(R), then the
following inequalities hold and are equivalent

61y [ Dy <2k e sl
and

7 v
(6.14) {/ [/ - ‘1 a|x+y\1 1 dy} < 227'C(p, g3, B)| f 1,
where

(6.15) C(p,q;,8) =B (l,a> F (1—6,1,;1,+04;—1>
q 7" q

B(-,-) is the usual (one-dimensional) beta function angi,, d; ds; z) is the hypergeometric
function.

The following corollary should be compared with Theofenj 6.1.

Corollary 6.4. If f andg are nonnegative functions such thiae L?(R) andg € LY(R), then
the following inequalities hold and are equivalent

(6.16) Laiedy por (123 ) +8 (1= 3 g )| 1blse

R[22 — 2|2 27 2p 27 2¢
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and
q 7
d Al A1
on [ [[ 208 1V confa (1o L) e (-2 1) i
R |JR |22 — 2|2 2 2p 2 2q
Proof. Seta = =1— % in the previous corollary. O

Note that inequalitie§ (6.16) and (6]17) could not be obtained from Theorém 6.1. In other
words there are no suehand for which the kernel in inequalitie§ (6.4) arid (6.5) reduces to

A
|2* — | 2.
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