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Abstract: The main objective of this paper is some new special Hilbert-type and Hardy-
Hilbert-type inequalities in(Rn)k with k ≥ 2 non-conjugate parameters which
are obtained by using the well known Selberg’s integral formula for fractional
integrals in an appropriate form. In such a way we obtain extensions over the
whole set of real numbers, of some earlier results, previously known from the lit-
erature, where the integrals were taken only over the set of positive real numbers.
Also, we obtain the best possible constants in the conjugate case.
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1. Introduction

In order to obtain our general results, we need to present the definitions of non-
conjugate parameters. Letpi, i = 1, 2, . . . , k, be the real parameters which satisfy

(1.1)
k∑

i=1

1

pi

≥ 1 and pi > 1, i = 1, 2, . . . , k.

Further, the parameterspi
′, i = 1, 2, . . . , k are defined by the equations

(1.2)
1

pi

+
1

p′i
= 1, i = 1, 2, . . . , k.

Sincepi > 1, i = 1, 2, . . . , k, it is obvious thatp′i > 1, i = 1, 2, . . . , k. We define

(1.3) λ :=
1

k − 1

k∑
i=1

1

p′i
.

It is easy to deduce that0 < λ ≤ 1. Also, we introduce parametersqi, i =
1, 2, . . . , k, defined by the relations

(1.4)
1

qi

= λ− 1

p′i
, i = 1, 2, . . . , k.

In order to obtain our results we require

(1.5) qi > 0 i = 1, 2, . . . , k.

It is easy to see that the above conditions do not automatically imply (1.5). The
above conditions were also given by Bonsall (see [2]). It is easy to see that

λ =
k∑

i=1

1

qi

and
1

qi

+ 1− λ =
1

pi

, i = 1, 2, . . . , k.
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Of course, ifλ = 1, then
∑k

i=1
1
pi

= 1, so the conditions (1.1) – (1.4) reduce to the
case of conjugate parameters.

Considering the two-dimensional case of non-conjugate parameters (k = 2),
Hardy, Littlewood and Pólya, (see [7]), proved that there exists a constantK, de-
pendent only on the parametersp1 andp2 such that the following Hilbert-type in-
equality holds for all non-negative measurable functionsf ∈ Lp1 (〈0,∞〉) and
g ∈ Lp2 (〈0,∞〉) :

(1.6)
∫ ∞

0

∫ ∞

0

f(x)g(y)

(x + y)s
dxdy ≤ K

(∫ ∞

0

fp1(x)dx

) 1
p1

(∫ ∞

0

gp2(y)dy

) 1
p2

.

Hardy, Littlewood and Pólya did not give a specific value for the constantK
in the previous inequality. An alternative proof by Levin (see [9]) established that

K = Bs
(

1
sp1

′ ,
1

sp2
′

)
, whereB is the beta function, but the paper did not determine

whether this was the best possible constant. This question still remains open. The
inequality (1.6) was also generalized by F.F. Bonsall (see [2]).

Hilbert and Hardy-Hilbert type inequalities (see [2]) are very significant weight
inequalities which play an important role in many fields of mathematics. Similar
inequalities, in operator form, appear in harmonic analysis where one investigates the
boundedness properties of such operators. This is the reason why Hilbert’s inequality
is so popular and is of great interest to numerous mathematicians.

In the last century Hilbert-type inequalities have been generalized in many differ-
ent directions and numerous mathematicians have reproved them using various tech-
niques. Some possibilities of generalizing such inequalities are, for example, various
choices of non-negative measures, kernels, sets of integration, extension to the multi-
dimensional case, etc. Several generalizations involve very important notions such
as Hilbert’s transform, Laplace transform, singular integrals, Weyl operators.

In this paper we refer to a recent paper of Brnetić et al, [4], where a general
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Hilbert-type and Hardy-Hilbert-type inequalities were obtained for non-conjugate
parameters, wherek ≥ 2, with positiveσ−finite measures onΩ. However, we shall
keep our attention on a result with Lebesgue measures and a special homogeneous
function of degree−s. This is contained in:

Theorem 1.1. Let k ≥ 2 be an integer,pi, p
′
i, qi, i = 1, 2, . . . , k, be real numbers

satisfying (1.1) – (1.5) and
∑k

i=1 Aij = 0, j = 1, 2, . . . , k. Then the following
inequalities hold and are equivalent:

(1.7)
∫ ∞

0

· · ·
∫ ∞

0

∏k
i=1 fi(xi)(∑k
j=1 xj

)λs
dx1 . . . dxk

< K
k∏

i=1

[∫ ∞

0

xi

pi
qi

(k−1−s)+piαifpi

i (xi)dxi

] 1
pi

and

(1.8)

∫ ∞

0

x
(1−λp′k)(k−1−s)−p′kαk

k

∫ ∞

0

· · ·
∫ ∞

0

∏k−1
i=1 fi(xi)(∑k

j=1xj

)λs
dx1...dxk−1


p′k

dxk


1

p′
k

< K
k−1∏
i=1

[∫ ∞

0

xi

pi
qi

(k−1−s)+piαifpi

i (xi)dxi

] 1
pi

,

where

K =
1

Γ(s)λ

k∏
i=1

Γ(s− k + 1− qiαi + qiAii)
1
qi

k∏
i,j=1,i6=j

Γ(qiAij + 1)
1
qi ,
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αi =
∑k

j=1 Aij, Aij > − 1
qi

, i 6= j andAii − αi > k−s−1
qi

.

Our main objective is to obtain inequalities similar to the inequalities in Theorem
1.1, which will include the integrals taken over the whole set of real numbers.

The techniques that will be used in the proofs are mainly based on classical real
analysis, especially on the well known Hölder inequality and on Fubini’s theorem.

Conventions. Throughout this paper we suppose that all the functions are non-
negative and measurable, so that all integrals converge. Further, the Euclidean norm
of the vectorx ∈ Rn will be denoted by|x|.
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2. Preliminaries

The main results in this paper will be based on the well-known Selberg formula for
the fractional integral

(2.1)
∫

(Rn)k

|xk|αk−n|xk − xk−1|αk−1−n|xk−1 − xk−2|αk−2−n · · · |x2 − x1|α1−n

· |x1 − y|α0−ndx1dx2 . . . dxk =

∏k
i=0 Γn(αi)

Γn

(∑k
i=0 αi

) |y|∑k
i=0 αi−n,

for arbitraryk, n ∈ N and0 < αi < n such that0 <
∑k

i=0 αi < n. The constant
Γn(α) introduces then−dimensional gamma function and is defined by the formula

(2.2) Γn(α) =
π

n
2 2αΓ

(
α
2

)
Γ
(

n
2
− α

2

) , 0 < α < n,

whereΓ is the well known gamma function. Further, from the definition of the
n−dimensional gamma function it easily follows that

(2.3) Γn(n− α) =
(2π)n

Γn(α)
, 0 < α < n.

In the book [13], Stein derived the formula (2.1) with two parameters using the Riesz
potential.

Multiple integrals similar to the one in (2.1) are known as Selberg’s integrals and
their exact values are useful in representation theory and in mathematical physics.
These integrals have only been computed for special cases. For a treatment of Sel-
berg’s integral, the reader can consult Section 17.11 of [11].
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I. Perić and P. Vuković
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Now, by using the integral equality (2.1), we can easily compute the integral∫
(Rn)k−1

∏k−1
i=1 |xi|−βi∣∣∣∑k

i=1 xi

∣∣∣s dx1dx2 . . . dxk−1,

where0 < βi < n, 0 < s < n and

(k − 1)n−
k−1∑
i=1

βi < s < kn−
k−1∑
i=1

βi.

Such an integral will be more suitable for our computations. Namely, by using the
substitutionx1 = t1 − xk andxi = ti − ti−1, i = 2, 3, . . . , k − 1 (see also [5]), one
obtains the formula

(2.4)
∫

(Rn)k−1

∏k−1
i=1 |xi|−βi∣∣∣∑k

i=1 xi

∣∣∣s dx1dx2 . . . dxk−1

=
Γn(n− s)

∏k−1
i=1 Γn(n− βi)

Γn

(
kn− s−

∑k−1
i=1 βi

) |xk|(k−1)n−s−
∑k−1

i=1 βi , xk 6= 0

where0 < βi < n, 0 < s < n and(k − 1)n −
∑k−1

i=1 βi < s < kn −
∑k−1

i=1 βi.
Obviously, if 0 < βi < n and0 < s < n then the conditions < kn −

∑k−1
i=1 βi is

trivially satisfied.
We shall use the relation (2.4) in the next section, to obtain generalizations of the

multiple Hilbert inequality, over the set of real numbers.
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3. Basic Result

As we have already mentioned, we shall obtain some extensions of the multiple
Hilbert inequality on the whole set of real numbers. We also obtain the equivalent
inequality, usually called the Hardy-Hilbert inequality. For more details about equiv-
alent inequalities the reader can consult [7]. To obtain our results we introduce the
real parametersAij, i, j = 1, 2, . . . , k satisfying

(3.1)
k∑

i=1

Aij = 0, j = 1, 2, . . . , k.

We also define

(3.2) αi =
k∑

j=1

Aij, i = 1, 2, . . . , k.

The main result of this paper is as follows:

Theorem 3.1.Letk ≥ 2 be an integer andpi, p
′
i, qi, i = 1, 2, . . . , k, be real numbers

satisfying (1.1) – (1.5). Further, letAij, i, j = 1, 2, . . . , k be real parameters defined
by (3.1) and (3.2). Then the following inequalities hold and are equivalent:

(3.3)
∫

(Rn)k

∏k
i=1 fi(xi)∣∣∣∑k
i=1 xi

∣∣∣λs
dx1dx2 . . . dxk

≤ K
k∏

i=1

[∫
Rn

|xi|
pi(k−1)n−pis

qi
+piαifpi

i (xi)dxi

] 1
pi
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and

(3.4)

{∫
Rn

|xk|
− pk

′

qk
[(k−1)n−s]−pk

′αk

·

∫
(Rn)k−1

∏k−1
i=1 fi(xi)∣∣∣∑k

i=1 xi

∣∣∣λs
dx1dx2 . . . dxk−1


pk

′

dxk


1

pk
′

≤ K

k−1∏
i=1

[∫
Rn

|xi|
pi(k−1)n−pis

qi
+piαifpi

i (xi)dxi

] 1
pi

,

for any0 < s < n, Aij ∈
(
− n

qi
, 0
)

, αi − Aii < s−(k−1)n
qi

, where the constantK is

given by the formula

K =
1

Γλ
n(s)

k∏
i,j=1,i6=j

Γn(n + qiAij)
1
qi

k∏
i=1

Γn(s− (k − 1)n− qiαi + qiAii)
1
qi .

Proof. We start with the inequality (3.3). The left-hand side of the inequality (3.3)
can easily be transformed in the following way∫

(Rn)k

∏k
i=1 fi(xi)∣∣∣∑k
i=1 xi

∣∣∣λs
dx1dx2 . . . dxk

=

∫
(Rn)k

k∏
i=1

 |xi|piAii
∏k

j=1,j 6=i |xj|qiAij∣∣∣∑k
j=1 xj

∣∣∣s Fi
pi−qi(xi)f

pi

i (xi)

 1
qi
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·

[
k∏

i=1

|xi|piAii (Fifi)
pi (xi)

]1−λ

dx1dx2 . . . dxk,

where

Fi(xi) =

∫
(Rn)k−1

∏k
j=1,j 6=i |xj|qiAij∣∣∣∑k

j=1 xj

∣∣∣s dx1dx2 . . . dxi−1dxi+1 . . . dxn

 1
qi

.

Now by using Selberg’s integral formula (2.4) it follows easily that

(3.5) Fi(xi) =

[∏k
j=1,j 6=i Γn(n + qiAij)Γn(n− s)

Γn(kn + qiαi − qiAii − s)

] 1
qi

|xi|
(k−1)n−s

qi
+αi−Aii .

Further, since
∑k

i=1
1
qi

+ 1 − λ = 1, qi > 0 and0 < λ ≤ 1, we can apply Hölder’s
inequality with conjugate parametersq1, q2, . . . , qk and 1

1−λ
, on the above transfor-

mation. In such a way, we obtain the inequality∫
(Rn)k

∏k
i=1 fi(xi)∣∣∣∑k
i=1 xi

∣∣∣λs
dx1dx2 . . . dxk

≤
k∏

i=1

[∫
Rn

|xi|piAii(Fifi)
pi(xi)dxi

] 1
qi

k∏
i=1

[∫
Rn

|xi|piAii(Fifi)
pi(xi)dxi

]1−λ

=
k∏

i=1

[∫
Rn

|xi|piAii(Fifi)
pi(xi)dxi

] 1
pi

,
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since 1
qi

+ 1 − λ = 1
pi

. Finally, by using definition (3.5) of the functionsFi, i =

1, 2, . . . , k, one obtains the inequality (3.3).
Let us show that the inequalities (3.3) and (3.4) are equivalent. Suppose that the

inequality (3.3) is valid. If we put the functionfn : Rn 7→ R, defined by

fk(xk) = |xk|
− pk

′

qk
[(k−1)n−s]−pk

′αk

∫
(Rn)k−1

∏k−1
i=1 fi(xi)∣∣∣∑k

i=1 xi

∣∣∣λs
dx1dx2 . . . dxk−1


pk

′

pk

in the inequality (3.3), we obtain

I(xk)
p′k ≤ K

k−1∏
i=1

[∫
Rn

|xi|
pi(k−1)n−pis

qi
+piαifpi

i (xi)dxi

] 1
pi

I(xk)
p′k
pk ,

whereI(xk) denotes the left-hand side of the inequality (3.4). This gives the in-
equality (3.4).

It remains to prove that the inequality (3.3) is a consequence of the inequality
(3.4). For this purpose, let us suppose that the inequality (3.4) is valid. Then the
left-hand side of the inequality (3.3) can be transformed in the following way:∫

(Rn)k

∏k
i=1 fi(xi)∣∣∣∑k
i=1 xi

∣∣∣λs
dx1dx2 . . . dxk =

∫
Rn

|xk|
(k−1)n−s

qk
+αkfk(xk)

·

|xk|
− (k−1)n−s

qk
−αk

∫
(Rn)k−1

∏k−1
i=1 fi(xi)∣∣∣∑k

i=1 xi

∣∣∣λs
dx1dx2 . . . dxk−1

 dxk.
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Applying Hölder’s inequality with conjugate parameterspk andp′k to the above trans-
formation, we have∫

(Rn)k

∏k
i=1 fi(xi)∣∣∣∑k
i=1 xi

∣∣∣λs
dx1dx2 . . . dxk

≤
[∫

Rn

|xk|
pk(k−1)n−pks

qk
+pkαkfpk

k (xk)dxk

] 1
pk

· I(xk),

and the result follows from (3.4). Hence, we have shown that the inequalities (3.3)
and (3.4) are equivalent. Since the first inequality is valid, the second one is also
valid. This completes the proof.

Clearly, by puttingn = 1 in Theorem3.1, we obtain inequalities which are simi-
lar to the inequalities in Theorem1.1. The integrals are taken over the whole set of
real numbers, the weight functions are the same and the constant is of the same form
as in Theorem1.1, where the ordinary gamma function is replaced withΓ1(α).

Remark1. Observe that equality in the inequality (3.3) holds if and only if it holds
in Hölder’s inequality. By using the notation from Theorem3.1, it means that the
functions

|xi|piAii

k∏
j=1,j 6=i

|xj|qiAij

∣∣∣∣∣
k∑

j=1

xj

∣∣∣∣∣
−s

Fi
pi−qi(xi)f

pi

i (xi), i = 1, 2, . . . , k

and
k∏

i=1

|xi|piAii (Fifi)
pi (xi)
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are effectively proportional. So, if we suppose that the functionsfi, i = 1, 2, . . . , k
are not equal to zero, straightforward computation (see also [4, Remark 1]) leads to
the condition ∣∣∣∣∣

k∑
i=1

xi

∣∣∣∣∣
−s

= C
k∏

i=1

|xi|(k−1)n−s+qi(αi−Aii),

whereC is an appropriate constant, and that is a contradiction. So equality in The-
orem3.1 holds if and only if at least one of the functionsfi is identically equal to
zero. Otherwise, for non-negative and non-zero functions, the inequalities (3.3) and
(3.4) are strict.

Remark2. If the parameterspi, i = 1, 2, . . . , k are chosen in such a way that

(3.6) qj > 0, for somej ∈ {1, 2, . . . n}, qi < 0, i 6= j and λ < 1

or

(3.7) qi < 0, i = 1, 2, . . . , n

then the exponents from the proof of Theorem3.1 fulfill the conditions for the re-
verse Hölder inequality (for details see e.g. [12, Chapter V]), which gives the reverse
of the inequalities (3.3) and (3.4).
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I. Perić and P. Vuković
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4. The Best Possible Constants in the Conjugate Case

In this section we shall focus on the case of the conjugate exponent, to obtain the
best possible constants in Theorem3.1, for some general cases. It seems to be a
difficult problem to obtain the best possible constant in the case of non-conjugate
parameters.

It follows easily that the constantK from the previous theorem, in the conjugate
case (λ = 1, pi = qi), takes the form

K =
1

Γn(s)

k∏
i,j=1,i6=j

Γn(n + piAij)
1
pi

k∏
i=1

Γn(s− (k − 1)n− piαi + piAii)
1
pi .

However, we shall deal with an appropriate form of the inequalities obtained in
the previous section in the conjugate case. The main idea is to simplify the above
constantK, i.e. to obtain the constant without exponents. For this sake, it is natural
to consider real parametersAij satisfying the following constraint

(4.1) s− (k − 1)n + piAii − piαi = n + pjAji, j 6= i, i, j ∈ {1, 2, . . . , k}.
In this case, the above constantK takes the form

(4.2) K∗ =
1

Γn(s)

k∏
i=1

Γn(n + Ãi),

where

(4.3) Ãi = pjAji, j 6= i and − n < Ãi < 0.

It is easy to see that the parametersÃi satisfy the relation

(4.4)
k∑

i=1

Ãi = s− kn.
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Further, the inequalities (3.3) and (3.4) with the parametersAij, satisfying (4.1),
become

(4.5)
∫

(Rn)k

∏k
i=1 fi(xi)∣∣∣∑k

i=1 xi

∣∣∣s dx1dx2 . . . dxk ≤ K∗
k∏

i=1

[∫
Rn

|xi|−n−piÃifpi

i (xi)dxi

] 1
pi

and

(4.6)


∫

Rn

|xk|(1−p′k)(−n−pkÃk) ·

∫
(Rn)k−1

∏k−1
i=1 fi(xi)∣∣∣∑k

i=1 xi

∣∣∣s dx1dx2...dxk−1

pk
′

dxk


1

pk
′

≤ K∗
k−1∏
i=1

[∫
Rn

|xi|−n−piÃifpi

i (xi)dxi

] 1
pi

.

We shall see that the constantK∗ in (4.5) and (4.6) is the best possible in the
sense that we cannot replace the constantK∗ in inequalities (4.5) and (4.6) with the
smaller constant, so that inequalities are fulfilled for all non-negative measurable
functions. Before we prove the facts we have to establish the following two lemmas:

Lemma 4.1. Letk ≥ 2 be an integer,xk ∈ Rn, andxk 6= 0. We define

Iε
1(xk) =

∫
Kn(ε)

|x1|Ã1

∫
(Rn)k−2

∏k−1
i=2 |xi|Ãi∣∣∣∑k

i=1 xi

∣∣∣s dx2 . . . dxk−1

 dx1,

whereε > 0, Kn(ε) is the closedn−dimensional ball of radiusε and parameters
Ãi, i = 1, 2, . . . , k are defined by (4.3). Then there exists a positive constantCk such
that

(4.7) Iε
1(xk) ≤ Ckε

n+Ã1|xk|−2n−Ã1−Ãk , when ε → 0.
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Proof. We treat two cases. Ifk = 2 we have

Iε
1(x2) =

∫
Kn(ε)

|x1|Ã1

|x1 + x2|s
dx1.

By lettingε → 0, we easily conclude that there exists a positive constantc2 such that

Iε
1(x2) ≤ c2|x2|−s

∫
Kn(ε)

|x1|Ã1dx1.

The previous integral can be calculated by usingn−dimensional spherical coordi-
nates. More precisely, we have∫

Kn(ε)

|x1|Ã1dx1(4.8)

=

∫ π

0

· · ·
∫ π

0

∫ 2π

0

∫ ε

0

rn+Ã1−1sinn−2θn−1sin
n−3θn−2 · · · sin θ2drdθ1 . . . dθn−1

=

∫ ε

0

rn+Ã1−1dr

∫
Sn

dS =
|Sn|εn+Ã1

n + Ã1

,

where|Sn| = 2π
n
2 Γ−1(n

2
) is the Lebesgue measure of the unit sphere inRn. Conse-

quently,

Iε
1(x2) ≤

c2|Sn|εn+Ã1

n + Ã1

|x2|−s,

so the inequality holds whenε → 0, since−2n − Ã1 − Ã2 = −s holds fork = 2.
Further, ifk > 2, then by lettingε → 0, since|x1| → 0, we easily conclude that

http://jipam.vu.edu.au
mailto:
mailto:
http://jipam.vu.edu.au


Hardy-Hilbert Type Inequalities
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there exists a positive constantck such that

(4.9) Iε
1(xk) ≤ ck

[∫
Kn(ε)

|x1|Ã1dx1

]∫
(Rn)k−2

∏k−1
i=2 |xi|Ãi∣∣∣∑k

i=2 xi

∣∣∣s dx2 . . . dxk−1

 .

We have already calculated the first integral in the inequality (4.9), and the second
one is the Selberg integral. Namely, by using the formulas (2.3), (2.4) and (4.4) we
have

(4.10)
∫

(Rn)k−2

∏k−1
i=2 |xi|Ãi∣∣∣∑k

i=2 xi

∣∣∣s dx2 . . . dxk−1

=
Γn(2n + Ã1 + Ãk)

∏k−1
i=2 Γn(n + Ãi)

Γn(s)
|xk|−2n−Ã1−Ãk .

Finally, by using (4.8), (4.9) and (4.10), we obtain the inequality (4.7) and the proof
is completed.

Similarly, we have

Lemma 4.2. Letk ≥ 2 be an integer andxk ∈ Rn. We define

Iε−1

1 (xk) =

∫
Rn\Kn(ε−1)

|x1|Ã1

∫
(Rn)k−2

∏k−1
i=2 |xi|Ãi∣∣∣∑k

i=1 xi

∣∣∣s dx2 . . . dxk−1

 dx1,

whereε > 0 and parameters̃Ai, i = 1, 2, . . . , k are defined by (4.3). Then there
exists a positive constantDk such that

(4.11) Iε−1

1 (xk) ≤ Dkε
n+Ãk , when ε → 0.
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Proof. We treat again two cases. Ifk = 2 we have

Iε−1

1 (x2) =

∫
Rn\Kn(ε−1)

|x1|Ã1

|x1 + x2|s
dx1.

If ε → 0, then|x1| → ∞, so we easily conclude that there exists a positive constant
d2 such that

Iε−1

1 (x2) ≤ d2

∫
Rn\Kn(ε−1)

|x1|Ã1−sdx1,

and by using spherical coordinates for calculating the integral on the right-hand side
of the previous inequality, we obtain

Iε−1

1 (x2) ≤
d2|Sn|
n + Ã2

εn+Ã2 .

Further, ifk > 2, then by using (2.3), (2.4) and (4.4), we have

(4.12)
∫

(Rn)k−2

∏k−1
i=2 |xi|Ãi∣∣∣∑k

i=1 xi

∣∣∣s dx2 . . . dxk−1

=
Γn(2n + Ã1 + Ãk)

∏k−1
i=2 Γn(n + Ãi)

Γn(s)
|x1 + xk|−2n−Ã1−Ãk .

So, we get

(4.13) Iε−1

1 (xk) =
Γn(2n + Ã1 + Ãk)

∏k−1
i=2 Γn(n + Ãi)

Γn(s)

·
∫

Rn\Kn(ε−1)

|x1|Ã1|x1 + xk|−2n−Ã1−Ãkdx1.
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By letting ε → 0, then|x1| → ∞, so there exists a positive constantdk such that

Iε−1

1 (xk) ≤ dk

∫
Rn\Kn(ε−1)

|x1|−2n−Ãkdx1.

Since, ∫
Rn\Kn(ε−1)

|x1|−2n−Ãkdx1 =
|Sn|εn+Ãk

n + Ãk

,

the inequality (4.11) holds.

Now, we are able to obtain the main result, i.e. the best possible constants in
the inequalities (4.5) and (4.6). Clearly, inequalities (4.5) and (4.6) do not contain
parametersAij, i, j = 1, 2, . . . , k, so we can regard these inequalities withÃi, i =
1, 2, . . . , k, as primitive parameters. More precisely, we have

Theorem 4.3. SupposẽAi, i = 1, 2, . . . , k, are real parameters fulfilling constraint
(4.4) and−n < Ãi < 0, i = 1, 2, . . . , k. Then, the constantK∗ is the best possible
in both inequalities (4.5) and (4.6).

Proof. Let us denote byKn(ε) the closedn−dimensional ball of radiusε with the
center in0.

Let 0 < ε < 1. We define the functions̃fi : Rn 7→ R, i = 1, 2, . . . , k in the
following way

f̃i(xi) =

{
|xi|Ãi , xi ∈ Kn(ε−1) \Kn(ε),

0, otherwise.

If we put defined functions in the inequality (4.5), then the right-hand side of the
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inequality (4.5) becomes

K∗
k∏

i=1

(∫
Kn(ε−1)\Kn(ε)

|xi|−ndxi

) 1
pi

= K∗
∫

Kn(ε−1)\Kn(ε)

|xi|−ndxi.

By usingn−dimensional spherical coordinates we obtain for the above integral∫
Kn(ε−1)\Kn(ε)

|xi|−ndxi =

∫ ε−1

ε

r−1dr

∫
Sn

dS = |Sn| ln
1

ε2
,

where|Sn| = 2π
n
2 Γ−1(n

2
) is the Lebesgue measure of the unit sphere inRn. So for

the above choice of functionsfi the right-hand side of the inequality (4.5) becomes

(4.14) K∗|Sn| ln
1

ε2
.

Now let J denote the left-hand side of the inequality (4.5). By using Fubini’s theo-
rem, for the above choice of functionsfi, we have

J =

∫
(Kn(ε−1)\Kn(ε))k

∏k
i=1 |xi|Ãi∣∣∣∑k

i=1 xi

∣∣∣s dx1dx2 . . . dxk

=

∫
Kn(ε−1)\Kn(ε)

|xk|Ãk

·

∫
(Kn(ε−1)\Kn(ε))k−1

∏k−1
i=1 |xi|Ãi∣∣∣∑k

i=1 xi

∣∣∣s dx1dx2 . . . dxk−1

 dxk.

Note that the integralJ can be transformed in the following way:J = J1 − J2 − J3,
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where

J1 =

∫
Kn(ε−1)\Kn(ε)

|xk|Ãk

∫
(Rn)k−1

∏k−1
i=1 |xi|Ãi∣∣∣∑k

i=1 xi

∣∣∣s dx1dx2 . . . dxk−1

 dxk,

J2 =

∫
Kn(ε−1)\Kn(ε)

|xk|Ãk

k−1∑
j=1

Iε
j (xk)dxk,

J3 =

∫
Kn(ε−1)\Kn(ε)

|xk|Ãk

k−1∑
j=1

Iε−1

j (xk)dxk.

Here, forj = 1, 2, . . . , k − 1, the integralsIε
j (xk) andIε−1

j (xk) are defined by

Iε
j (xk) =

∫
Pj

∏k−1
i=1 |xi|Ãi∣∣∣∑k

i=1 xi

∣∣∣s dx1dx2 . . . dxk−1,

satisfyingPj = {(U1, U2, . . . , Uk−1) ; Uj = Kn(ε), Ul = Rn, l 6= j}, and

Iε−1

j (xk) =

∫
Qj

∏k−1
i=1 |xi|Ãi∣∣∣∑k

i=1 xi

∣∣∣s dx1dx2 . . . dxk−1,

satisfyingQj = {(U1, U2, . . . , Uk−1) ; Uj = Rn \Kn(ε−1), Ul = Rn, l 6= j}.
Now, the main idea is to find the lower bound forJ . The first partJ1 can easily be

computed. Namely by using Selberg’s integral formula (2.4) and since the relation
(4.4) holds for parameters̃Ai, it easily follows that∫

(Rn)k−1

∏k−1
i=1 |xi|Ãi∣∣∣∑k

i=1 xi

∣∣∣s dx1dx2 . . . dxk−1 = K∗|xk|−Ãk−n,
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and consequently, by usingn−dimensional spherical coordinates, as we did for com-
puting the right-hand side of the inequality (4.5), we obtain that

(4.15) J1 = K∗|Sn| ln
1

ε2
.

Now we shall show that the partsJ2 andJ3 converge whenε → 0. For that sake,
without loss of generality, it is enough to estimate the integrals∫

Kn(ε−1)\Kn(ε)

|xk|ÃkIε
1(xk)dxk and

∫
Kn(ε−1)\Kn(ε)

|xk|ÃkIε−1

1 (xk)dxk.

By using Lemma4.1andn−dimensional spherical coordinates we obtain∫
Kn(ε−1)\Kn(ε)

|xk|ÃkIε
1(xk)dxk ≤ Ckε

n+Ã1

∫
Kn(ε−1)\Kn(ε)

|xk|−2n−Ã1dxk

= Ck|Sn|εn+Ã1

∫ ε−1

ε

r−n−Ã1−1dr

=
Ck|Sn|
n + Ã1

(
1− ε2(n+Ã1)

)
.

Further, we use Lemma4.2to estimate the second integral∫
Kn(ε−1)\Kn(ε)

|xk|ÃkIε−1

1 (xk)dxk.

Similarly to before, by using spherical coordinates we obtain the inequality∫
Kn(ε−1)\Kn(ε)

|xk|ÃkIε−1

1 (xk)dxk ≤ Dkε
n+Ãk

∫
Kn(ε−1)\Kn(ε)

|xk|Ãkdxk

=
Dk|Sn|
n + Ãk

(
1− ε2(n+Ãk)

)
.
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Now, sincen+ Ãi > 0, i = 1, 2, . . . , k, the above computation shows thatJ2 +J3 ≤
O(1) whenε → 0. Hence, for the right-hand side of the inequality (4.5), by using
(4.15), we obtain

(4.16) J ≥ K∗|Sn| ln
1

ε2
−O(1), when ε → 0.

Now, let us suppose that the constantK∗ is not the best possible. That means that
there exists a smaller positive constantL∗, 0 < L∗ < K∗, such that the inequal-
ity (4.5) holds, if we replaceK∗ with L∗. In that case, for the above choice of
functionsf̃i, the right hand-side of the inequality (4.5) becomesL∗|Sn| ln 1

ε2 . Since
L∗|Sn| ln 1

ε2 ≥ J , by using (4.16), we obtain the inequality

(4.17) (K∗ − L∗) |Sn| ln
1

ε2
≤ O(1), when ε → 0.

Now, by lettingε → 0, we obtain from (4.17) a contradiction, since the left hand
side of the inequality goes to infinity. This contradiction shows that the constantK∗

is the best possible in the inequality (4.5).
Finally, the equivalence of the inequalities (4.5) and (4.6) means that the constant

K∗ is also the best possible in the inequality (4.6). That completes the proof.

Remark3. In the papers [3] and [8] we have also obtained the best possible constants,
but only forn = 1 and for the inequalities which involve the integrals taken over the
set of non-negative real numbers.
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5. Some Applications

In this section we shall consider some special choices of real parametersAij, i, j =
1, 2, . . . , k, in Theorem3.1. In such a way, we shall obtain some extensions (on
the set of real numbers) of the numerous versions of multiple Hilbert’s and Hardy-
Hilbert’s inequality, previously known from the literature. Further, in the conjugate
case we shall obtain the best possible constants in some cases.

To begin with, let us define real parametersAij, i, j = 1, 2, . . . , k, by Aii =

(nk − s)λqi−1
q2
i

andAij = (s− nk) 1
qiqj

, i 6= j, i, j = 1, 2, . . . , k. Then we have

k∑
i=1

Aij =
∑
i6=j

s− nk

qiqj

+ (nk − s)

(
λqj − 1

qj
2

)
=

s− nk

qj

(
k∑

i=1

1

qi

− λ

)
= 0,

for j = 1, 2, . . . , k. Clearly, the parametersAij are symmetric and it directly follows
thatαi =

∑n
j=1 Aij = 0, for j = 1, 2, . . . , k. In such a way we obtain the following

result:

Corollary 5.1. Letk ≥ 2 be an integer andpi, p
′
i, qi, i = 1, 2, . . . , k, be real numbers

satisfying (1.1) – (1.5). Then the following inequalities hold and are equivalent:

(5.1)
∫

(Rn)k

∏k
i=1 fi(xi)∣∣∣∑k
i=1 xi

∣∣∣λs
dx1dx2 . . . dxk

≤ L
k∏

i=1

[∫
Rn

|xi|
pi(k−1)n−pis

qi fpi

i (xi)dxi

] 1
pi
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and
∫

Rn

|xk|
− pk

′

qk
[(k−1)n−s]

∫
(Rn)k−1

∏k−1
i=1 fi(xi)∣∣∣∑k

i=1 xi

∣∣∣λs
dx1dx2 . . . dxk−1


pk

′

dxk


1

pk
′

≤ L

k−1∏
i=1

[∫
Rn

|xi|
pi(k−1)n−pis

qi fpi

i (xi)dxi

] 1
pi

,

where0 < nk − s < n min{pi, qj, i, j = 1, 2, . . . , k} and the constantL is defined
by the formula

L =
1

Γλ
n(s)

k∏
i=1

Γn

(
n− nk − s

qi

) 1
p′
i

k∏
i=1

Γn

(
n− nk − s

pi

) 1
qi

.

The equality in both inequalities holds if and only if at least one of the functionsfi,
i = 1, 2, . . . , k, is equal to zero.

Remark4. Straightforward computation shows that parametersAij from Corollary
5.1, in the conjugate case, satisfy equation (4.1). Hence, the constantL from the
previous corollary becomes

L =
1

Γn(s)

k∏
i=1

Γn

(
n− nk − s

pi

)
,

and that is the best possible constant in the conjugate case.
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Remark5. Similar to the previous corollary, if we define the parametersAij by
Aii = n(λqi−1)

λq2
i

andAij = − n
λqiqj

, i 6= j, i, j ∈ {1, 2, . . . , k}, then we have

k∑
i=1

Aij =
∑
i6=j

− n

λqiqj

+
n(λqj − 1)

λqj
2

= − n

λqj

(
k∑

i=1

1

qi

− λ

)
= 0,

for j = 1, 2, . . . , k. Since the parametersAij are symmetric one obtainsαi =∑n
j=1 Aij = 0, for j = 1, 2, . . . , k. So, by putting these parameters in Theorem

3.1 we obtain the same inequalities as those in Corollary5.1, with the constantL
replaced by

L′ =
1

Γλ
n(s)

k∏
i=1

Γn

(
n

λp′i

)λ− 1
qi

k∏
i=1

Γn

(
s +

n

λp′i
− (k − 1)n

) 1
qi

,

where(k − 1)n− s < n
λp′i

< n, i = 1, 2, . . . , k.

It is important to mention that the results in this section, as well as Theorem
3.1, are extensions of our papers [3] and [4], obtained by using Selberg’s integral
formula.
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6. Trilinear Version of a Standard Beta Integral

As we know, Selberg’s integral formula is thek−fold generalization of a standard
beta integral onRn. A few years ago, by using a Fourier transform (see [6]), the
following trilinear version of a standard beta integral was obtained:

(6.1)
∫

Rn

|t|α+β−2n

|x− t|α|y − t|β
dt = B(α, β, n)

|x− y|n−α−β

|x|n−β|y|n−α
,

wherex,y ∈ Rn, x 6= y 6= 0, 0 < α, β < n, α + β > n and

B(α, β, n) = π
n
2
Γ
(

n−α
2

)
Γ
(

n−β
2

)
Γ
(

α+β−n
2

)
Γ
(

α
2

)
Γ
(

β
2

)
Γ
(
n− α+β

2

) .

By using the definition (2.2) of then−dimensional gamma function we easily obtain
that

(6.2) B(α, β, n) =
Γn(n− α)Γn(n− β)

Γn(2n− α− β)
.

We also define

(6.3) B∗(α, β, n) =
Γn(α)Γn(β)

Γn(α + β)
.

It is still unclear whether or not there is a correspondingk−fold analogue of (6.1).
In spite of that, we shall use the trilinear formula (6.1) to obtain a2−fold inequality
of Hilbert type for the kernelK(x,y) = |x−y|α−n|x+y|β−n, where0 < α, β < n,
α + β < n.

In the2−dimensional case we denote non-conjugate exponents in the following
way: p1 = p, p2 = q, p′1 = p′ andp′2 = q′. So, with the above notation, we have the
following result:
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Theorem 6.1.Letα andβ be real parameters satisfying0 < α, β < n andα + β <
n. Then, the following inequalities hold and are equivalent

(6.4)
∫

(Rn)2

f(x)g(y)

|x− y|λ(n−α)|x + y|λ(n−β)
dxdy

≤ N

[∫
Rn

|x|(p−1)(α+β+n)−pnλfp(x)dx

] 1
p

×
[∫

Rn

|y|(q−1)(α+β+n)−qnλgq(y)dy

] 1
q

and

(6.5)

{∫
Rn

|y|n(λq′−1)−α−β

[∫
(Rn)

f(x)dx

|x− y|λ(n−α)|x + y|λ(n−β)

]q′

dy

} 1
q′

≤ N

[∫
Rn

|x|(p−1)(α+β+n)−pnλfp(x)dx

] 1
p

,

where the constantN is defined byN = 2λ(α+β−n)B∗(α, β, n)λ.

Proof. The main idea is the same as in Theorem3.1, i.e. to reduce the case of non-
conjugate exponents to the case of conjugate exponents. Note that the right-hand
side of the first inequality (6.4) can be transformed in the following way:∫

(Rn)2

f(x)g(y)

|x− y|λ(n−α)|x + y|λ(n−β)
dxdy =

∫
(Rn)2

P1

1
q′ P2

1
p′ P3

1−λdxdy,
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where

P1 =
|x|(p−1)(α+β)|y|−α−β

|x− y|n−α|x + y|n−β
fp(x),

P2 =
|y|(q−1)(α+β)|x|−α−β

|x− y|n−α|x + y|n−β
gq(y),

P3 = |x|(p−1)(α+β)|y|(q−1)(α+β)fp(x)gq(y).

Therefore, respectively, by applying Hölder’s inequality with conjugate exponents
q′, p′, 1

1−λ
and Fubini’s theorem, we obtain the inequality (6.4).

Let us show that the inequalities (6.4) and (6.5) are equivalent. To this aim,
suppose that the inequality (6.4) is valid. If we put the function

g(y) = |y|n(λq′−1)−α−β

[∫
Rn

f(x)

|x− y|λ(n−α)|x + y|λ(n−β)
dx

] q′
q

in the inequality (6.4), then the left-hand side of (6.4) becomesJ , whereJ is the
left-hand side of the inequality (6.5). Also, the second factor on the right-hand side
inequality (6.4) becomesJ

1
q , so (6.5) follows easily.

It remains to prove that (6.4) is a consequence of (6.5). For this purpose, let’s
suppose that the inequality (6.5) is valid. Then the left-hand side of the inequality
(6.4) can be transformed in the following way:∫

(Rn)2

f(x)g(y)

|x− y|λ(n−α)|x + y|λ(n−β)
dxdy

=

∫
Rn

|y|
α+β+n

q′ −nλ
g(y)

[
|y|−

α+β+n
q′ +nλ

∫
Rn

f(x)

|x− y|λ(n−α)|x + y|λ(n−β)
dx

]
dy.
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Finally, by applying Holder’s inequality with conjugate exponentsq andq′ on the
previous transformation, and by using the inequality (6.5) one easily obtains (6.4).
Hence, the inequalities are equivalent and the proof is completed.

Real parametersα andβ in (6.4) and (6.5) satisfy the conditionα+β < n. In what
follows we shall obtain similar inequalities which are, in some way, complementary
to the inequalities (6.4) and (6.5). The first step is to consider the case when the
functiong ∈ Lq(Rn) is symmetric-decreasing, that is,g(x) ≥ g(y) whenever|x| ≤
|y|. Sinceq > 1, for such a function andy ∈ Rn, y 6= 0, we have

gq(y) ≤ 1

|B(|y|)|

∫
B(|y|)

gq(x) dx(6.6)

≤ 1

|B(|y|)|

∫
Rn

gq(x) dx

=
n

|Sn|
|y|−n‖g‖q

q,

whereB(|y|) denotes the ball of radius|y| in Rn, centered at the origin, and|B(|y|)| =
|y|n |Sn|

n
is its volume.

Theorem 6.2. Let α andβ be real parameters satisfying0 < α < n, 0 < β < n,

α+β = n
(

1
p

+ 1
q

)
> n. If f andg are nonnegative functions such thatf ∈ Lp(Rn),

g ∈ Lq(Rn), then the following inequalities hold and are equivalent

(6.7)
∫

(Rn)2

f(x)g(y)

|x− y|n−α|x + y|n−β
dxdy ≤

(
n

|Sn|

)1−λ

C(p, q; α, β; n)‖f‖p‖g‖q,
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and

(6.8)

{∫
Rn

[∫
Rn

f(x)dx

|x− y|n−α|x + y|n−β

]q′

dy

} 1
q′

≤
(

n

|Sn|

)1−λ

C(p, q; α, β; n)‖f‖p,

with the constant

(6.9) C(p, q; α, β; n) =

∫
Rn

|x|−
n
q dx

|e1 − x|n−α|e1 + x|n−β
,

wheree1 = (1, 0, . . . , 0) ∈ Rn and |Sn| is the Lebesgue measure of the unit sphere
in Rn.

Proof. Since we shall use a general rearrangement inequality (see e.g. [10]) it is
enough to prove the inequality for symmetric-decreasing functionsf andg. First,
using Hölder’s inequality with parametersq′, p′ and 1

1−λ
, we have

(6.10)
∫

R2n

f(x)g(y)

|x− y|n−α|x + y|n−β
dxdy ≤ I

1
q′
1 I

1
p′
2 I1−λ

3 ,

where

I1 =

∫
R2n

|x|
n
p′ |y|−

n
q

|x− y|n−α|x + y|n−β
fp(x)dxdy,

I2 =

∫
R2n

|x|−
n
p |y|

n
q′

|x− y|n−α|x + y|n−β
gq(y)dxdy,

I3 =

∫
R2n

|x|
n
p′ |y|

n
q′

|x− y|n−α|x + y|n−β
fp(x)gq(y)dxdy.
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Further, using the substitutiony = |x|u (sody = |x|ndu) and rotational invariance
of the Lebesgue integral inRn we easily get:

I1 =

∫
Rn

|x|
n
p′ fp(x)

∫
Rn

|y|−
n
q

|x− y|n−α|x + y|n−β
dydx

=

∫
Rn

|x|
n
p′−

n
q
+α+β−n

fp(x)

∫
Rn

|u|−
n
q∣∣∣ x

|x| − u
∣∣∣n−α ∣∣∣ x

|x| + u
∣∣∣n−β

dudx

=

∫
Rn

|u|−
n
q du

|e1 − u|n−α |e1 + u|n−β
‖f‖p

p.

Analogously,

I2 =

∫
Rn

|u|−
n
p du

|e1 − u|n−α |e1 + u|n−β
‖g‖q

q,

and, by (6.6),

I3 ≤
n

|Sn|

∫
Rn

|u|−
n
q du

|e1 − u|n−α |e1 + u|n−β
‖f‖p

p ‖g‖q
q.

It remains to prove that∫
Rn

|x|−
n
p dx

|e1 − x|n−α|e1 + x|n−β
=

∫
Rn

|x|−
n
q dx

|e1 − x|n−α|e1 + x|n−β
.

We transform the left integral in polar coordinates usingx = tθ, t ≥ 0, θ ∈ Sn and
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the substitutiont = 1
u

to obtain:∫
Rn

|x|−
n
pdx

|e1 − x|n−α|e1 + x|n−β

=

∫
Sn

dθ

∫ ∞

0

t−
n
p tn−1dt

|e1 − tθ|n−α|e1 + tθ|n−β

=

∫
Sn

dθ

∫ ∞

0

t−
n
p tn−1dt

(1 + t2 − 2t〈e1, θ〉)
n−α

2 (1 + t2 + 2t〈e1, θ〉)
n−β

2

=

∫
Sn

dθ

∫ ∞

0

u
n
p
−α−βun−1du

(1 + u2 − 2u〈e1, θ〉)
n−α

2 (1 + u2 + 2u〈e1, θ〉)
n−β

2

=

∫
Rn

|x|−
n
q dx

|e1 − x|n−α|e1 + x|n−β
.

To complete the proof, we need to consider the general case, that is, for arbitrary
nonnegative functionsf and g. Sincex 7→ |x|n−α, x 7→ |x|n−β are symmetric-
decreasing functions vanishing at infinity, the general rearrangement inequality im-
plies that

(6.11)
∫

R2n

f(x)g(y)

|x− y|n−α|x + y|n−β
dxdy ≤

∫
R2n

f ∗(x)g∗(y)

|x− y|n−α|x + y|n−β
dxdy.

Clearly, by (6.10), the right-hand side of (6.11) is not greater than

(6.12)

(
n

|Sn|

)1−λ

C(p, q; α, β; n)‖f ∗‖p‖g∗‖q

=

(
n

|Sn|

)1−λ

C(p, q; α, β; n)‖f‖p‖g‖q,
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whereC(p, q; α, β; n) is the constant from the right-hand side of (6.7). To achieve
equality in (6.12), we used the fact that the symmetric-decreasing rearrangement is
norm preserving.

On the other hand, by putting the function

g(y) =

[∫
Rn

f(x)

|x− y|n−α|x + y|n−β
dx

] q′
q

in the inequality (6.7) we obtain (6.8). The equivalence of the inequalities (6.7) and
(6.8) can be shown in the same way as in Theorem6.1.

The casen = 1 of the previous theorem is interesting as for that case the constant
C(p, q; α, β; n) can be expressed in terms of the hypergeometric function. More
precisely, using the definition of hypergeometric functions (for more details see [1])
it is easy to see that the following identity holds for0 < d1, d2, d3 < 1, d1+d2+d3 >
1: ∫

R

|t|−d2|1− t|−d3 |1 + t|−d1dt

= B(1− d2, 1− d3)F (d1, 1− d2; 2− d2 − d3;−1)

+ B(1− d2, 1− d1)F (d3, 1− d2; 2− d2 − d1;−1)

+ B(d1 + d2 + d3 − 1, 1− d3)F (d1, d1 + d2 + d3 − 1; d1 + d2;−1)

+ B(d1 + d2 + d3 − 1, 1− d1)F (d3, d1 + d2 + d3 − 1; d3 + d2;−1).

Hence, forn = 1 we have

Corollary 6.3. Let α andβ be real parameters satisfying0 < α < 1, 0 < β < 1,
α + β = 1

p
+ 1

q
> 1. If f and g are nonnegative functions such thatf ∈ Lp(R),
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g ∈ Lq(R), then the following inequalities hold and are equivalent

(6.13)
∫

R2

f(x)g(y)

|x− y|1−α|x + y|1−β
dxdy ≤ 2λ−1C(p, q; α, β)‖f‖p‖g‖q,

and

(6.14)

{∫
R

[∫
R

f(x)dx

|x− y|1−α|x + y|1−β

]q′

dy

} 1
q′

≤ 2λ−1C(p, q; α, β)‖f‖p,

where

(6.15) C(p, q; α, β) = B

(
1

q′
, α

)
F

(
1− β,

1

q′
;
1

q′
+ α;−1

)
+ B

(
1

q′
, β

)
F

(
1− α,

1

q′
;
1

q′
+ β;−1

)
+ B

(
1

p′
, α

)
F

(
1− β,

1

p′
;

1

p′
+ α;−1

)
+ B

(
1

p′
, β

)
F

(
1− α,

1

p′
;

1

p′
+ β;−1

)
,

B(·, ·) is the usual (one-dimensional) beta function andF (d1, d2; d3; z) is the hyper-
geometric function.

The following corollary should be compared with Theorem6.1.

Corollary 6.4. If f andg are nonnegative functions such thatf ∈ Lp(R) andg ∈
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Lq(R), then the following inequalities hold and are equivalent

(6.16)
∫

R2

f(x)g(y)dxdy

|x2 − y2|
λ
2

≤ 2λ−1

[
B

(
1− λ

2
,

1

2p′

)
+ B

(
1− λ

2
,

1

2q′

)]
‖f‖p‖g‖q.

and

(6.17)


∫

R

[∫
R

f(x)dx

|x2 − y2|
λ
2

]q′

dy


1
q′

≤ 2λ−1

[
B

(
1− λ

2
,

1

2p′

)
+ B

(
1− λ

2
,

1

2q′

)]
‖f‖p,

Proof. Setα = β = 1− λ
2

in the previous corollary.

Note that inequalities (6.16) and (6.17) could not be obtained from Theorem6.1.
In other words there are no suchα andβ for which the kernel in inequalities (6.4)
and (6.5) reduces to|x2 − y2|−λ

2 .
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