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ABSTRACT. Leta andb be given real numbers with < ¢ < b < a + 1. Then the function
Oup(z) = [[(z 4+ b)/T(x + a)]*/(~2) — x is strictly convex and decreasing ¢ra, co) with
Oap(00) = %”‘1 andd, ,(—a) = a, wherel’ denotes the Euler's gamma function.
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1. INTRODUCTION
Kazarinoff [10] proved that the functiaf(n),
1-3-5---(2n—1) 1

2.4-6---(2n) W(n—k@(n))’

satisfies
(1.1) ! <f(n) < = eN
. 1 n 5’ n .
More generally, set
Mz +1)]2 1
9 = — > ——

where
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is the Euler's gamma function. Watsan [15] proved that the fundti@nstrictly decreasing on
(—1/2,00). Applying this result, together with the observation thato) = 1/4, (—1/2) =
1/2 andf(1) = 47~ — 1, we obviously imply sharper inequalities:

1 1 1
(1.2) 1< 6(z) < 3 for x> ~3
1
(1.3) 1< O(x) <4n ' —1 for x>1.

In particular, take in[(1]3) = n, we get
1 1-3-5---(2n— 1) 1

Vr(n+4n—1 — 1) = 2:4-6---(2n) = Vr(n+1/4)

and the constantsr—! — 1 and1/4 are the best possible.

The inequality[(T.4) is called Wallis’ inequality. For more information on Wallis’ inequality,
please refer to the papér [6] and the references therein.

H. Alzer [2] proved that the functiod is strictly decreasing oft), co). Applying this result,
he showed that for all integers> 1,

n -+ A Qn—l n+ B
1. \/ <
(1.5) 27 < Q, — 2

with the best possible constants

(1.4)

1 s
5 an 5 0.57079...,

where),, = /2 /T'(14+n/2) denotes the volume of the unit ballRr. (L.5) is an improvement
of the following result given by Borewardt![5, p. 253]

LAPRUS' <t
2 — Q, 27

[Tz +b)]7=
N
then we conclude from the representations [1, p. 257]

(1.6)

&’

If we denote by

(1.7) b—ggiig U b)(g; =1 L0 (2 o),
that

x 1/(b—a) a N
(18)  fuy(z) =z {i [%} - 1} - # as 1z — oo,

Hence it is of interest to investigate the possible monotonic character of the functien
Qa,b(I)-

Theorem 1.1.Leta andb be given real numbers with < a« < b < a 4+ 1. Then the function
Oup(z) = [[(x +0)/T(z + a)]/®=% — z is strictly convex and decreasing 6ra, 0o).

Sincef,,(z) = 0p4(x), it is clear thatr — 6,,(z) is strictly convex and decreasing on
(—b,00)for0 <b<a<b+ 1.

From6,,(co) = “2=L 6, ,(—a) = a and the monotonicity of — 6,,(z), we obtain the
following
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Corollary 1.2. Leta andb be given real numbers with< a < b < a + 1, then forz > —a,

a+b—1\"" T(z+b) b

A proof of the theorem above has been showri in [8], here we provide another proof. The
ratio of two gamma functions has been investigated intensively by many authors. For example,
Gautschil[9] proved the following inequalities
['(z+1)
['(z+s)
Kershaw[11] has given some improvements of these inequalities such as

s\1=s  T(z+1) I
(1.11) («T‘f‘i) <m<<$—§+ $+Z>

forrealz > 0and0 < s < 1.

Inequalities for the ratid'(z + 1)/T'(1 + A\) (z > 0; A € (0,1)) have a remarkable appli-
cation, they can be used to obtain estimates for ultraspherical polynomials. The ultraspherical
polynomials are defined by

2 D(n—k+ )

P (z) = kz_o(_l)kr(x)r(k: +1DT(n -2k +1)

(1.10) T < <(@+D"F 0<s<l,z=12....

(21‘)”7%,

wheren > 0 is an integer and > 0 is a real number.
In 1931, S. Bernstein_[4] proved the following inequality for ultraspherical polynomials: If
0<A<1, n>1,and0 < 6 < 7, then
21—)\
(1.12) (sin ) |P7(1A) cosfl| < F()\)n)\il’
where the constar ~* /T'()\) cannot be replaced by a smaller one.
We note that inequality (1.12) with = 1/2 leads to a well-known inequality for the Legendre

polynomialsP, = PiM?:

9 1/2
(1.13) (sin 0)'2|P, cos ] < (-) n~Y2,
m

Several authors presented remarkable refinemenfs of (1.12). They proved fhat]in (1.12) the
factorn*~! can be replaced by smaller expressions. The left-hand inequalfty of (1.11) was also
considered in 1984 by L. Lorch [13]. He obtained the following results for integero:

[(x+1) s\ 1-s
(1.14) m><x+§) for 0<s<1 or s>2,
['(z+1) s\1-s
1.1 E—— — f 1 2.
(1.15) F(x+s)><$+2) or <s<
Lorch [13] used[(1.1)4) to prove a sharpened inequality for ultraspherical polynomials:
21—)\
(1.16) (sin 6)*| PN cos 0| < T (n+ AL

In 1992, A. Laforgial[12] proved i (1.12) that the terrr ! can be replaced biy(n+\) /T'(n+
1). Sincel'(n + \)/T'(n + 1) < n*~1, seel[9], this provides another refinement of Bernstein's
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inequality. In 1994, Y. Chow et al. [7] showed that(1.12) holds With+2))(T'(n+1)) ' (n+
A\)~* instead of»* 1. This sharpens Lorch’s result for alle (0, 1/2), since the inequality

I'(n+2X)
Cin+1)(n+ A)
is valid for all A € (0,1/2). In 1997, H. Alzer[[3] showed the following inequality
21=% ' (n+32))
T(A) T(n+1+1LA)
Inequality (1.1F) refines the results given by S. Bernstein, L. Lorch and A. Laforgia.

A1
T <(n+2)

(1.17) (sin 0) P cos 0] <

2. PROOF OF THEOREM [1.1

Easy computation yields

Brol) = [0 +5) — 9w + 0)](Bun(e) +2) — 1,

(b_a)9g7b(x) Y / 1
@) o —¢($+b)—¢($+0)+b_a

Using the representatioris [14, p. 16]

M) et — g
Q/J(.Z') - F(l') - _,y—i_\/o 1 — et dt?

o0 t Y
w’(x):/o e Ldt

forxz > 0,7y = 0.57721...Is the Euler-Mascheroni constant, it follows that

bh— 9// 00 1 0 2
( CL) a,b(l') _ _/ ta(t)€_(x+a)t dt + (/ 5(t)e—(a:+a)t dt) 7
0 b—a\Jo

1— e*(bfa)t

9a7b<.’L’) +x

By using the convolution theorem for Laplace transforms, we have

b—a)b! S
( CL) a,b(:c> _ _/ t(5<t)€f(x+a)t dt
Ga’b(:l:) +x 0

1 [ee] t
(2.1) + / {/ 5(s)d(t — s) ds] e~ @t g4y
b—a J 0
= / e~ @ty (1) dt,
0

[(z +b) — ¥(z + a)].

where

where

2.2) wlt) = /0 t [b 1 5(s)0(t ) - 5(t)] ds.

Now we are in a position to prove that

(2.3) d(s)o(t—s)—d6(t) >0 for ¢t>s>0.

b—a

Define fort > s > 0,
4(s)
b—a

o(t) =1n +1Ind(t —s) —Ino(t).
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Elementary calculations reveal that
iy O(t—s) ()
A0 =505 " 5w

5/( ! . et (b _ a)2€(b—a)t
(&w) = o) =t - '

Defined forr € (0, 1),

Sincer — % is strictly increasing withe € (0,0), we getg is strictly decreasing with
€ (0,1). This implies that(%) < 0fort > 0and0 < b—a < 1, and theny'(t) > 0 and
¢(t) > ¢(s) = 0. This means (2]3) holds, and thé$, (x) > 0 (z > —a) follows from (2.1),

22) and[ZP).
From the representatioris (IL..7) and

Y(z)=Inx — % +0(z7%) (z — o),

(seell, p. 259]), we conclude that

: a—b F(l‘ + b) _
(2.4) xh_)rglo x F(:z: n a) 1,
(2.5) a}irglox[w(x+b)—w(m+a>} :bia

From [2.4),[(2.5) and the monotonicity of the function- ¢, ,(x), we imply

éb(fl?) < :}g{}o 9;,1)(@

L ap (X +Db)]0oe
Jim o e S e 4 0) — v ) -
=0.

The proof is complete.
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