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ABSTRACT. In this paper, an integral inequality is studied. An answer to an open problem
proposed by Feng Qi is given.
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In [5], Qi studied a very interesting integral inequality and proved the following result

Theorem 1. Let f(x) be continuous ofu, b], differentiable or{(a, b) and f(a) = 0. If f'(z) > 1
for x € (a,b), then

@ [vap > [jibf<x>dx}2.

If 0 < f'(z) < 1, then the inequality {1) reverses.
Qi extended this result to a more general case [5], and obtained the following inedyality (2).

Theorem 2. Letn be a positive integer. Suppogéx) has continuous derivative of theth
order on the intervala, b] such thatf(a) > 0 where0 < i <n — 1, and f™(z) > n!, then

@ Lhwmmzuﬁmﬂm.

Qi then proposed an open problem: Under what condition is the inequdlity (2) still true if
is replaced by any positive real numbér

Some new results on this subject can be foundlin [1], [2], [3], ahd [4].

We now give an answer to Qi's open problem. The following result is a generalization of
TheoreniL.
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2 YIN CHEN AND JOHN KIMBALL

Theorem 3. Letp be a positive number anﬁl(x) be continuous offu, b] and differentiable on
(a,b) such thatf(a) = 0. If [f#)/(z) > (p+ 1)z " for z € (a,b), then

3) / U@ de > { / ) dw} "

IF0 < [f7](x) < (p+ 1) " for z € (a,b), then the mequalltﬂ?,) reverses.

Proof. Suppose tha@fi]’(x) >0,z € (a,b). ThenfE(x) is a non-decreasing function. It
follows thatf(x) > 0 for all z € (a, b].

If [f%]’(x) > (p+ 1)%‘1 for x € (a,b), thenf(z) > 0 for z € (a,b]. Thus both sides of
(3) are not 0. Now consider the quotient of both sideg pf (3). By using Cauchy’s Mean Value
Theorem twice, we have

P @)p?de L (b))

@ [f(f f(x) dx]pH - (p+1) [ffl f(z) dx]p

(@ < by <D)

(5) =

(o
© ) ((1+

™) = (T+p)' 31T )
(8) > 1

So the inequality[ (3) holds.

If f = 0on/a,b], then it is trivial that the equation if|(3) holds. Suppose now phat
not identically O on[a, b]. Since f(x) is non-decreasing and non-negative, we may assume
f(z) > 0, x € (a,b] (otherwise we can find, such thats; < b, f(a;) = 0 and f(z) > 0 for
a; < x < band hence we only need to consig“emn (a1,b]). This implies that both sides df|(3)
are not 0. Now ifo < [f%] () < (p+ 1)“1 then(1 +p)1_%[f%]'(b2) < 1, which, together
with (7)), implies that the inequality {3) reverses. O

Note that ifp = 1, then [3) become$§|(1). So Theorgm 1 is just a special case of Theprem 3.
In Theoren{ L, we see that ff(z) = 1, thenf(z) = = — a and the equation if [1) holds.
A very natural question can be asked the same way: For what polyngtiglk= C(x — a)”
does the equation iﬂ(Z) hold? It is easy to see that m Then-th derivative of this

polynomial is a constané#im). This motivates the following theorem.

Theorem 4. Supposef(z) has derivative of the:-th order on the intervala, b] such that
f@(a) =0fori =0,1,2,....,n — 1. If f®)(z) > (ﬁ;ﬁ and f(™(z) is increasing, then

the mequallty ') holds. It) < fM(z) < W and f(" () is decreasing, then the in-
equality [2) reverses.

Proof. Suppose thaf ™ (z) > It is easy to see that

(n +1)<“ R

f(x) >

(z —a)"
(n+ 1)t
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Using the same argument as in the proof of Thedrem 3, we have

Llf@)2de ROVES

®) nFl ) = (a<b <b)
7 S () da] (n+1) [ () do]
(10) %[f(bﬂ]
C(n+1) [fablf(:c)dx]n
(i —a)f(b) )
11 _
- <<n+ D) f ) dx)

Now for the term in[(I]L), by using Cauchy’s Mean Value Theorem several times, we will have

(b1 — a)f(b1) — 14 (by — a)f/(b2)

(12) fabl f(l») o = f(bQ) ((Z < by < bl)
(13) :2+W (a < by < by)
(14)
(15) . ”“ _ a)f( (bns1) (@ < bps1 < by).
D (bnt1)
But
FrR@) = f ) — f 0 (a) = ( 1)(t —a)
for somet; € (a,t). If f™(z) is increasing, thegf )(t ) (™) (t). Therefore
(16) FrD@) < FU ) - )
Applying (16) to [(1%) yields
(17) b —a)fb) oy

S (@) da
follows from [17) and[(T]1).

Suppose that < f™(r) < (n+1)—"1> and f"(z) is decreasing. It is cleaf™~Y(t) is
increasing. Iff("~Y(¢) = 0 for somet € (a,b), then f"~Y(s) = 0 for s € (a,t). Hence
f@(s) = 0fors € (a,t) and0 < s < n — 1. So we can assume th#t" ! (z) # 0 for
r € (a,b). By Rolle’s Theorem, this means thét) (z) # 0 for z € (a,b) and for0 < i < n—1.

Now that the inequalities (10) and (16) reverse, it follows that the inequility (17) reverses, so
does|[(2). O

Unfortunately there is an additional hypothesis on monotonicity in Thepfem 4. Our conjec-
ture is that this hypothesis could be dropped. But we are not able to prove it for the moment.
However, we have

Theorem 5. Supposef(x) has derivative of thei-th order on the intervala, b] such that,
fO(a)=0fori=0,1,2,...,n — 1. If f(z) > “*2 then the mequahtﬂZ) holds.

Proof. If f(z) > "t then

(18) flx) =
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(17) now becomes

b . n
(19) THELC RS ((m - a)f(b1)>
Note that all the terms iri (15) are positive, so we have
(by — a)f (bl)
Ji @) de
The inequality[(R) follows from[(1]9) an@]ZO). O

The same argument can be used to prove the following result obtainedchyidPand Pe-
jkovic [3, Theorem 2].

(20)

Theorem 6. Letp be a positive number anfi(x) be continuous offu, b] and differentiable on
(a,b) such thatf(a) > 0. If f/(x) > p(x — a)?~* for z € (a,b), then the inequalityf (3) holds.

Proof. Suppose that’(z) > p(x — a)P~! for z € (a,b). Consider the quotient of the two sides
of (3). By using Cauchy’s Mean Value Theorem three times, we have

(21) fa L)k fxl = U (bi)]pﬂ (a < by <b)

[fff(m)dx] p—i—l)[flf ]
(22) = BICSEC) — (a<by<b)

(=1 [ f@) do]’
(bQ) bg — a r

23 >
) ( I £ f )
(24) - (1 + b3 - a))p
(25) > 1.
This completes the proof. O
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