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ABSTRACT. The aim of this article is the construction of a spanning set for the sp&od")

of super cusp forms on a complex bounded symmetric super dofhafrrank 1 with respect

to a latticel’. The main ingredients are a generalization of thed&ov closing lemma for par-

tially hyperbolic diffeomorphisms and an unbounded realizatioof B, in particular FOURIER
decomposition at the cusps of the quotiERB mapped tax via a partial QYLEY transforma-

tion. The elements of the spanning set are in finite-to-one correspondence with closed geodesics
of the bodyI"\ B of I'\ B, the number of elements corresponding to a geodesic growing linearly
with its length.
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1. INTRODUCTION

Automorphic and cusp forms on a complex bounded symmetric domaire already a well
established field of research in mathematics. They play a fundamental role in representation
theory of semisimple LE groups of Hermitian type, and they have applications to number
theory, especially in the simplest case whBris the unit disc inC, biholomorphic to the upper
half planeH via a CAYLEY transformG = SL(2,R) acting onH via MOBIUS transformations
andT" = SL(2,Z) of finite index. The aim of the present paper is to generalize an approach
used by Tatyana &TH and Svetlana KTok in [4] and [&] for the construction of spanning
sets for the space of cusp forms on a complex bounded symmetric déhadinank 1, which
then by classification is (biholomorphic to) the unit ball of sofife n» € N, and a lattice
I' C G = Aut(B) for sufficiently high weight. This is done in Theorein 4.3, which is the
main theorem of this article, again for sufficiently large weight

The new idea in [4] and [8] is to use the concept of a hyperbolic (®osoV) diffeomor-
phism resp. flow on a Riemannian manifold and an appropriate version oiNbs @y closing
lemma. This concept originally comes from the theory of dynamical systems, see for example
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in [7]. Roughly speaking a flowy,),., on a Riemannian manifold/ is called hyperbolic if
there exists an orthogonal aiig, ), -stable splittingl’A/ = T & T~ & T of the tangent
bundleT'M such that the differential of the floy, ), , is uniformly expanding off™*, uni-
formly contracting ori’~ and isometric o™, and finallyZ® is one-dimensional, generated by
iy In this situation the Alosov closing lemma says that given an 'almost’ closed orbit of
the flow (¢;), . there exists a closed orbit 'nearby’. Indeed given a complex bounded symmet-
ric domainB of rank 1, G = Aut,(B) is a semisimple LE group of real ranki, and the root
space decomposition of itsik algebrag with respect to a @RTAN subalgebrar = g shows
that the geodesic flowy,),., on the unit tangent bundlig€(5), which is at the same time the
left-invariant flow onS(B) generated by ~ R, is hyperbolic. The final result in this direction
is Theoreni 5.3 (i).

For the super case, first it is necessary to develop the theory of super automorphic resp.
cusp forms, while the general theory @) graded structures and super manifolds is already
well established, see for example [3]. It was first developed by F. BREZIN as a mathe-
matical method for describing super symmetry in physics of elementary particles. However,
even for mathematicians the elegance within the theory of super manifolds is really amazing
and satisfying. Here | deal with a simple case of super manifolds, namely complex super do-
mains. Roughly speaking a complex super donfaia an object which has a super dimension
(n,r) € N? and the characteristics:

(i) it has a bodyB = B* being an ordinary domain i6",

(i) the complex unital graded commutative algetr@3) of holomorphic super functions
on B is (isomorphic t0)O(B) @ A (C"), where A (C") denotes the exterior algebra
of C". FurthermoreO(B) naturally embeds into the first two factors of the complex
unital graded commutative algedPyB) ~ C*(B)* @ A\ (C") K A (C") ~ C>*(B)* ®
A (C?") of 'smooth’ super functions o, whereC>(B)® = C>=(B,C) denotes the
algebra of ordinary smooth functions with valuesGnwhich is at the same time the
complexification olC*>(B), and X' denotes the graded tensor product.

We see that for each paiB, r) whereB C C" is an ordinary domain ande N there exists
exactly one(n, r)-dimensional complex super domathof super dimensiorin, r) with body
B, and we denote it by!". Now let(,, ..., ¢, € C denote the standard basis vectorsof
Then they are the standard generatorg\dfC"), and so we get the standard even (commuting)
holomorphic coordinate functions, ..., z, € O(B) — O (BI") and odd (anticommuting)
coordinate functions,, ..., € A(C") = O (B“‘). So omitting the tensor products, as there
is no danger of confusion, we can decompose eyeryO (B"‘) uniquely as

f: Z fICI7
Tep(r)

wheregp(r) denotes the power set ¢f, ... r}, all f; € O(B), I € p(r), and(! := ¢, -+ ¢
forall I = {iy,...,is} € p(r), i1 < -+ < is.
D (BI") is a graded-algebra, and the graded involution

E]

—:D(B") - D(B")
is uniquely defined by the rules

i} F=fandfh=nfforall f,heD (BI"),
{i} ~ is C-antilinear, and restricted ©>(B) it is just the identity,
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{iii} ¢ is thei-th standard generator ¢f (C") — D (B/") embedded as thihird factor,
where(; denotes thé-th odd holomorphic standard coordinate®fi, which is thei-th
standard generator ¢ (C") — D (BI") embedded as theecondfactor,i = 1,...,r.

With the help of this graded involution we are able to decompose gver (B!") uniquely

as
f= % fuc'c

1,Jep(r)

where f;; € C*(B)S, I,J € o(r), and(’ = G,...G. forall J = {ji,...,js} € o(r),
< <Js

For a discussion of super automorphic and super cusp forms we restrict ourselves to the case
of the LIE groupG := sS (U(n,1) x U(r)),n € N\ {0}, r € N, acting on the complef, r)-
dimensional super unit balB". So far there seems to be no classification of super complex
bounded symmetric domains although we know the basic examples, see for example Chapter
IV of [2], which we follow here. The groug- is the body of the superiE groupSU (n, 1|r)
studied in [2] acting omB!". The fact that an ordinary discrete subgroup (which means a sub
super LE group of super dimensiof0, 0)) of a super LE group is just an ordinary discrete
subgroup of the body justifies our restriction to an ordinarg group acting onB!" since
purpose of this article is to study automorphic and cusp forms with respect to a lattice. In any
case one can see the odd directions of the complex super dditfiaaiready inG since it
is an almost direct product of the semisimplelgroup SU (n, 1) acting on the body3 and
U(r) acting on/\ (C"). Observe that if- > 0 the full automorphism group aB/", without
any isometry condition, is never a supegelgroup since one can show that otherwise its super
LIE algebra would be the superd_algebra of integrable super vector fields Bf, which has
unfortunately infinite dimension.

Let us remark on two striking facts:

() the construction of our spanning set usesJRIER decomposition exactly three times,
which is not really surprising, since this corresponds to the three factors iwtsaiva
decompositiorG = K AN.

(i) super automorphic resp. cusp forms introduced this way are equivalent (but not one-to-
one) to the notion of 'twisted’ vector-valued automorphic resp. cusp forms.

Acknowledgement: Since the research presented in this article is partially based on my PhD
thesis | would like to thank my doctoral advisor HaralénEIERfor mentoring during my PhD
but also Martin 8HLICHENMAIER and Martin Q.BRICH for their helpful comments.

2. THE SPACE OF SUPER CUSP FORMS
Letn € N\ {0}, ¢ Nand
G:=s5U(n,1) x U(r))

— { (QT/‘%) e U(n,1) x U(r)

which is areal (n + 1)? + r? — 1)-dimensional LE group. LetB := BI", where
B:={zeC'z'z<1} CC"

det ¢’ = detE},

denotes the usual unit ball, with even coordinate functigns. ., z,, and odd coordinate func-
tions(y, ..., (.. Then we have a holomorphic action@fon 5 given by super fractional linear
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(MoBIUS) transformations

(0)-tsie)

Alb g\ dn
g = c|d —n+1.
0 E br
The stabilizer o — B is

K :=sS(({U(n) x U1)) x U(r))

AlO 0
{(Od ) eU(n) xU((1) x U(r)
0 FE

OnG x B we define the cocyclg € C*(G)*@O(B) asj(g,z) := (cz+d) ' forall g € G
andz € B. Observe thaj(w) := j(w,z) € U(1) is independent of € B for all w € K and
therefore defines a character on the gréup

Let & € Z be fixed. Then we have a right-representatio/of

)+ D) = D(B). = flyi= 1 (o (£) ) o2

forall g € G, which fixesO(B). Finally letT" be a discrete subgroup 6f.

where we split

ddetAdetE}.

Definition 2.1 (Super Automorphic Forms)et f € O(B). Thenf is called a super automor-
phic form forI" of weightk if and only if f|, = f for all v € I'. We denote the space of super
automorphic forms fof" of weightk by s, (T).

Let us define a lift:
TiD(B) - (G @D (C) ~Ccx(G) @ \(C)B A (),
[,

where

o) =11, ()

(@)t

forall f € D(B) andg € (G and we use the odd coordinate functi@;ms ..,m-onCo. Letf €
O(B). Then clearlyf € C*(G)® ® O (C°F) andf € sM(T) & f € € (T\G) ® O (C°)
since forallg € G

C=(G)C @D (CO) 2 ¢=(G)C® D (C)
T~ T~
D(B) — D(B)
commutes, wherg, : C*(G) — C*(G) denotes the left translation withe G, [,(f)(z) =
f(gz)forallz € G. Let( , ) be the canonical scalar productBr(C%") ~ A (C*") (semilin-

ear in the second entry). Then for ale D (C°") we write|a| := \/(a,a), and( , ) induces
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a 'scalar product’

(f> h)r = /r\G <E,ﬂ

for all f,h € D(B) such that<ﬁ, f> e LY(T'\G), and for alls €]0, oc] a 'norm’
1118 = || |7

for all f € D(B) such thatm € C> (I'\G). OnG we always use the (left and right)d4R
measure. Let us define

L(\B) = { £ € D(B)

s, I'\G

Fec=m\a)CaD (), 7% < oo} |

Definition 2.2 (Super Cusp Forms) et f € sM,(I"). f is called a super cusp form far of
weight % if and only if f € L{(I'\B). TheC- vector space of all super cusp forms foiof
weightk is denoted by S (I'). Itis a HILBERT space with inner produgt, );.

Observe thal, respects the splitting
o(B) =P o (B)
p=0

for all g € G, whereO)(B) is the space of alf = > o tj—p f1 Al fr € O(B), I € p(r),
Il =p,p=0,...,r,and maps the spac® (B) into C=(G)* @ O (C"). Therefore we
have splittings

sMi(T) = @ sM”(1) and sS,(T) = ) sS(T),

p=0 p=0

wheresM\” (D) := sM(T) N OW(B), sSP(T) := s5,(T) N OW(B), p=0,...,r, and the
last sum is orthogonal.

As shown in[[10] and in Section 3.2 of [11] there is an analogonAmEE’'s theorem in the
super case:

Theorem 2.1.Letp € {0,...,r}. Assumd’\G is compact om > 2 andI’ C G is a lattice
(discrete such thatol I'\G' < oo, I'\G not necessarily compact). &f > 2n — p then

sS\(I) = sM (D) N L (D\B)
forall s € [1, o0].

As in the classical case this theorem implies that\it~ is compactom > 2, ' C Gis a

lattice andk > 2n — p, then the HLBERT spacgs,(f)(l“) is finite dimensional.
We will use the ®RDAN triple determinani\ : C* x C* — C given by

A(z,w):=1—w"z
for all z, w € C". Let us recall the basic properties:

(i) 17 (9.0)] = A (0,g0)* forall g € G,
(i) A(gz,gw) =A(z,w)j(g,2)j(g9,w)forallg € Gandz,w € B, and
(i) [, A (z,2) dVie, < coif and only if A > —1.
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We have theZ-invariant volume elemenh(z, z)~ " dV;, on B.
Foralll € p(r),h € O(B),z € B and

x| 0
g—(o E)EG

h'|, (z) = h(gz) (En)' j (g,2)" ",

whereE € U(r). So foralls €]0,00], f = >/ ) f1¢" andh = 37, hi¢h € O(B) we
have

we have

£ = \/ S 20 (z,2)

IE@(T) S,F\B,A(Z,Z)7<n+l)dVLCb

if f€C>(G)®0(C) and

(fhr= > | Frhud(z2) 0 dn,

Tep(r) Y T\B

if <ﬁ, f> € L'(I'\G), where =’ means equality up to a constast0 depending o’
For the explicit computation of the elements of our spanning set in Thgorém 4.3 we need the
following lemmas:

Lemma 2.2(Convergence of relativedINCARE series) LetI'y = I' be a subgroup and
f € sMy (To) N Ly (To\B).

Then ~
Gi= Y flyand® = > f(30)

v€l\T v€L\T
converge absolutely and uniformly on compact subseis refsp. G,

® € sM,(I') N L (T\B),
& = @, and for allp € sM (') N L° (I'\B) we have
(@, 0)r = (f,@)p, -

_The symbol &’ here and also later simply stands for the argument of the function. So
f(v0) € C=(G)C ® A (Cr) is a short notation for the smooth map

G — \(C), g Fv9).

Proof. Standard, on using the mean value property of holomorphic functions fér allZ
without any further assumption dn O

Lemma 2.3.Let] € p(r)andk > 2n+ 1 —|I|. Thenforallw € B
A (G, w) ¢ e 0M(B) N Li(B),
andforall f =37, fs¢7 € O(B) N Li*(B) we have
(a 0wy ) = i (w),
where( . )= (, ).

Since the proof is also standard, we will omit it here. It can be found in [11].
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3. THE STRUCTURE OF THE GROUP G

We have a canonical embedding

G':=SU(p,q) = G.g — (%) )

and the canonical projection

/

G—»U(r),g::(% 2)»—>Eg::E

induces a group isomorphism
G /G ~U(r).
Obviously K" = K N G" = S(U(n) x U(1)) is the stabilizer o0 in G'. Let A denote the

common standard maximal split abelian subgroug-andG’ given by the image of the IE
group embedding

cosht |0 sinh t;
R— G t—a := 0 1 0
sinh ¢ | 0 ‘ cosh ¢

Then the centralizek/ of A in K is the group of all

el 0

oo |° o
0 € ’
0 |E

wherezs € U (1),u € U (p — 1) andE € U(r) suchthat?detu = det E. Let M’ = K'NM =
G' N M be the centralizer oft in K’. The centralizer ofy’ in G is precisely

wor-{(3f2)

andG' N Zs (G') = Z(G'). An easy calculation shows thét = G'Z; (G'). SO K =
K'Zq (G") andM = M'Z (G"). Therefore if we decompose the adjoint representatioA of

as
s=Pe

acd

ecUN),EcU(r),ett = detE} C M,

where for alloe € R
g* = {€ € g|Ad,,(§) = e}
is the corresponding root space and

¢ :={aecR|g*#0}

is the root system, then we see theis at the same time the root system(éf so® = {0, 2}
if n=1and® = {0, +1, +2} if n > 2. Furthermore, itx # 0 theng® ¢’ is at the same time
the corresponding root spacegdf and finallyg’ = a ®@m = a @& m' @ 3,4 (¢').

Lemma 3.1.
N(A) = ANg(A) = N(AM) C N(M).

Proof. Simple calculation. O
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In particular we have the WYL group

acting onA ~ R via sign change. For the main result, Theofen 4.3, of this article the following
definition is crucial:

Definition 3.1. Let g € G.
(i) go is called loxodromic if and only if there existsc G such thaty, € gAMg~.
(ii) If go is loxodromic, it is called regular if and only if, = ga;wg™' witht € R\ {0} and
we M.
(i) If v € T"is regular loxodromic then it is called primitive inif and only if y = ~" implies
v € {£1} for all loxodromicy’ € T"andv € Z.

Clearly for ally € I' regular loxodromic there exists € I' primitive regular loxodromic
andv € N\ {0} such thaty = ~".

Lemma 3.2. Let g, € G be regular loxodromicg € G, w € M andt € R\ {0} such that
go = ga;wg~'. Theng is uniquely determined up to right translation by elementd &, (A),
andt is uniquely determined up to sign.

Proof. By straight forward computation or using the following strategy: #et G, w' € M
and¢ € R such thaty, = ¢'ayuw’g’" also. Thenyw = (g~'¢") apw’ (g7'¢')~". Sincet
R\ {0} and because of the root space decompositioh,m must be the largest subspace of
g on whichAd,,,, is orthogonal with respect to an appropiate scalar producA&o: ,, maps
a + m into itself. This impliesy'¢g’ € N(AM) = ANg(A) by Lemmd 3.1. O

4. THE MAIN RESULT

Letp € {0,...,r}. Assumel'\G compactor n > 2, vol '\G < oo andk > 2n — p. Let
C > 0 be given. Let us consider a regular loxodromice I'. Letg € G, wy € M andtg > 0
such thaty, = gay, wog ™.

There exists a toru := (v,)\ gAM belonging toy,. From Lemma 3]2 it follows thf is
independent of up to right translation with an element of theB®L groupW = M\ Ng (A).

Let f € sSi(T"). Thenf € €= (I'\G)® ® O (C°). Defineh € C> (R x M) ® O (C") as

h(t,w):= ]?(gatw)
for all (t,w) € R x M ’'screening’ the values of on T. Then clearlyh (t,w) = h(t,1,
Eunj(w))j(w), and soh(t, w) = h(t, 1, E,n)j(w)**?if f ss,gp)(r), forall (t,w) € Rx M.
ClearlyE, := E,, € U(r). So we can choosge G such thatr, is diagonal without changing
T. ChooseD € R™*" diagonal such thatxp(2miD) = Ey andx € R such thayj (wg) = e*™x.
D andy are uniquely determined hy, up toZ. If
dy 0

D= ..
0 d,
with d;,...,d, € Randl € p(r), then we definer; D := Z].E[ d;.
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Theorem 4.1(FOURIER expansion of: ).
(i) h(t+to,w) = h(t,wy'w) for all (t,w) € R x M, and there exist uniqué;,,, € C,
Iep(r),me % (Z — (k +|I]) x — trD), such that

htw)= Y jlw)t > brm@™™™ (Eun)'

Tep(r) mG%(Z—(lﬂ—HI\)X—trID)
forall (t,w) € R x M, where the sum converges uniformly in all derivatives.
(i) If f € sS\”(T), brm = Oforall I € o(r), |I| = p, andm € L(Z — (k + p) x —tr;D)N] —

C, C| then there existdl € C> (R x M)° ® A (C") uniformly LIPSCHITZ continuous with a
LipscHITZ constantC; > 0 independent of, such that

h = 8tH,

H (taw) = j(w)kH (tv L, Ewnj(w»
and
H (t+ to,w) = H (t,wy 'w)
forall (t,w) € R x M.

Proof. (i) Lett € Randw € M. Then

h(t+ to,w) = f (garamw) = F (rogwy aw) = F (garuy 'w)

=h (t, walw) ,
and so
h(t+to, 1) =h(t,wy")
=J (w())ik h (t7 17 Eo_177] (U}O)i )
_ ] (U)())_k Z h (t, 1) 6727ritr1DT]Ij (w0>—|f|
Tep(r)
_ Z e—2m‘((k+|1\)x+tr1D)hI(t,1)771'
Tep(r)

Thereforeh; (t + to, 1) = e 2m(EFDx+trD)p (¢ 1) for all I € p(r), and the rest follows by a
standard BURIER expansion. O

To prove (ii) we need the following lemma:

Lemma 4.2 (Generalization of the reverseeEBNSTEINinequality) Lett, € R\ {0}, € R
andC > 0. LetS be the space of all convergeROURIER series

S = Z Sl€2m'm<> c C® (R)(C ’
me L (Z—v),|m|>C
to

forall s, € C. Then
~ . N S .
S —§,s= Z §meXT MO s § = Z M g2mim$

1 ) 2mim
me ;- (Z=v),|m|>C me i (Z—v),|m|>C

is a well-defined linear map, anj¢f|| . < - ||s|| forall s € S.

oo —
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Proof. This can be deduced from the ordinary rever&RBSTEINinequality, see for example
Theorem 8.4 in Chapter | of [9].

Now we prove Theorem 4.1 (iifix somel € p(r) such thafl| = p andb;,, = 0 for all
m € % (Z — (k+ p)x —trD)N] — C,C]. Then if we defines := (k + p) x + tr;D € R we
have
hi($,1) = > by me?™ MO,
me i=(Z-v),/m|>C
and so we can apply the generalized reverseBsTEINinequality, Lemma 4]2, té,. There-
fore we can define

— br : C
H/ — _ M 2mimd [e%S) .
1=hr (¢, 1) > P € C* (R)
mE%(Z—V),\m\ZC
m € L*(G) by SATAKE's theorem, Theorem 2.1, and so there exists a constant 0
independent ofj, and/ such that|s,||,, < C’, and now Lemma 4|2 tells us that
6C"
wC

6
H; < —lh 1 <
1l <~ 1130, Dl <

Clearlyh; (¢, 1) = 0. Hj.

Sincej is smooth on the compact s&f, j*+» (Ewn)I is uniformly LIPSCHITZ continuous
on M with a common LPSCHITZ constantC” independent ofy, and/. So we see thall €
C=(R,M)® ® A (C") defined as

H(t,w) = j(w)"?Hi(t) (Eun)’

Tep(r)

for all (t,w) € R x M is uniformly LIPSCHITZ continuous with LlPSCHITZ constantC, :=
(%< + 1) ¢’ independent of, and the rest is trivial. 0

Let ] € p(r) andm € % (Z — (k+|I]) x — tr;D). SincesSi(I') is a HLBERT space and
sSk(I') — C, f — by, is linear and continuous, there exists exactly gne; ,,, € sSi(I') such
thatb; ., = (©y,1.m, f) forall f € sSi(T'). Clearlyp., r.m € sS,gI')(F).

For the remainder of the article for simplicity we write €] — C,C] instead ofm €
% (Z — (k+1I])x —tryD)N| — C,C[. In the last section we will computg. ; ., as a rel-
ative FOINCARE series. One can check that the family

{9070Jvm}IEp(r),m:p,mE}—C,C[

is independent of the choice gf D andy up to multiplication with a unitary matrix with entries
in C and invariant under conjugating with elements of".

Now we can state our main theorem: Letbe a fundamental set for all primitive regular
loxodromicy, € I' modulo conjugation by elements Bfand

7= {mE Ze (GY) ﬂg’EG’:mg’GF} C Za ().

Then clearlyl” C ('Z. Recall that we still assume
e ['\GG compactor

e n>2,vol'\G < oo andk > 2n — p.
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Theorem 4.3(Spanning set fosS,(I") ). Assume that the right translation af on F\G’Z is
topologically transitive. Then

{¢70,[7m| Yo € Q7I € p(T)J ‘]| =p,m e] - C7 C[}
is a spanning set fosS\) (I').

For proving this result we need amsov type theorem forz and the unbounded realiza-
tion of B, which we will discuss in the following two sections.

Remark 1.

(i) If there is some subgroupl C Z; (G’) such thaf” — G’ M and the right translation of
AonT'\G'M is topologically transitive then necessarlyZ(G') = Z and there exists
go € G'suchthat"Z = TgoA. The latter statement is a trivial consequence of the fact
thatZ C M. B

(ii) Inthe case wherB N G’ C I'is of finite index or equivalently is finite then we know
that the right translation ofl on F\G’Z is topologically transitive because of&bRES
ergodicity theorem, seé [13] Theorem 2.2.6, and since fhern:’ C G’ is a lattice.

(iif) There is a finite-to-one correspondence betw@eand the set of closed geodesics of
[\ B assigning to each primitive loxodromic element
Y = gag,weg t €T, g € G, ty > 0andw, € M, the image of the unique geodesic
gAO0 of B normalized byy, under the canonical projectids — I'\ B. It is of lengtht,
if there is no irregular point of \ B on g A0.

5. AN ANOSOV TYPE RESULT FOR THE GROUP G

Onthe LE groupG we have a smooth flowy, ), given by the right translation by elements
of A:
¢ G— G,g— ga.
This turns out to be partially hyperbolic, and so we can apply a partia 2ov closing lemma.
Let me mention that the flofy;), . descends to the ordinary geodesic flow on the unit tangent
bundleSB ~ M\G. Let us first have a look at the general theory of partial hyperbolicity: Let
W be, for the moment, a smooth Riemannian manifold.

Definition 5.1 (Partially Hyperbolic Diffeomorphism and Flow)et C' > 1.
(i) Let be aC>-diffeomorphism ofi¥’. Theny is called partially hyperbolic with constatt
if and only if there exists an orthogonBky (and thereforeDp—! ) -invariantC>-splitting

(5.1) TW =TT *oT"
of the tangent bundl&WW such thatr® & T+, T7° ¢ T—, T°, T andT~ are closed under the
commutatorDe|ro is an isometry|| Do|r-|| < & and|[ Dy~ |7+|] < &.

(ii) Let(p;),.x be aC>-flowonW. Then(y,),. is called partially hyperbolic with constaat

if and only if all ¢;, ¢ > 0 are partially hyperbolic diffeomorphisms with a common splitting
) and constants™ resp. and’™® contains the generator of the flow.

A partially hyperbolic diffeomorphisnp gives rise taC>°-foliations onW/ corresponding to
the splittingl’W = T° @ T+ @ T~. Let us denote the distances along e 7+-, T°-, T*-
respectivelyl’~-leaves byd®*, d°, d* andd~.

Definition 5.2. LetTW = T° & T+ & T~ be an orthogonal>-splitting of the tangent bundle
TW of W such thatl® & T+, T°, T+ and7T~ are closed under the commutatéf, > 1 and
U c W. U is calledC’-rectangular (with respect to the splittidgdV = 7° T+ ¢ T~ ) ifand
onlyifforall y,z € U
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{i} there exists a unique intersection pointe U of the T° @ T'*-leaf containingy and
the T -leaf containingz and a unique intersection poibtc U of the T° @ T'*-leaf
containingz and theT'~-leaf containingy,

d** (y,a),d” (y,0),d" (z,a) ,d"" (2,0) < C"d(y,2),
and
1
o (zb) < (y,a) < O (z,),
1 _ _

ad (z,a) < d (ya b) < Cld (Z,CL) .

{i} if y andz belong to the sam&’ T+ -leaf there exists a unique intersection paeir U
of the7°-leaf containingy and thel'*-leaf containing: and a unique intersection point
d € U of theT?-leaf containing: and theT*-leaf containingy,

d*(y.c),d" (y,d) d" (z,¢),d" (z,d) < C"d™" (y,2),

and

S () < & (y,0) < Cd (2,d),

Figure 5.1: Intersection points in {i}.

Since the splitting’W = T° ® T+ @ T~ is orthogonal and smooth we see that foradt 17/
andC’ > 1 there exists &’-rectangular neighbourhood of

Theorem 5.1(Partial ANosov closing lemma) Lety be a partially hyperbolic diffeomorphism
with constantC, letz € W, ¢’ €]1,C[and§ > 0 such thatUs(x) is contained in aC’-
rectangular subset/ C W.

If d(z,p(z)) < 5(1;,_2—%1 then there exisy, z € U such that
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() = andy belong to the samé&~-leaf and

/

d= (z,y) < %d(:ﬂys@(w)),

C
(i) y andp(y) belong to the sam&® & T+ -leaf and

A" (y. p(y)) < C%d(x,¢(x)),
(iii) y andz belong to the sam&™-leaf and

(iv) z andy(z) belong to the sam&’-leaf and
d° (z,0(2)) < C"d (, p(2)).

The proof, which will not be given here, uses a standard argument obtaining thespairds
©(z) as limits of certain @UCHY sequences. The interested reader will find itin [11].

Now let us return to the flowy,),., on G and choose a left invariant metric @ such
thatg®, o € © \ {0}, a andm are pairwise orthogonal and the isomorphiBn~ A C G
is isometric. Then since the flow,),., commutes with left translations it is indeed partially
hyperbolic with constant and the unique left invariant splitting @fG given by

NiG=g= aom & P & P ¢

—_—— aed,a>0 aed,a<0
TO': NS -~ v NS -~ >
L T = T1+:=

For all L C G compactT, e > 0 define
My = {gaug '|g€ L,te[-TT]}

and
Npre:={g € G|dist (g, Mp7) <e}.

Lemma 5.2. For all L ¢ G compact there exisy, ¢, > 0 such that” N Ny, 7, ., = {1}

Proof. Let L C G be compact and’” > 0. Thenl,, r is compact, and so there exists> 0
such thatV,, 1. is again compact. Sindeis discrete'N Ny, 1. is finite. Clearly for alll’, 7", ¢
ande’ > 0if ' < T" ande < &' thenNy, 1. C Ny 1., and finally

() Nre={1}.

T,e>0

Here now is the quintessence of this section:

Theorem 5.3.
(i) Forall 77 > 0 there existC; > 1 ande; > O such thatforalle € G,y € I'andT > T if

e:=d(yzr,zar) < e

then there exist € G, w € M andt, > 0 such thatyz = za;,,w (and so~ is regular
loxodromic),d ((to, w), (T,1)) < Cie and for all 7 € [0, T]

d(ra;,za,) < Cie (e_T + e_(T_T)) .
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(i) Forall L C G compact there exists, > 0 such that for allx € L,y € T'andT € [0, Ty],
T, > 0 given by Lemm@a 5.2, if
e:=d(yr,xar) < ey

theny =1andT <e.
Proof. (i) Let 77 > 0 and define

2Tt
C} := max —Tl,ezT1 > 1.
1—e 72

DefineC’ := e%, let U be aC’-rectangular neighbourhood ofe G and letd > 0 such that

Us(1) C U. Then by the left invariance of the splitting and the metriccowe see thagU is a
C’-rectangular neighbourhood gfandUs;(g) = gUs(1) C gU for all g € G. Define

i 51_6_% L1
g :i=min | 0———, — )
! 6T1+1’01

Now assumey € I' andT’ > T; such that

e :=d(yz,zary) < €.
Theny : G — G, g — v gar is a partially hyperbolic diffeomorphism with constart > 1
and the corresponding splittingG = 7° @ T & T~. Then since

Eh]
l—e 72 1—Cleh
<6 =9
£=0m C?+1
the partial AVosov closing lemma, Theoren 5.1, tells us that there gxiste G such that

(i) = andy belong to the samé&~-leaf and

d_(%y)éel

(iii) y andz belong to the samé*-leaf and

d* (yary, zary) < €

(iv) vz andzar, belong to the sam&®-leaf and
d° (yz, zapy) < eC™.

In (iii) and (iv) we already used that the metric and the flow are left invariant. So by (iv) and
since thel-leaf containingzar is zAM, there existv € M andt, € R such thatyz = za;,w.
So
d° (ag, 7w, 1) < eC™,
and so, sincelM ~ R x M isometrically, we see that
d((to,w),(T,1)) <eC™ = ee*t < eC.

In particular,|t, — T'| < Ty, and sa, > 0.
Now letr € [0, 7). Then sincer andy belong to the sam&~-leaf, the same is true fara,
andya,, and

!

C
d” (zar,ya,) <d (x,y)e ™ < 51 e <eCie .

C
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Sincey andz belong to the sam&™-leaf, the same is true far, andza,, and
d* (ya,, za,) < d* (yag, zar) =77
cn
<e

— Cl
el

Combining these two inequalities we obtain
d(ra;,za,;) <eCy (eiT + e’(T’T)) .

e~ (=7 < 8016_(T_T).

(i) Let L C G be compact and let> 1 be given such thgtAd,||,

|Ad, || < cand therefore

1
_d(aga bg) < d((l, b) < Cd<ag7 bg)
&
forall g € L anda,b € G. Lete, > 0 be given by Lemmpa 52 and define
Eg 1= @ > 0.
C

Letx € L,y € T'andT € [0, Tp] such that
e :=d(yz,zar) < .
Then sincer € L, we get
d (’y, QJCLTZL‘_I) < ce < g
and soy € I' N N 73 «,- Thisimpliesy = 1 and sad (1, ay) = € and thereford” < «. O

6. THE UNBOUNDED REALIZATION

Letn C ¢’ be the standard maximal nilpotent sulelalgebra, which is at the same time the
direct sum of all root spaces gf of positive roots with respect t@ Let V := expn. Then we
have an WASAwWA decomposition

G = NAK,

N is 2-step nilpotent, and sy’ := [NV, N] is at the same time the center [t
Now we transform the whole problem to the unbounded realization via the partale®
transformation

1 1
R := 0 (1|0 In—1 €G©=SLn+1,0C)
_\/Li 0 % —n+1

mappingB biholomorphically onto the unbounded domain

— () 1 n 1.
H.{W(W2> Yn—1 EC’RGUJ1>2W2W2}.
We see that

RG'R'c G*=SL(n+1,C)— GL(n+1,C) x GL(r,C)

acts holomorphically and transitively adfii via fractional linear transformations, and explicit
calculations show that

et|0] 0 —1
a,:=Rau;R'=| 0[1] 0 n—1
0[0]e? —n+1
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forallt € R, andRN R~! is the image of

1|u* |iA+su'u
RxC"' - RGR ', (\u)—nj,:=[ 0]1 u ,
00 1

which is aC>°-diffeomorphism onto its image, with the multiplication rule

/ r_
n/\,unu,v - n/\+u+Im (u*v),u+v

forall \,u € R andu,v € C*!, soN is exactly the HISENBERGQgroup H,, acting onH as
pseudo translations

<w1—|—u*W2—|—M—|—%u*u)
W — .
Wy + u

Definej (R,z) = Y2 € O(B),j (R™',w):=j (R, R'w) ' = 22 c O(H), and for all

1—2z1 14wy
Alb 1,
g€ RGR™ ' = cld € RGR™!
0 K
define
1
' = j (R, R i (R7'gR, R 'w)j (R = .
jlg,w)=j(R,R 'gw)j (R '"gR, R'w)j (R w) pe——
LetH := H!" with even coordinate functions,, . . . , w,, and odd coordinate functiors, . . ., 9,.

R commutes with aly € Z; (G’), and we have a right-representation of the grapR ' on
D(H) given by

i D) = 00, = £ (9 (-5-) ) 0.0
forall g € RGR. If we define

r:D(H) = D(B), f — | (R (?)) j(R.0)

and
DB~ 0. £ = £ (17 (5) ) (. 0)"

then we see that we get a commuting diagram

D(H) 5 D)
s L .
D(B) — D(B)

lg

Now define the sesqui polynomial on H x H, holomorphic in the first and antiholomorphic
in the second variable, as

A (z,w):=A(R 'z, R'w)j (R, z)flj (Rfl,w)i1 =21 + W1 — W2
for all z,w € H. Clearly|det (z — Rz)'| = |j (R,z)|""" forallz € B. So

|det (w i gw)'| =15 (g, w)|""",

N|=

(g, €1)| = A'(ger, ger)

J. Inequal. Pure and Appl. Mathl0(1) (2009), Art. 2, 33 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

A SPANNING SET FOR THESPACE OF SUPER CUSP FORMS 17

forall g €¢ RGR~' andA’ (w,w)_(”“) dVieb iS the RGR™! -invariant volume element oA .
If f =2 1cpm f1¢" € O(B), all f; € O(B)E, I € p(r), then

f’R—l _ Z # (R_1<>)j (R_l,o)kﬂll = O(H),
)

Iep(r
andiff =3, fr9" € O(H), all fi € C*(H)%, I € p(r), andg € RGR™", then
flo= Y f1(g0) i (g, 0)" M (Eg) € O(H).
Tep(r)

Let 0H = {w € C"|Rew; = wjw } be the boundary off in C". ThenA’ and0H are
RN R~ !-invariant, and? N R~! acts transitively o®H and on each

{weH|A (w,w)=¢€*} = RNa,0,
teR.

RN'R'e =RN'q,0 7/

T Wy

Figure 6.1: The geometry df.

All geodesics inH can be written in the form
R — H,t+— w, := Rga,0 = RgR 'dje,

with someg € G, and conversely all these curves are geodesic$.iWe have to distinguish
two cases: Either the geodesic connexctsvith a point in0H, or it connects two points i H .
In the second case we have

. / _
tlgl:nooA (Wt’Wt) - 0,
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S0 we may assume without loss of generality thatw,, w;) is maximal fort = 0, otherwise
we have to reparametrize the geodesic uging 1" € R appropriately chosen, instead of

Lemma6.1.
() Let
R — H,t+— w, := Rga,0 = RgR 'aje,
be a geodesic i such thatlim; .., w; = oo andlim;_ . . w; € 0H with respect to the
euclidian metric orC?. Then for allt € R

A (wy, wy) = e A (wo, W),
and if insteadim;_,_., w; = oo andlim;_,., w; € 0H, then
A (wy,wy) = e 2N (wo, wy) .
(i) Let
R — H,t+— w, := Rga,0 = RgR 'ae;
be a geodesic irH connecting two points i#H such thatA’ (w,, w,) is maximal fort = 0.
Then
R — Rog, t — A" (wy, wy)
is strictly increasing orR<, and strictly decreasing oR -, and for allt € R
A/ (W—t7 W—t) = A/ (Wt7 Wt)
and
e A (wo, wo) < A (wy, wy) < de A (wy, wy) .

Proof. (i) Since RNR~! acts transitively odH and A’ is RN R~ !-invariant we can assume
without loss of generality that the geodesic conn@asdoo. But in H a geodesic is uniquely
determined up to reparametrization by its endpoints. So we see that in the first case

w, = a,ve; = e*'ze,

and in the second case

w, = a_,re; = e *re;

both with an appropriately chosen> 0.
(i) Let u,y € R ands € CP~! such that)? + s*s = 1. Then
et < e* (1 — y* tanh® ¢ + 2iy tanht) )

R — H,t— w"® =
TP W V2tanht (1 + iytanht) s

1+ y2tanh®t
is a geodesic througit“e; in H since it is the image of the standard geodesic

R—>B,t}—>at02(tanht)

0

in B under the transformation

al, R
S—— ~ ~~
€RAR-ICRG'R-! eK'CG’
So we see that ,
21e“ty
8 W(uvyvs) — e T w H
e =0 V2e's c2ter
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is a unit vector with respect to theG R~ !-invariant metric on/ coming fromB via R. Now
sinceRN R~ acts transitively on each

{weH|A (w,w)=¢"} = RNa,0,

t € R, andA’ is invariant undei N R~ we may assume without loss of generality that=
e*"e; with an appropriate € R. SinceA’ (w¢, w;) is maximal fort = 0 we know thatd,w,|,_,
is a unit vector inR & CP~! C T,, H, and therefore there exigte R ands € CP~! such that

y? +s*s = 1and
ewil_ = 2iety
Wili=0 = \ /2eus )

Since the geodesic is uniquely determineddgyand 0, w,|,_, we see thatv, = wi“’y’s) for all
t € R, and so a straight forward calculation shows that

A" (Wi, wy) = 2€2u—1 — tanh2;f
1+ y? tanh” ¢
_ 8€2u
(1 492) (e +e2t) 4 2s*s’
The rest is an easy exercise usiig s*s = 1. O

For allt € R defineA.; := {a,|7 >t} C A.

Theorem 6.2 (A 'fundamental domain’ fol’\G ). There existy C N open and relatively
compactt, € R and= c G’ finite such that if we define

Q= JgnAs, K

geE
then
(i) g7'TgN NZs (G') & NZg (G')andg™'Tg N N'Zg (G') & N'Zg (@) are lattices, and

NZg(G") = (¢g7'TgN NZg (G") nZa (G')

forall g € =,
(i) G =TQ,
(iii) the set{y € T|yQ N Q # 0} is finite.

Proof. The theorem is a direct consequence of Theorem 0.6 (i) - (iii), Theorem 0.7, Lemma
3.16 and Lemma 3.18 of|[5]. For a detailed derivation 5ee [10] or Section 3.2/of [11]. [

Now clearly the set of cusps &f\ B in I"\0B is contained in the set

{tl}inoo I'ga,0|g € :} ,
and is therefore finite as expected, where the limits are taken with respect to the Euclidian metric
onb.

Corollary 6.3. Letty € R,n C N and= C G be given by Theore@.z. Lete C (I'\G)® and
s €]0,00]. Thenh € L* (T\G) if and only ifh (¢¢) € L® (nAs,,K) forall g € =.

Let f € sM(I') andg € =. Then we can decompos@y|, = >_;c qr9! € O(H), all
g1 € O(H), I € p(r), and by Theorerp 6|2 (i) we know that'T'g N N'Z; (G') # Za (G).
Soletn € g 'TgN N'Zg (G') \ Zg (G"),

- el 0
ot =i (517
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Mo € R\ {0},e € U(1), By € U(r),e"* = det E.

j(RnR™Y) :=j(RnR™',w) =¢71 € U(1)isindependent ofv € H. So there existg € R
such thatj (RnR™!) = ¢*™X. Without loss of generality we can assume thgtis diagonal,
otherwise conjugate with an appropriate element df; (G'). So there exist) € R™"
diagonal such thak, = exp (27miD).

Theorem 6.4(FOURIER expansion off|,| .. ).
(i) There exist uniquey,,, € O (C*™"), I € p(r), m € 5= (Z — tr;D — (k + |1]) x), such that

ar (W) _ Z Clm (Wg) 627rmw1

mE%(thrlDf(ker)X)

forallw € H and] € p(r), and so

flglg-1 (W) = Z Z crm (Wa) eyl

Iep(r)  me o (Z—try D—(k+1)x)

w1 —1
wy ) jn—1
(i) ¢rm = 0forall I € p(r)andm > 0 (this is a super analogon faK OECHERS principle,

see for example Section 11.5[8f ), and iftr; D + (k + |I]) x € Z, thenc; is a constant.
(i) Letl € p(r)ands € [1,00] . If tr;D + (k + |I|) x € Z, then

forall w = € H, where the convergence is absolute and compact.

k+|1]

A (w,w) 2

€ L° (RnAs,0)

with respect to th&?G R~! -invariant measure\’ (w, w) ™" dVi, onH. If tr; D+(k + |I]) x €
Zandk > 2n — |I| then
k+|I]
q A’ (w, W)+T € L° (RnA=4,0)
with respect to the?GR ! -invariant measure oi{ if and only ifc; o = 0.

A proof can be found in [10] of [11] Section 3.2.
7. PROOF OF THE MAIN RESULT
We have a lLE algebra embedding

p:sl(2,C) — g =sl(n+1,C), ( (Cl b

—a

Obviously the preimage @f underpissu(1, 1), the preimage of underpiss (u(1) & u(1)) ~
u(1) andp lifts to a LIE group homomorphism

ﬁ: SL(Z,C) — GI(C = SL(TL+ 17<C)7 <

o

such thap (SU(1,1)) C G'.
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Let us now identify the elements gfwith the corresponding left invariant differential oper-
ators. They are defined on a dense subsét¢f’\ ), and define

D::p((l) é)ea, D/::p(_oi 6)69/ and

qﬁ:p(é _OZ.>€E'.

TheR-linear span oD, D’ and¢ is the3-dimensional sub LE algebrap (su(1,1)) of g’ C g,
andD generates the flow,. ¢ generates a subgroup &, being the image of thelE group
embedding

it

R/27Z — K, t — exp (o) :ﬁ( 60 o ) .

(&
Now define
Dt = % (D—iD"), D™ := % (D +4D') andV¥ := —i¢
as left invariant differential operators ¢h Then we get the commutation relations
[0, D*] =2D", [U,D7] = —2D" and [D", D] = T,
and since&~ is unimodular
(DY) =-D, (D7) =-D" and¥* = V.
So by standard GURIER analysis

L* (T\G) = @HV

VEZL

as an orthogonal sum, where
H,:={F e L*(I'\G)N domain¥| ¥F = vF}
for all v € Z. By a simple calculation we obtain
D* (H, N domainD*) C H,., andD~ (H, N domainD~) C H,_,
forallv € Z.

Lemma7.1.D-h =0forall h € O(B).

Proof. Letg € G. Then agairh|, € O(B), andh (g0) = i/z|vg So

D h(g) =D~ (% (g<>>) (1) = Bih|, = 0.

Lemma 7.2. Let f € sS”(I'). Thenf is uniformlyLIPSCHITZcontinuous.

Proof. Since onG we use a left invariant metric it suffices to show that there exists a constant
¢ > 0 such that for aly € G and¢ € g with [|£]], <1

‘ff(g)’ <ec
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Thenc is a LIPSCHITZ constant forf. So choose an orthonormal ba&fs, . .., £{y) of gand a
compact neighbourhootl of 0 in B. Then by QuCHY’s integral formula there exist’, C" >
0 such that for alh € O(B) N Ly°(B) andn € {1,..., N}

(&) )] < c’/ bl < C'vol LJhl] , < C"vol L[]
L %)
and sincgy — C, ¢ — (fﬁ) (1) is linear we obtain
)(g%) (1)‘ < NC"vol LHEHOO

for generak € g with |[¢]|, < 1. Now letg € G. Then againf|, € O(B), f(g<>) = ﬂvg and
by SATAKE's theorem, Theorefn 4.¥,and sof|, € L;°(B). So

79| = | (67 60) ] = Nemval L || Fg0)|| < Mol L||F]]
and we can define:= NC"vol L Hﬂ ‘OO. O

Now let f € sS,(f’)(I‘) suchthaty,, 1.m, f)r = 0forall o, 1.m, v € I' primitive loxodromic,
I € p(r),|I| =p, me]—C,C[. We will show thatf = 0 in several steps.

Lemma 7.3. There exists” € C (I'\G)“® A (C") uniformlyLIPSCHITZcontinuous on compact
sets and differentiable along the flaw such that
f=0;F({a,)|,_, =DF.

Proof. Here we use that the right translation withon F\G’E is topologically transitive. So
let go € G’ such thal'gyA = G'Z and defines € C> (R) @ A (C") by

t ~
s(t) ::/ f (goa,) dr
0
forallt € R.
Step | Show that for all L C G'Z compact there exist constants’; > 0 and 3 > 0 such
thatforall t € R, T > 0and~ € I'if goa; € L and
e = d (v90as, goarsr) < €3
then|[s(t) — s(t + T)| < Cse.

Let L € G'Z be compact], > 0 be given by Lemm2 and; > 1 ande; be given by
Theore (i) withl} := Ty. DefineCs := max ((Jl (Cy + 2¢), ’ fH ) > 0, whereCy > 0
is the LIPSCHITZ constant from Theore@.l (i) and> 0 is the LPSCHITZ constant off.
Definee; := min (61, €9, 2%) > 0, wheres, > 0 is given by Theore3 (ii).

Lett € R, T > 0 andy € I such thayyya;, € L ande := d (ygoas, goarir) < €3.
First assum&’ > T;,. Then by Theorerp 5§ 3 (i) sinee< ¢, there exisy € G, w, € M and
to > 0 such thatyg = gas,wo, d ((to, wo) , (T, 1)) < Cie, and for allr € [0, 7]

d (goatsr,gar) < Cie <€7T + e’(T’T)) )
We get

s(t+T)—s(t) = /OT J?(gaf) dT+/OT (]?(goat+‘r> - ]?(gaq-)> dr

J/

—~~ ~

IlZ: 12;:
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and

T ~
2l < [ |Fanaesr) = Figan)|ar

T
< C/ d (goau+r, ga-) dr
0

T

< cCle/ (e77+ e*(T*T)) dr
0

< 2cCle.

Sincey € T is regular loxodromic, there existg € T" primitive loxodromic and’ € N\ {0}
such thaty = . vy € gAWg~! since Lemm2 tells us thate G is already determined
by v up to right translation with elements 6fNx(A). Choosew’ € Nk (M), t; > 0 and
wy € M such thatt,, is diagonal andy = gw'a, wy (gw)~", and letg’ := gu’. We define
heC®(Rx M@ A(C)as

h(t,w) := f(¢'a,w) = f (ga,w'w)
forall 7 € Randw € M. Then

T
I, = / h (T, w'il) dr.
0
We can apply Theorem 4.1 (i) and, singes perpendicular to alp., ;.., I € p(r), m €
| — C,C], also Theore 1 (ii) witly’ := gw’ instead ofg, and so
|| = |H (T,w'™") — H (0,w'™")]

= ‘H (T, w/’l) - H (to, ’LUlil’LUo)‘

S CQd ((Tv 1) 9 (t07 wO))

S CY16(287

where we used that (0,w'~!) = H (¢, wyw'!), choosing the left invariant metric i, and
the claim follows.
Now assuméd’ < Tj. Then by Theorer 5|3 (ii), since< ¢, we get7’ < ¢ and so

/OTf(goat+T)dT < éHﬂ‘m

~\ C
Step Il Show that there exists a uniquer; € C (F\G’Z) ® A (C") uniformly LIPSCHITZ
continuous on compact sets such that for all € R

s(t) = F1 (goay) -

[s(t+T) = s(t)| =

~ ~\ C
By Step I forallL ¢ T'\G'Z compact withl.° dC L there exists a uniqué;, € C (F\G’Z)
uniformly LiPSCHITZ continuous such that for alle R if I'goa; € L thens(t) = Fi (I'goay).
\C
So we see that there exists a unigquee C (F\G’Z) ® A (C") such thatFy|, = F, for all

L c I'\G'Z compact withL.°> C L.

dense

Step Il Show that £} is differentiable along the flow and that for all g € G'Z
O-F1 (gar) |r=0 = ]?(9)
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Letg € G'Z. It suffices to show that for all’ € R

T
|| Ttaar)ir = Fifgar) = Fito)
If g = goa, for somet € R then it is clear by construction. For generale G'Z, since
TgoA = G'Z there existgy,, tn)pen € (I X R)" such that
1m v, 90ar, = g,
and so
m v,90ar14, = gar

compact inr € R. Finally fis uniformly LIPSCHITZcontinuous. Therefore we can interchange
integration and taking the limit ~~ oc:

T _ T _
/ f(ga,;)dr = lim / f (Wmg0arys,) dT
0 n—oo 0
= nh_{{.lo (F1 (Yngoarst,) — F1 (yngoar,))
= F (gar) — Fi(g).

Step IV Conclusion.
DefineF € C(G) ® A\ (C") as

F (gw) := /~F1 (gu™", Euun) j(uw)*+edu
Z

forall g € G'Z andw € Z (G'), where we normalize the AAR measure on the compacte.

groupZ such thatvol Z = 1. Then we see thaF is well defined and fulfills all the desired
properties. 0J

Lemma 7.4.
(i) Forall L C G compact there exists, > 0 such that for allg, h € L if ¢ andh belong to the
samel'~-leaf andd (g, h) < ¢4 then

lim (F (ga;) — F (hay)) =0,

t—o00

and if g and h belong to the sam&*-leaf andd™ (g, h) < ¢, then
thEn (F (ga;) — F (hay)) = 0.

(i) F is continuously differentiable along—- and7*-leafs, more precisely if : I — G is a
continuously differentiable curve in&™ -leaf, then

O (Fop)(t / o.f

andifp : I — G is a continuously differentiable curve infa -leaf then

0 (Fop)( /&t
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Proof. (i) Let L C G be compact, and Idt’ C G be a compact neighbourhoodbfLetT, > 0
be given by Lemmp 5|2 and > 0 by Theoreni 53 (ii) both with respect 1d. Define

Lo To >0
Eyp = —MiIN | €1,89, —
4 3 1,<2, 201 3

wheree; > 0 andC; > 1 are given by Theorein 5.3 (i) with, := 7. Letd, > 0 such that
Us, (L) C L' and let

d €10, min (09, £4)] -

Letg, h € L be in the samé& '~ -leaf such that := d~ (g, h) < 4. Since the splitting of G
is left invariant andl; (G) C g’ we see that there exigt, ' € G’ andu € Z; (G') such that
g = g'uandh = h'u. Fix someT” > 0. Again by assumption there exisjs € G’ such that
TgoA = ('Z, and say, h € TgouA. So there exist,, v, € I' andt,, t, € R such that

d (gat77990uat9+t) ,d (hay, yagouay, 1) < 0

for all t € [0,7"], and so in particulaty,gouay,, yngouay, € L. We will show that for all
te[0,7"]
}F ('Vggouatg+t) - F (’thouat;ﬁt)‘ < C;/), (Ee_t + 25)
with the same constant, > 0 as in Step | of the proof of Lemnja 7.3 with respecito
Without loss of generality we may assurfie:= ¢, — t, > 0. Definey :=

v,7, " € T. Then for allt € [0, 7"]
d ('Y’thouatg+t, ’thouatﬁHT) < ece t 4 26.

First assumé’ > T; and fixt € [0,7"]. Then by Theorerh 53 (i), since
ge”" +26 < e+ 26 < min (51, 2%) there exist € G, ¢, € Randw € M
such thatyz = za,,w,

d((to,w),(T,1)) < Cy (20 +ee™),
and for allT € [0, T
d (YgGotas, 1o1ry 20,) < Cy (267 4+ 28) (67" + e T7).

And so by the same calculations as in the proof of Lemima 7.3 we obtain the
estimate

}F (7990“atg+t) - F (%gouatﬁt)‘ < Cj (€€_t + 25) :

Now assumél” < T,. Then by Theorerp 53 (ii) sincg,goma,, € L' and
e + 20 < g5 we obtainy = 1 and so by the left invariance of the metric 6n

d(1,ar) < ee™ " + 26,
thereforel’ < ee™" + 24. So as in the proof of Lemnja 7.3,

‘F (79907“‘“'59“) - F(’thﬂuatwt)’ = H]?Hoo <66_T, + 25)
< Cf (ee™" +26) .

Now let us take the limi ~ 0. Then~y,goua,, ~ g andy,gouas, ~ h, SO sinceF is
continuous
|F (gas) — F (ha;)| < Chee™
forall ¢t € [0,77], and sincel” > 0 has been arbitrary, we obtain this estimate for all 0 and
solim,; ., F'(ga;) — F (ha;) = 0. By similar calculations we can prove thaty, . ., F' (ga;) —
F (hay) = 0if g andh belong to the samé&*-leaf andd™ (g, h) < 4.
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(i) Let p : I — G be a continuously differentiable curve ifa-leaf, and let,, t; € I,t; > t,.
It suffices to show that

F(p(t1)) — / / O f (p(t)ay) drdt.

Let C" > 0 such that|d,p(t)|| < C’ for all t € [to,t;]. Then since lies in aT~-leaf we have
10 (p(t)a,)|| < C'e”™ and so

<cCle T

8tf(p(t)a7')

forall 7 > 0 andt € [ty, t;] wherec > 0 is the LPSCHITZ constant oth. So the double integral
on the right side is absolutely convergent and so we can interchange the order of integration:

/ / 8t CLT det / / 3,5 aT dth

- [ (Floe) - Flotw)an)dr

= lim (F (p(h) ar) = F (p (to) ar))
—F(pt)+ F(p(to))-

Now let L C G be compact such that[t,,?,]) C L and lets, > 0 as in (i). Without loss of
generality we may assume thét (p (ty) , p (t1)) < 4. Then

dim (F(p(t) ar) — F(p(to) ar)) =0

by (i). By similar calculations one can also prove

Oy (Fop)( / &g

in the case whep : I — G is a continuously differentiable curve ifla -leaf. 0

Lemma 7.5.
() Fel*(ING)@ A (C),
(i) EFel?M\G)@ A\ (C)forall e cRD®gN (TT O T™).

Proof. (i) If T'\G is compact then the assertion is trivial. So assumelthét is not compact,
then we use the unbounded realizatioof 53 introduced in Section]6. Sinsel (I'\G) < oo, it
suffices to prove thak’ is bounded, and by Corollafy 6.3 it is even enough to showZAhak>)

is bounded onVA.,, K forall g € £, wheret, € R and= C G’ are given by Theorefn §.2. So
letg € =.

Step | Show that F' (¢<>) is bounded onNa, K.
Letn C N also be given by Theorem 6.2. Théh(¢<¢) is clearly bounded on the compact
setrja,, K. On the other hand’ (¢<) is left-g~'T'g -invariant, so it is also bounded on

Nay,K = (gTg ' N NZg (G")) na, K

by Theorenj 6.2 (i).
Step Il Show that there existsC’ > 0 such thatforall ¢/ € NA.; K
Cl
’f (99| = A (Rg0 Rg0)"
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As in Sectiorﬂi, ley; € O(H) such thatf|y|,+ = > e a9’ Then sincef (¢0) €
L? (nAs, K) ® A\ (C"), by Theoreni 64 we haveduRIER expansions

(7.) qr (W) = > Crm (W) €27

mG%(thrIDf(k+|I|)X)ﬂR<o
forall I € p(I) andw = (wl) =1 € H, wherecr,, € O(C"™), I € o(r),
Wo }TL —1 ’
m € )\lo (z —trrD — (k+|I|) x) N R<o. Define

My := max | 1 (Z —tr;D — (k+ |I]) x) "R < 0.
Iep(r)
Rna,,0 C H is compact, and so since the convergence of theftER series|(7]L) is absolute
and compact we can define

C// — 6727rMoe2t0

2mmwy
X max g ch Ws)e H < 00.
Iep(r) ,m ( ) o0, R7jat,0

me = (Z—ter D—(k+[1)x)NR <o

Then we have
g1 ()] < CemMa (o)

forall I € p(r) andw € RnA~.;,0. Now let
x| 0
g = (ﬁ‘ﬁ) € nAsokK,

flgg) = Flolg-1lpgn—s (e1)

_ e . _
= flolgs (RQ/R ' (;)) i (RgR " er)

Rg'0 . _ k
— f|9|R_1 ( E’r]] (}gg/R,l) )j (Rg’R 1’61)

=" 4 (Rg0) (En)' j (RgR " er)" "

Tep(r)

Therefore sincej (Rg'R~*,e;)| = /A’ (Rg'0, Rg'0) we get
‘f (99')

E' € U(r). Then

S QTC//eﬂMQA’(Rg/O,Rg/O)

k ktr
x <A’ (Rg'0, Rg/0)? + A’ (Rg'0, Rg'0) ? )
So we see that there exist$ > 0 such that
~ C’
/
<
‘f 99| = & (Rg'0, Rg'0)

for all ¢ € nA-.;, K. However, on the one hanﬁ(g<>) is left- g~'T'g -invariant, and on the
other hand\’ is RN Z (G') R~! -invariant. Therefore the estimate is correct even for all
g e NAL K = (gFg*1 NNZg (G’)) nAs, K

by Theorenj 62 (i).
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Step IIL Conclusion: Prove that

1F (90) < IF (99| oo ey, i +2C"€7°

onNA., K.
Let ¢’ € G be arbitrary. We will show the estimate gfA N N A, K.

R — H,t— w; :== Rg'a,0

is a geodesic ii/, and for allt € R we havey'a; € NA-,; K ifand only if A’ (wy, w;) > 2¢?0,
Now we have to distinguish two cases.

In the first case the geodesic connegtsvith a point in0H. First assume thaim; ., w; =
oo andlim,_,_ ., w, € 0H. Thenlim; ., A" (w;, w;) = oo andlim;_,_,, A’ (w;, w;) = 0. S0
we may assume without loss of generality thd{wg, w,) = 2¢*°, and thereforg/ = ¢'ag €
Na,, K andg’a; € NA- K ifand only ift > 0. So lett > 0. Then

F(gg'ar) = F(g¢) + / Flogar) dr.

and so

f(gd'a,)| dr.

t
IF (99'a)] < IIF (0Ol o i + /

By Step Il and Lemma 6|1 (i),

/

f(gg'ar) ir

t
dr < ' -
7-_C/O A (wr, W)

/ t
= v / e ¥dr
A/ (Wo, Wo) 0
< e 2o,

The case wherBm,_, ., = oo andlim;_., € JH is done similarly.

In the second case the geodesic connects two poirdts/inThen without loss of generality
we may assume that’' (Rw,, Rw,) is maximal fort = 0. So if A’ (wg, wg) < 2¢%, we have
gANNA., K = (. Otherwise by Lemm@.l (ii) there exigts> 0 such that\’ (wp, wr) =
A’ (w_p,w_r) = 2¢*°, and since\’ (wr, wr) < =i A’ (wo, wy), we see that

1
T < 5 log (2A" (wr, wr)) — to.

Sog'ar,g'a_r € Nay K andg’a; € NA-, K ifandonly ift €] — T, 7. Lett €] — T, T] and
assume > ( first. Then

T ~
F(gg'a)) = F (gg'ar) / 7(gg'ar) dr.
t
and so

T ~
F 09'a)| < IF 6O i+ [ |Flagan)|r
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By Step Il and Lemmpa 6] 1 (i), now
T o~
/ )f (99'a-)
0

dr

T
ar<c [ o
0 A'(WT,W.,—)

Cl T
R
A (Wo,Wo) 0
< —C/ e
- QAI (W(], Wg)
< 2(" ™20

The casé < 0 is done similarly.

(i) Since on one hand, F ($a,)|,—0 = f € L*(I'\G) ® A (C") and on the other hand
vol (I'"\G) < oo, it suffices to show thagF is bounded for allk € ® \ {0} and¢ € g®. So let
a € ®\ {0} and¢ € g*. Firstassume > 0, which clearly implies thatr > 1 and¢ € T~. So
there exists a continuously differentiable cupve I — G contained in thd'~-leaf containing
1 suchthab € I, p(0) = 1 and d,p(t)|,_, :5 Letg € G. Then by Theorerh 74 (ii), we have

(EF) (9) = O:F (9p(t))] 1=

/ a.f (gp(t)a,)

[T 0 tgeapva)|_dr
:—/0 ((Ada ) jf) ga,) dr
— [ (6F) ter)ar

((EF) (9)] < cllé]l, < oo,

wherec is the LIPSCHITZ constant off. The caser < 0 is done similarly. O

dr

SO

Therefore by the BURIER decomposition described above we have
F= > 2 b
Iep(r),|I|l=p vEZ

whereF;, € H, forall I € p(r), |I| = p, andv € Z. D = D" 4+ D, and a simple calculation
shows thaD™ andD~ e RD®gn (Tt @ T ),and scD"F,D"F € L? (T'\G) ® A\ (C") by
Lemm' (i1). So we get theduRIER decomposition of as

f=DF= > > (D'Frya+D Fr,p)n
Iep(r),|I|=p VEZ
with DT Fy, o+ D~ F; 42 € H, forall v € Z. But sincef € sS7(T") the FOURIER decompo-
sition offis exactly
f: Z qrm’

Tep(r),|I|=p
with ¢r € C>°(G)® N Hy4,, and so for all € p(r), |I| = p, andv € Z

B ifv=~k+
DYFry2+ D Fryys = { G(Z)I otherwisep
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Lemma7.6. F;, =0for I € p(r), |I| = p,andv > k + p.

Proof. Similar to the argument of GLLEMIN and KazHDAN in [6]. Let I € p(r) such that
|I| = p. Then by the commutation relations bff and D~ we get for alln € Z

(7.2) D% Frally = (1D Frall, + v | Erall3
and foralln > k + p+ 1we haveD" Fy,,_s + D~ Fy ;o = 0 and so
1D Frpal[, = |[PT Frn-al],-
Now letr > k + p. We will prove that
‘|D+Fl,u+4lH2 > ||Frull,

for all [ € N by induction on:

If { = 0 then the inequality is clear by (7.2). So let us assume that the inequality
is true for somé € N. Then again by[(7]2) we have

|‘D+Fl,y+4l+4”§ > HD_FI,V+4Z+4H§ = HD+FI,V+4ZH§ > HFIV||§

On the other handp™ F; € L* (I'\G) by Lemmd 7.5 and s§D ™ F} [, ~» 0 for n ~» oo.
This impliesF,, = 0. O

Soforalll € p(r), |I| = p, we obtainD* F ., » = ¢r and finallyD~¢; = 0 by Lemma
[7.1, sincef € O(B), so

||QI||§ = (QJ,D+FI,k+p—2) = - (D_QI; F],k+p—2) =0,

and sof: 0, which completes the proof of our main theorem. O

8. COMPUTATION OF THE Pryo,I,m

Fix a regular loxodromig, € I', g € G, ty > 0 andw, € M such thatt, := £, is diagonal
andy, = ga;,wog~' € gAMg~'. Let D € R"™" be diagonal such thakp(2riD) = F, and
x € R such thatj(wy) = ¢*™X. Now we will computep., 1., € sSi(T'), I € p(r), m €
L(Z — (k + |I|) x — tr; D), as a relative BINCARE series with respect tb, := (y,) C T.

to
I-Olereby again=" means equality up to a constapt0 not necessarily independentgf, / and
m.

Theorem 8.1.Let] € p(r) andk > 2n+1—|I|. Thenforallm € % (Z — (k+|I]) x —tr;D)
(i)

I
Pro,Im = Z qly € 33}9 D(F)a
yETO\I'
where
* Tim N Ll - I
q ::/ e*MMA (&, ga,0) k u'j (gat, 0) dt (Eg 1()

o0

e sM"V () N LL (To\B) .

(i) Forall z € B we have

q(z) = (A(z,XT) A (Z,X*))_HTUI (ﬂ) o (E;C)Ia

1—’01
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where
1 -1
0 0
Xt:=g| . and X =g ]
0 0

are the two fixpoints of, in 0B, and
v:i=g 'z€ BCCP
Proof. Let p := |I|.

(i) Let f € sS,ip)(F), and defineh = 3= 15, han’ € C (R x M) @ A\ (Cr), all hy €

C= (R x M)%, andby,,, € C,m € £ (Z— (k+ |I|) x — tr;D), as in Theorerh 4|1. Then by
standard BURIER theory and Lemmja 2.3 we have

to )
mmz/‘ammm@mﬁ
0

E/Otoezm'mt( (¢, gay0) *(E; C) f) (gar, 0)F+ di
:/Oto €2m'mt/G<f, (A(Q’gato)—k— ( 10) > (gar, 0)k+pdt

Since by 3TAKE’s theorem, Theore@.f,e L*(G)® A\ (C"), and

dt

<> gato e p(E C) ) (gauo)kﬂ)

-f / (at0.07¢) (o)
-/
- [0t

E/A@Z) ~PHD gV, < o0,
B

by TONELLI'S and RUBINI’S theorem we can interchange the order of integration:

b[,mE/G<]7,/OtO ezmmt(A (&, ga0) " * (E 1C)> (gat,O)k+pdt>

N (/ " (6, gai0) T (gar o)t (£,¢)" . f)
0
- (Q7 f)Foa

where

~

(/Oto TN (¢, ga,0) P T (gay, 0) " dt (Eglc)l) s A@),

k+p

/ ' e2mimt A (Q,gatO)_k_p]’ (ga;,0) " dt (Eg_lg)l € O(B)
0
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sinceA ({,w) € O(B) for all w € B and the convergence of the integral is compact, and so

by Lemmg 2.P,
Z / 27mmtA <> gato) (gat; 0>k pdt (E;lé-)l

v'€lp Y

!

Clearly
A(,90,0) ™ (£,0)"|
— A (70, 90:0) " (EoE; ) 5 (70, O)F
= A (0,91 9a:0) " (BB, 1) FICRETON

so for allz € B we can compute (z) as

=2 / M (&, gai0) " (E;¢) T (gar, 0) Cdt| (z)

VEZ "
Tim —k— v — I Tk—’—p
= Z/ i tA 770 gatO) ’ (EO Eg 1C) XJ (70 ga 0) di
VEZ
Tim I omivter D7 TP 2miv
_ Z/ 9 tA (Z ga,_ VtOO) —k—p (E C) 2 t [D] (gat Vo 0) 4 2 (k+p) th
vEeZ 0
mim(t—v (g0 0) g !
- Z/ A (Z ga— l/too) -t p] (gatfl/to’ 0) pdt (Eg 1<)
VEZ

:/ e2mimt \ (z,gatO) Py (gat,O)k P dt (E;lg)l.

Again by Lemm we see thal . \rql, € sM () N LL (T'\B), and so by &TAKE’s
theorem, Theorem 2.1, it is even an elementsjf’ ('), such that

b[,m = Z Q|’77 f )
VGFO\F r
and so we conclude that, 1., = > o\ -
(ii)

/ e?mimt A\ (z,gatO)_k_pj(gat,O)k+pdt

—0o0

k+p

=j(g " 2)""" / AT (g7, 0,0) " (ag, 0)

| k+p > 2mimt —k—p 1
=jlg ",z / e 1 — vy tanht R
( ) —o0 ( ' ) (cosh £)*+7
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2mimt

AU Z)k“/ ( ‘ dt

cosh ¢ — vysinh ¢)* 17

. B 1 1+U Tim
E](g 1’Z)k+p - ( 1)

(1—op) 2 M7

j@AJVW“l—mM1+m»k?(if2)mn

— (A (2, X) A (,X7)) " (ﬂ>m

1—1}1
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