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ABSTRACT. The aim of this article is the construction of a spanning set for the spacesSk(Γ)
of super cusp forms on a complex bounded symmetric super domainB of rank1 with respect
to a latticeΓ. The main ingredients are a generalization of the ANOSOV closing lemma for par-
tially hyperbolic diffeomorphisms and an unbounded realizationH of B, in particular FOURIER

decomposition at the cusps of the quotientΓ\B mapped to∞ via a partial CAYLEY transforma-
tion. The elements of the spanning set are in finite-to-one correspondence with closed geodesics
of the bodyΓ\B of Γ\B, the number of elements corresponding to a geodesic growing linearly
with its length.
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1. I NTRODUCTION

Automorphic and cusp forms on a complex bounded symmetric domainB are already a well
established field of research in mathematics. They play a fundamental role in representation
theory of semisimple LIE groups of Hermitian type, and they have applications to number
theory, especially in the simplest case whereB is the unit disc inC, biholomorphic to the upper
half planeH via a CAYLEY transform,G = SL(2, R) acting onH via MÖBIUS transformations
andΓ @ SL(2, Z) of finite index. The aim of the present paper is to generalize an approach
used by Tatyana FOTH and Svetlana KATOK in [4] and [8] for the construction of spanning
sets for the space of cusp forms on a complex bounded symmetric domainB of rank1, which
then by classification is (biholomorphic to) the unit ball of someCn, n ∈ N, and a lattice
Γ @ G = Aut1(B) for sufficiently high weightk. This is done in Theorem 4.3, which is the
main theorem of this article, again for sufficiently large weightk.

The new idea in [4] and [8] is to use the concept of a hyperbolic (or ANOSOV) diffeomor-
phism resp. flow on a Riemannian manifold and an appropriate version of the ANOSOV closing
lemma. This concept originally comes from the theory of dynamical systems, see for example
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2 ROLAND KNEVEL

in [7]. Roughly speaking a flow(ϕt)t∈R on a Riemannian manifoldM is called hyperbolic if
there exists an orthogonal and(ϕt)t∈R-stable splittingTM = T+ ⊕ T− ⊕ T 0 of the tangent
bundleTM such that the differential of the flow(ϕt)t∈R is uniformly expanding onT+, uni-
formly contracting onT− and isometric onT 0, and finallyT 0 is one-dimensional, generated by
∂tϕt. In this situation the ANOSOV closing lemma says that given an ’almost’ closed orbit of
the flow(ϕt)t∈R there exists a closed orbit ’nearby’. Indeed given a complex bounded symmet-
ric domainB of rank1, G = Aut1(B) is a semisimple LIE group of real rank1, and the root
space decomposition of its LIE algebrag with respect to a CARTAN subalgebraa @ g shows
that the geodesic flow(ϕt)t∈R on the unit tangent bundleS(B), which is at the same time the
left-invariant flow onS(B) generated bya ' R, is hyperbolic. The final result in this direction
is Theorem 5.3 (i).

For the super case, first it is necessary to develop the theory of super automorphic resp.
cusp forms, while the general theory of (Z2-) graded structures and super manifolds is already
well established, see for example [3]. It was first developed by F. A. BEREZIN as a mathe-
matical method for describing super symmetry in physics of elementary particles. However,
even for mathematicians the elegance within the theory of super manifolds is really amazing
and satisfying. Here I deal with a simple case of super manifolds, namely complex super do-
mains. Roughly speaking a complex super domainB is an object which has a super dimension
(n, r) ∈ N2 and the characteristics:

(i) it has a bodyB = B# being an ordinary domain inCn,
(ii) the complex unital graded commutative algebraO(B) of holomorphic super functions

on B is (isomorphic to)O(B) ⊗
∧

(Cr), where
∧

(Cr) denotes the exterior algebra
of Cr. FurthermoreO(B) naturally embeds into the first two factors of the complex
unital graded commutative algebraD(B) ' C∞(B)C ⊗

∧
(Cr)�

∧
(Cr) ' C∞(B)C ⊗∧

(C2r) of ’smooth’ super functions onB, whereC∞(B)C = C∞(B, C) denotes the
algebra of ordinary smooth functions with values inC, which is at the same time the
complexification ofC∞(B), and ’�’ denotes the graded tensor product.

We see that for each pair(B, r) whereB ⊂ Cn is an ordinary domain andr ∈ N there exists
exactly one(n, r)-dimensional complex super domainB of super dimension(n, r) with body
B, and we denote it byB|r. Now let ζ1, . . . , ζn ∈ Cr denote the standard basis vectors ofCr.
Then they are the standard generators of

∧
(Cr), and so we get the standard even (commuting)

holomorphic coordinate functionsz1, . . . , zn ∈ O(B) ↪→ O
(
B|r) and odd (anticommuting)

coordinate functionsζ1, . . . , ζr ∈
∧

(Cr) ↪→ O
(
B|r). So omitting the tensor products, as there

is no danger of confusion, we can decompose everyf ∈ O
(
B|r) uniquely as

f =
∑

I∈℘(r)

fIζ
I ,

where℘(r) denotes the power set of{1, . . . , r}, all fI ∈ O(B), I ∈ ℘(r), andζI := ζi1 · · · ζis

for all I = {i1, . . . , is} ∈ ℘(r), i1 < · · · < is.
D
(
B|r) is a graded∗-algebra, and the graded involution

: D
(
B|r)→ D (B|r)

is uniquely defined by the rules

{i} f = f andfh = hf for all f, h ∈ D
(
B|r),

{ii} is C-antilinear, and restricted toC∞(B) it is just the identity,
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{iii} ζi is the i-th standard generator of
∧

(Cr) ↪→ D
(
B|r) embedded as thethird factor,

whereζi denotes thei-th odd holomorphic standard coordinate onB|r, which is thei-th
standard generator of

∧
(Cr) ↪→ D

(
B|r) embedded as thesecondfactor,i = 1, . . . , r.

With the help of this graded involution we are able to decompose everyf ∈ D
(
B|r) uniquely

as

f =
∑

I,J∈℘(r)

fIJζIζ
J
,

wherefIJ ∈ C∞(B)C, I, J ∈ ℘(r), andζ
J

:= ζi1 . . . ζis for all J = {j1, . . . , js} ∈ ℘(r),
j1 < · · · < js.

For a discussion of super automorphic and super cusp forms we restrict ourselves to the case
of the LIE groupG := sS (U(n, 1)× U(r)), n ∈ N \ {0}, r ∈ N, acting on the complex(n, r)-
dimensional super unit ballB|r. So far there seems to be no classification of super complex
bounded symmetric domains although we know the basic examples, see for example Chapter
IV of [2], which we follow here. The groupG is the body of the super LIE groupSU(n, 1|r)
studied in [2] acting onB|r. The fact that an ordinary discrete subgroup (which means a sub
super LIE group of super dimension(0, 0)) of a super LIE group is just an ordinary discrete
subgroup of the body justifies our restriction to an ordinary LIE group acting onB|r since
purpose of this article is to study automorphic and cusp forms with respect to a lattice. In any
case one can see the odd directions of the complex super domainB|r already inG since it
is an almost direct product of the semisimple LIE groupSU(n, 1) acting on the bodyB and
U(r) acting on

∧
(Cr). Observe that ifr > 0 the full automorphism group ofB|r, without

any isometry condition, is never a super LIE group since one can show that otherwise its super
L IE algebra would be the super LIE algebra of integrable super vector fields onB|r, which has
unfortunately infinite dimension.

Let us remark on two striking facts:

(i) the construction of our spanning set uses FOURIER decomposition exactly three times,
which is not really surprising, since this corresponds to the three factors in the IWASAWA

decompositionG = KAN .
(ii) super automorphic resp. cusp forms introduced this way are equivalent (but not one-to-

one) to the notion of ’twisted’ vector-valued automorphic resp. cusp forms.

Acknowledgement: Since the research presented in this article is partially based on my PhD
thesis I would like to thank my doctoral advisor Harald UPMEIER for mentoring during my PhD
but also Martin SCHLICHENMAIER and Martin OLBRICH for their helpful comments.

2. THE SPACE OF SUPER CUSP FORMS

Let n ∈ N \ {0}, r ∈ N and

G := sS (U(n, 1)× U(r))

:=

{(
g′ 0
0 E

)
∈ U(n, 1)× U(r)

∣∣∣∣ det g′ = det E

}
,

which is a real((n + 1)2 + r2 − 1)-dimensional LIE group. LetB := B|r, where

B := {z ∈ Cn| z∗z < 1} ⊂ Cn

denotes the usual unit ball, with even coordinate functionsz1, . . . , zn and odd coordinate func-
tionsζ1, . . . , ζr. Then we have a holomorphic action ofG onB given by super fractional linear
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(MÖBIUS) transformations

g

(
z
ζ

)
:=

(
(Az + b) (cz + d)−1

Eζ (cz + d)−1

)
,

where we split

g :=

 A b
c d

0

0 E

 }n
← n + 1
}r

.

The stabilizer of0 ↪→ B is

K := sS ((U(n)× U(1))× U(r))

=


 A 0

0 d
0

0 E

 ∈ U(n)× U(1)× U(r)

∣∣∣∣∣∣ d det A = det E

 .

On G × B we define the cocyclej ∈ C∞(G)C⊗̂O(B) asj(g, z) := (cz + d)−1 for all g ∈ G
andz ∈ B. Observe thatj(w) := j(w, z) ∈ U(1) is independent ofz ∈ B for all w ∈ K and
therefore defines a character on the groupK.

Let k ∈ Z be fixed. Then we have a right-representation ofG

|g : D(B)→ D(B), f 7→ f |g := f

(
g

(
z
ζ

))
j(g, z)k,

for all g ∈ G, which fixesO(B). Finally letΓ be a discrete subgroup ofG.

Definition 2.1 (Super Automorphic Forms). Let f ∈ O(B). Thenf is called a super automor-
phic form forΓ of weightk if and only if f |γ = f for all γ ∈ Γ. We denote the space of super
automorphic forms forΓ of weightk by sMk(Γ).

Let us define a lift:˜ : D(B)→ C∞(G)C ⊗D
(
C0|r) ' C∞(G)C ⊗

∧
(Cr)�

∧
(Cr) ,

f 7→ f̃ ,

where

f̃(g) := f |g
(

0
η

)
= f

(
g

(
0
η

))
j (g,0)k

for all f ∈ D(B) andg ∈ G and we use the odd coordinate functionsη1, . . . , ηr onC0|r. Letf ∈
O(B). Then clearlyf̃ ∈ C∞(G)C ⊗O

(
C0|r) andf ∈ sMk(Γ)⇔ f̃ ∈ C∞ (Γ\G)C ⊗O

(
C0|r)

since for allg ∈ G

C∞(G)C ⊗D
(
C0|r) lg−→ C∞(G)C ⊗D

(
C0|r)

↑˜ ↑˜
D(B) −→

|g
D(B)

commutes, wherelg : C∞(G) → C∞(G) denotes the left translation withg ∈ G, lg(f)(x) :=
f(gx) for all x ∈ G. Let 〈 , 〉 be the canonical scalar product onD

(
C0|r) ' ∧ (C2r) (semilin-

ear in the second entry). Then for alla ∈ D
(
C0|r) we write |a| :=

√
〈a, a〉, and〈 , 〉 induces
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a ’scalar product’

(f, h)Γ :=

∫
Γ\G

〈
h̃, f̃

〉
for all f, h ∈ D(B) such that

〈
h̃, f̃

〉
∈ L1(Γ\G), and for alls ∈]0,∞] a ’norm’

||f ||(k)
s,Γ :=

∣∣∣∣∣∣∣∣ ∣∣∣f̃ ∣∣∣ ∣∣∣∣∣∣∣∣
s,Γ\G

for all f ∈ D(B) such that
∣∣∣f̃ ∣∣∣ ∈ C∞ (Γ\G). On G we always use the (left and right) HAAR

measure. Let us define

Ls
k(Γ\B) :=

{
f ∈ D(B)

∣∣∣∣ f̃ ∈ C∞(Γ\G)C ⊗D
(
C0|r) , ||f ||(k)

s,Γ <∞
}

.

Definition 2.2 (Super Cusp Forms). Let f ∈ sMk(Γ). f is called a super cusp form forΓ of
weight k if and only if f ∈ L2

k(Γ\B). TheC- vector space of all super cusp forms forΓ of
weightk is denoted bysSk(Γ). It is a HILBERT space with inner product( , )Γ.

Observe that|g respects the splitting

O(B) =
r⊕

ρ=0

O(ρ)(B)

for all g ∈ G, whereO(ρ)(B) is the space of allf =
∑

I∈℘(r),|I|=ρ fI , all fI ∈ O(B), I ∈ ℘(r),

|I| = ρ, ρ = 0, . . . , r, and˜maps the spaceO(ρ)(B) into C∞(G)C ⊗O(ρ)
(
C0|r). Therefore we

have splittings

sMk(Γ) =
r⊕

ρ=0

sM
(ρ)
k (Γ) and sSk(Γ) =

r⊕
ρ=0

sS
(ρ)
k (Γ),

wheresM
(ρ)
k (Γ) := sMk(Γ) ∩ O(ρ)(B), sS

(ρ)
k (Γ) := sSk(Γ) ∩ O(ρ)(B), ρ = 0, . . . , r, and the

last sum is orthogonal.
As shown in [10] and in Section 3.2 of [11] there is an analogon to SATAKE ’s theorem in the

super case:

Theorem 2.1. Let ρ ∈ {0, . . . , r}. AssumeΓ\G is compact orn ≥ 2 andΓ @ G is a lattice
(discrete such thatvol Γ\G <∞, Γ\G not necessarily compact). Ifk ≥ 2n− ρ then

sS
(ρ)
k (Γ) = sM

(ρ)
k (Γ) ∩ Ls

k (Γ\B)

for all s ∈ [1,∞].

As in the classical case this theorem implies that ifΓ\G is compact orn ≥ 2, Γ @ G is a
lattice andk ≥ 2n− ρ, then the HILBERT spacesS(ρ)

k (Γ) is finite dimensional.
We will use the JORDAN triple determinant∆ : Cn × Cn → C given by

∆ (z,w) := 1−w∗z

for all z,w ∈ Cn. Let us recall the basic properties:

(i) |j (g,0)| = ∆ (g0, g0)
1
2 for all g ∈ G,

(ii) ∆ (gz, gw) = ∆ (z,w) j (g, z) j (g,w) for all g ∈ G andz,w ∈ B, and
(iii)

∫
B

∆ (z, z)λ dVLeb <∞ if and only if λ > −1.
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6 ROLAND KNEVEL

We have theG-invariant volume element∆(z, z)−(n+1)dVLeb onB.
For all I ∈ ℘(r), h ∈ O(B), z ∈ B and

g =

(
∗ 0
0 E

)
∈ G

we have
hζI
∣∣
g
(z) = h (gz) (Eη)I j (g, z)k+|I| ,

whereE ∈ U(r). So for alls ∈]0,∞], f =
∑

I∈℘(r) fIζ
I andh =

∑
I∈℘(r) hIζ

I ∈ O(B) we
have

||f ||(k)
s,Γ ≡

∣∣∣∣∣∣
∣∣∣∣∣∣
√ ∑

I∈℘(r)

f 2
I ∆ (z, z)k+|I|

∣∣∣∣∣∣
∣∣∣∣∣∣
s,Γ\B,∆(z,z)−(n+1)dVLeb

if f̃ ∈ C∞(G)⊗O
(
C0|r) and

(f, h)Γ ≡
∑

I∈℘(r)

∫
Γ\B

fIhI∆ (z, z)k+|I|−(n+1) dVLeb

if
〈
h̃, f̃

〉
∈ L1(Γ\G), where ’≡’ means equality up to a constant6= 0 depending onΓ.

For the explicit computation of the elements of our spanning set in Theorem 4.3 we need the
following lemmas:

Lemma 2.2(Convergence of relative POINCARÉ series). LetΓ0 @ Γ be a subgroup and

f ∈ sMk (Γ0) ∩ L1
k (Γ0\B) .

Then
Φ :=

∑
γ∈Γ0\Γ

f |γ andΦ′ :=
∑

γ∈Γ0\Γ

f̃(γ♦)

converge absolutely and uniformly on compact subsets ofB resp.G,

Φ ∈ sMk(Γ) ∩ L1
k (Γ\B) ,

Φ̃ = Φ′, and for allϕ ∈ sMk(Γ) ∩ L∞k (Γ\B) we have

(Φ, ϕ)Γ = (f, ϕ)Γ0
.

The symbol ’♦’ here and also later simply stands for the argument of the function. So
f̃(γ♦) ∈ C∞(G)C ⊗

∧
(Cr) is a short notation for the smooth map

G→
∧

(Cr) , g 7→ f̃(γg).

Proof. Standard, on using the mean value property of holomorphic functions for allk ∈ Z
without any further assumption onk. �

Lemma 2.3. Let I ∈ ℘(r) andk ≥ 2n + 1− |I|. Then for allw ∈ B

∆ (♦,w)−k−|I| ζI ∈ O|I|(B) ∩ L1
k(B),

and for allf =
∑

J∈℘(r) fJζJ ∈ O(B) ∩ L∞k (B) we have(
∆ (♦,w)−k−|I| ζI , f

)
≡ fI (w) ,

where( , ) := ( , ){1}.

Since the proof is also standard, we will omit it here. It can be found in [11].
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3. THE STRUCTURE OF THE GROUP G

We have a canonical embedding

G′ := SU(p, q) ↪→ G, g′ 7→
(

g′ 0
0 1

)
,

and the canonical projection

G→ U(r), g :=

(
g′ 0
0 E

)
7→ Eg := E

induces a group isomorphism

G /G′ ' U(r).

ObviouslyK ′ = K ∩ G′ = S(U(n) × U(1)) is the stabilizer of0 in G′. Let A denote the
common standard maximal split abelian subgroup ofG andG′ given by the image of the LIE
group embedding

R ↪→ G′, t 7→ at :=

 cosh t 0
0 1

sinh t1
0

sinh t 0 cosh t

 .

Then the centralizerM of A in K is the group of all
ε 0
0 u

0

0 ε
0

0 E

 ,

whereε ∈ U (1), u ∈ U (p− 1) andE ∈ U(r) such thatε2 det u = det E. LetM ′ = K ′∩M =
G′ ∩M be the centralizer ofA in K ′. The centralizer ofG′ in G is precisely

ZG (G′) :=

{(
ε1 0
0 E

)∣∣∣∣ ε ∈ U(1), E ∈ U(r), εp+1 = det E

}
@M,

and G′ ∩ ZG (G′) = Z (G′). An easy calculation shows thatG = G′ZG (G′). So K =
K ′ZG (G′) andM = M ′Z (G′). Therefore if we decompose the adjoint representation ofA
as

g =
⊕
α∈Φ

gα,

where for allα ∈ R
gα :=

{
ξ ∈ g

∣∣Adat(ξ) = eαt
}

is the corresponding root space and

Φ := {α ∈ R| gα 6= 0}

is the root system, then we see thatΦ is at the same time the root system ofG′, soΦ = {0,±2}
if n = 1 andΦ = {0,±1,±2} if n ≥ 2. Furthermore, ifα 6= 0 thengα @ g′ is at the same time
the corresponding root space ofg′, and finallyg0 = a⊕m = a⊕m′ ⊕ zg (g′).

Lemma 3.1.
N(A) = ANK(A) = N(AM) @ N(M).

Proof. Simple calculation. �
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In particular we have the WEYL group

W := M \NK(A) 'M ′ \NK′(A) ' {±1}
acting onA ' R via sign change. For the main result, Theorem 4.3, of this article the following
definition is crucial:

Definition 3.1. Let g0 ∈ G.
(i) g0 is called loxodromic if and only if there existsg ∈ G such thatg0 ∈ gAMg−1.
(ii) If g0 is loxodromic, it is called regular if and only ifg0 = gatwg−1 with t ∈ R \ {0} and
w ∈M .

(iii) If γ ∈ Γ is regular loxodromic then it is called primitive inΓ if and only if γ = γ′ν implies
ν ∈ {±1} for all loxodromicγ′ ∈ Γ andν ∈ Z.

Clearly for allγ ∈ Γ regular loxodromic there existsγ′ ∈ Γ primitive regular loxodromic
andν ∈ N \ {0} such thatγ = γ′ν .

Lemma 3.2. Let g0 ∈ G be regular loxodromic,g ∈ G, w ∈ M and t ∈ R \ {0} such that
g0 = gatwg−1. Theng is uniquely determined up to right translation by elements ofANK(A),
andt is uniquely determined up to sign.

Proof. By straight forward computation or using the following strategy: Letg′ ∈ G, w′ ∈ M

andt′ ∈ R such thatg0 = g′at′w
′g′−1 also. Thenatw = (g−1g′) at′w

′ (g−1g′)
−1. Sincet ∈

R \ {0} and because of the root space decomposition,a + m must be the largest subspace of
g on whichAdatw is orthogonal with respect to an appropiate scalar product. SoAdg−1g′ maps
a + m into itself. This impliesg−1g′ ∈ N(AM) = ANK(A) by Lemma 3.1. �

4. THE M AIN RESULT

Let ρ ∈ {0, . . . , r}. AssumeΓ\G compactor n ≥ 2, vol Γ\G < ∞ andk ≥ 2n − ρ. Let
C > 0 be given. Let us consider a regular loxodromicγ0 ∈ Γ. Let g ∈ G, w0 ∈ M andt0 > 0
such thatγ0 = gat0w0g

−1.
There exists a torusT := 〈γ0〉\ gAM belonging toγ0. From Lemma 3.2 it follows thatT is

independent ofg up to right translation with an element of the WEYL groupW = M\NK(A).
Let f ∈ sSk(Γ). Thenf̃ ∈ C∞ (Γ\G)C⊗O

(
C0|r). Defineh ∈ C∞ (R×M)C⊗O

(
C0|r) as

h (t, w) := f̃ (gatw)

for all (t, w) ∈ R × M ’screening’ the values of̃f on T. Then clearlyh (t, w) = h(t, 1,

Ewηj(w))j(w)k, and soh(t, w) = h(t, 1, Ewη)j(w)k+ρ if f ∈ sS
(ρ)
k (Γ), for all (t, w) ∈ R×M .

ClearlyE0 := Ew0 ∈ U(r). So we can chooseg ∈ G such thatE0 is diagonal without changing
T. ChooseD ∈ Rr×r diagonal such thatexp(2πiD) = E0 andχ ∈ R such thatj (w0) = e2πiχ.
D andχ are uniquely determined byw0 up toZ. If

D =

 d1 0
. ..

0 dr


with d1, . . . , dr ∈ R andI ∈ ℘(r), then we definetrID :=

∑
j∈I dj.
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Theorem 4.1(FOURIER expansion ofh ).
(i) h (t + t0, w) = h

(
t, w−1

0 w
)

for all (t, w) ∈ R × M , and there exist uniquebI,m ∈ C,
I ∈ ℘(r), m ∈ 1

t0
(Z− (k + |I|) χ− trID), such that

h (t, w) =
∑

I∈℘(r)

j(w)k+|I|
∑

m∈ 1
t0

(Z−(k+|I|)χ−trID)

bI,me2πimt (Ewη)I

for all (t, w) ∈ R×M , where the sum converges uniformly in all derivatives.
(ii) If f ∈ sS

(ρ)
k (Γ), bI,m = 0 for all I ∈ ℘(r), |I| = ρ, andm ∈ 1

t0
(Z− (k + ρ) χ −trID)∩]−

C, C[ then there existsH ∈ C∞ (R×M)C ⊗
∧

(Cr) uniformly L IPSCHITZ continuous with a
L IPSCHITZ constantC2 ≥ 0 independent ofγ0 such that

h = ∂tH,

H (t, w) = j(w)kH (t, 1, Ewηj(w))

and

H (t + t0, w) = H
(
t, w−1

0 w
)

for all (t, w) ∈ R×M .

Proof. (i) Let t ∈ R andw ∈M . Then

h (t + t0, w) = f̃ (gat0atw) = f̃
(
γ0gw−1

0 atw
)

= f̃
(
gatw

−1
0 w

)
= h

(
t, w−1

0 w
)
,

and so

h (t + t0, 1) = h
(
t, w−1

0

)
= j (w0)

−k h
(
t, 1, E−1

0 ηj (w0)
−1)

= j (w0)
−k
∑

I∈℘(r)

h (t, 1) e−2πitrIDηIj (w0)
−|I|

=
∑

I∈℘(r)

e−2πi((k+|I|)χ+trID)hI(t, 1)ηI .

ThereforehI (t + t0, 1) = e−2πi((k+|I|)χ+trID)hI(t, 1) for all I ∈ ℘(r), and the rest follows by a
standard FOURIER expansion. �

To prove (ii) we need the following lemma:

Lemma 4.2 (Generalization of the reverse BERNSTEIN inequality). Let t0 ∈ R \ {0}, ν ∈ R
andC > 0. LetS be the space of all convergentFOURIER series

s =
∑

m∈ 1
t0

(Z−ν),|m|≥C

sle
2πim♦ ∈ C∞ (R)C ,

for all sm ∈ C. Then̂ : S → S, s =
∑

m∈ 1
t0

(Z−ν),|m|≥C

sme2πim♦ 7→ ŝ :=
∑

m∈ 1
t0

(Z−ν),|m|≥C

sm

2πim
e2πim♦

is a well-defined linear map, and||ŝ||∞ ≤
6

πC
||s||∞ for all s ∈ S.
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10 ROLAND KNEVEL

Proof. This can be deduced from the ordinary reverse BERNSTEIN inequality, see for example
Theorem 8.4 in Chapter I of [9].

Now we prove Theorem 4.1 (ii).Fix someI ∈ ℘(r) such that|I| = ρ andbI,m = 0 for all
m ∈ 1

t0
(Z− (k + ρ) χ− trID)∩] − C, C[. Then if we defineν := (k + ρ) χ + trID ∈ R we

have
hI(♦, 1) =

∑
m∈ 1

t0
(Z−ν),|m|≥C

bI,me2πim♦,

and so we can apply the generalized reverse BERNSTEIN inequality, Lemma 4.2, tohI . There-
fore we can define

H ′
I := ̂hI (♦, 1) =

∑
m∈ 1

t0
(Z−ν),|m|≥C

bI,m

2πim
e2πim♦ ∈ C∞ (R)C .

∣∣∣f̃ ∣∣∣ ∈ L∞(G) by SATAKE ’s theorem, Theorem 2.1, and so there exists a constantC ′ > 0

independent ofγ0 andI such that||hI ||∞ < C ′, and now Lemma 4.2 tells us that

||H ′
I ||∞ ≤

6

πC
||h (♦, 1)||∞ ≤

6C ′

πC
.

ClearlyhI (♦, 1) = ∂tH
′
I .

Sincej is smooth on the compact setM , jk+ρ (Ewη)I is uniformly LIPSCHITZ continuous
on M with a common LIPSCHITZ constantC ′′ independent ofγ0 andI. So we see thatH ∈
C∞(R, M)C ⊗

∧
(Cr) defined as

H(t, w) :=
∑

I∈℘(r)

j(w)k+ρH ′
I(t) (Ewη)I

for all (t, w) ∈ R ×M is uniformly LIPSCHITZ continuous with LIPSCHITZ constantC2 :=(
6C′′

πC
+ 1
)
C ′ independent ofγ0, and the rest is trivial. �

Let I ∈ ℘(r) andm ∈ 1
t0

(Z− (k + |I|) χ− trID). SincesSk(Γ) is a HILBERT space and
sSk(Γ)→ C, f 7→ bI,m is linear and continuous, there exists exactly oneϕγ0,I,m ∈ sSk(Γ) such
thatbI,m = (ϕγ0,I,m, f) for all f ∈ sSk(Γ). Clearlyϕγ0,I,m ∈ sS

(|I|)
k (Γ).

For the remainder of the article for simplicity we writem ∈] − C, C[ instead ofm ∈
1
t0

(Z− (k + |I|) χ− trID)∩] − C, C[. In the last section we will computeϕγ0,I,m as a rel-
ative POINCARÉ series. One can check that the family

{ϕγ0,I,m}I∈℘(r),|I|=ρ,m∈]−C,C[

is independent of the choice ofg, D andχ up to multiplication with a unitary matrix with entries
in C and invariant under conjugatingγ0 with elements ofΓ.

Now we can state our main theorem: LetΩ be a fundamental set for all primitive regular
loxodromicγ0 ∈ Γ modulo conjugation by elements ofΓ and

Z̃ :=
{

m ∈ ZG (G′)
∣∣∣ ∃g′ ∈ G′ : mg′ ∈ Γ

}
@ ZG (G′) .

Then clearlyΓ @ G′Z̃. Recall that we still assume

• Γ\G compactor

• n ≥ 2, vol Γ\G <∞ andk ≥ 2n− ρ.
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Theorem 4.3(Spanning set forsSk(Γ) ). Assume that the right translation ofA on Γ\G′Z̃ is
topologically transitive. Then

{ϕγ0,I,m| γ0 ∈ Ω, I ∈ ℘(r), |I| = ρ, m ∈]− C, C[}

is a spanning set forsS(ρ)
k (Γ).

For proving this result we need an ANOSOV type theorem forG and the unbounded realiza-
tion ofB, which we will discuss in the following two sections.

Remark 1.

(i) If there is some subgroup̃M @ ZG (G′) such thatΓ @ G′M̃ and the right translation of
A onΓ\G′M̃ is topologically transitive then necessarilỹMZ(G′) = Z̃ and there exists
g0 ∈ G′ such thatG′Z̃ = Γg0A. The latter statement is a trivial consequence of the fact
thatZ̃ @M .

(ii) In the case whereΓ ∩G′ @ Γ is of finite index or equivalentlỹZ is finite then we know
that the right translation ofA onΓ\G′Z̃ is topologically transitive because of MOORE’s
ergodicity theorem, see [13] Theorem 2.2.6, and since thenΓ ∩G′ @ G′ is a lattice.

(iii) There is a finite-to-one correspondence betweenΩ and the set of closed geodesics of
Γ\B assigning to each primitive loxodromic element
γ0 = gat0w0g

−1 ∈ Γ, g ∈ G, t0 > 0 andw0 ∈ M , the image of the unique geodesic
gA0 of B normalized byγ0 under the canonical projectionB → Γ\B. It is of lengtht0
if there is no irregular point ofΓ\B ongA0.

5. AN ANOSOV TYPE RESULT FOR THE GROUP G

On the LIE groupG we have a smooth flow(ϕt)t∈R given by the right translation by elements
of A:

ϕt : G→ G, g 7→ gat.

This turns out to be partially hyperbolic, and so we can apply a partial ANOSOVclosing lemma.
Let me mention that the flow(ϕt)t∈R descends to the ordinary geodesic flow on the unit tangent
bundleSB ' M\G. Let us first have a look at the general theory of partial hyperbolicity: Let
W be, for the moment, a smooth Riemannian manifold.

Definition 5.1 (Partially Hyperbolic Diffeomorphism and Flow). Let C > 1.
(i) Let ϕ be aC∞-diffeomorphism ofW . Thenϕ is called partially hyperbolic with constantC
if and only if there exists an orthogonalDϕ (and thereforeDϕ−1 ) -invariantC∞-splitting

(5.1) TW = T 0 ⊕ T+ ⊕ T−

of the tangent bundleTW such thatT 0 ⊕ T+, T 0 ⊕ T−, T 0, T+ andT− are closed under the
commutator,Dϕ|T 0 is an isometry,||Dϕ|T−|| ≤ 1

C
and||Dϕ−1|T+|| ≤ 1

C
.

(ii) Let (ϕt)t∈R be aC∞-flow onW . Then(ϕt)t∈R is called partially hyperbolic with constantC
if and only if all ϕt, t > 0 are partially hyperbolic diffeomorphisms with a common splitting
(5.1) and constantseCt resp. andT 0 contains the generator of the flow.

A partially hyperbolic diffeomorphismϕ gives rise toC∞-foliations onW corresponding to
the splittingTW = T 0 ⊕ T+ ⊕ T−. Let us denote the distances along theT 0 ⊕ T+-, T 0-, T+-
respectivelyT−-leaves byd0,+, d0, d+ andd−.

Definition 5.2. Let TW = T 0 ⊕ T+ ⊕ T− be an orthogonalC∞-splitting of the tangent bundle
TW of W such thatT 0 ⊕ T+, T 0, T+ andT− are closed under the commutator,C ′ ≥ 1 and
U ⊂ W . U is calledC ′-rectangular (with respect to the splittingTW = T 0⊕ T+⊕ T− ) if and
only if for all y, z ∈ U
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{i} there exists a unique intersection pointa ∈ U of the T 0 ⊕ T+-leaf containingy and
the T−-leaf containingz and a unique intersection pointb ∈ U of the T 0 ⊕ T+-leaf
containingz and theT−-leaf containingy,

d0,+ (y, a) , d− (y, b) , d− (z, a) , d0,+ (z, b) ≤ C ′d (y, z) ,

and
1

C ′d
0,+ (z, b) ≤ d0,+ (y, a) ≤ C ′d0,+ (z, b) ,

1

C ′d
− (z, a) ≤ d− (y, b) ≤ C ′d− (z, a) .

{ii} if y andz belong to the sameT 0⊕T+-leaf there exists a unique intersection pointc ∈ U
of theT 0-leaf containingy and theT+-leaf containingz and a unique intersection point
d ∈ U of theT 0-leaf containingz and theT+-leaf containingy,

d0 (y, c) , d+ (y, d) , d+ (z, c) , d0 (z, d) ≤ C ′d0,+ (y, z) ,

and
1

C ′d
0 (z, d) ≤ d0 (y, c) ≤ C ′d0 (z, d) ,

1

C ′d
+ (z, c) ≤ d+ (y, d) ≤ C ′d+ (z, c) .

Figure 5.1: Intersection points in {i}.

Since the splittingTW = T 0⊕T+⊕T− is orthogonal and smooth we see that for allx ∈ W
andC ′ > 1 there exists aC ′-rectangular neighbourhood ofx.

Theorem 5.1(Partial ANOSOVclosing lemma). Letϕ be a partially hyperbolic diffeomorphism
with constantC, let x ∈ W , C ′ ∈]1, C[ and δ > 0 such thatUδ(x) is contained in aC ′-
rectangular subsetU ⊂ W .

If d (x, ϕ(x)) ≤ δ
1−C′

C

C′2+1
then there existy, z ∈ U such that
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(i) x andy belong to the sameT−-leaf and

d− (x, y) ≤ C ′

1− C′

C

d (x, ϕ(x)) ,

(ii) y andϕ(y) belong to the sameT 0 ⊕ T+-leaf and

d0,+ (y, ϕ(y)) ≤ C ′2d (x, ϕ(x)) ,

(iii) y andz belong to the sameT+-leaf and

d+ (ϕ(y), ϕ(z)) ≤ C ′3

1− C′

C

d (x, ϕ(x)) ,

(iv) z andϕ(z) belong to the sameT 0-leaf and

d0 (z, ϕ(z)) ≤ C′4d (x, ϕ(x)) .

The proof, which will not be given here, uses a standard argument obtaining the pointsy and
ϕ(z) as limits of certain CAUCHY sequences. The interested reader will find it in [11].

Now let us return to the flow(ϕt)t∈R on G and choose a left invariant metric onG such
that gα, α ∈ Φ \ {0}, a andm are pairwise orthogonal and the isomorphismR ' A ⊂ G
is isometric. Then since the flow(ϕt)t∈R commutes with left translations it is indeed partially
hyperbolic with constant1 and the unique left invariant splitting ofTG given by

T1G = g = a⊕m︸ ︷︷ ︸
T 0
1 :=

⊕
⊕

α∈Φ,α>0

gα

︸ ︷︷ ︸
T−
1 :=

⊕
⊕

α∈Φ,α<0

gα

︸ ︷︷ ︸
T+
1 :=

.

For allL ⊂ G compact,T, ε > 0 define

ML,T :=
{

gatg
−1
∣∣ g ∈ L, t ∈ [−T, T ]

}
and

NL,T,ε := {g ∈ G |dist (g,ML,T ) ≤ ε} .

Lemma 5.2. For all L ⊂ G compact there existT0, ε0 > 0 such thatΓ ∩NL,T0,ε0 = {1}.

Proof. Let L ⊂ G be compact andT > 0. ThenML,T is compact, and so there existsε > 0
such thatNL,T,ε is again compact. SinceΓ is discrete,Γ∩NL,T,ε is finite. Clearly for allT, T ′, ε
andε′ > 0 if T ≤ T ′ andε ≤ ε′ thenNL,T,ε ⊂ NL,T ′,ε′, and finally⋂

T,ε>0

NT,ε = {1}.

�

Here now is the quintessence of this section:

Theorem 5.3.
(i) For all T1 > 0 there existC1 ≥ 1 andε1 > 0 such that for allx ∈ G, γ ∈ Γ andT ≥ T1 if

ε := d (γx, xaT ) ≤ ε1

then there existz ∈ G, w ∈ M and t0 > 0 such thatγz = zat0w (and soγ is regular
loxodromic),d ((t0, w), (T, 1)) ≤ C1ε and for all τ ∈ [0, T ]

d (xaτ , zaτ ) ≤ C1ε
(
e−τ + e−(T−τ)

)
.
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(ii) For all L ⊂ G compact there existsε2 > 0 such that for allx ∈ L, γ ∈ Γ andT ∈ [0, T0],
T0 > 0 given by Lemma 5.2, if

ε := d (γx, xaT ) ≤ ε2

thenγ = 1 andT ≤ ε.

Proof. (i) Let T1 > 0 and define

C1 := max

(
e

3
2
T1

1− e−
T1
2

, e2T1

)
≥ 1.

DefineC ′ := e
T1
2 , let U be aC ′-rectangular neighbourhood of1 ∈ G and letδ > 0 such that

Uδ(1) ⊂ U . Then by the left invariance of the splitting and the metric onG we see thatgU is a
C ′-rectangular neighbourhood ofg andUδ(g) = gUδ(1) ⊂ gU for all g ∈ G. Define

ε1 := min

(
δ
1− e−

T1
2

eT1 + 1
,
T1

C1

)
> 0.

Now assumeγ ∈ Γ andT ≥ T1 such that

ε := d (γx, xaTv) ≤ ε1.

Thenϕ : G→ G, g 7→ γ−1gaT is a partially hyperbolic diffeomorphism with constanteT1 > 1
and the corresponding splittingTG = T 0 ⊕ T+ ⊕ T−. Then since

ε ≤ δ
1− e−

T1
2

eT1 + 1
= δ

1− C ′e−T1

C ′2 + 1

the partial ANOSOV closing lemma, Theorem 5.1, tells us that there existy, z ∈ G such that

(i) x andy belong to the sameT−-leaf and

d− (x, y) ≤ ε
C ′

1− C′

C

,

(iii) y andz belong to the sameT+-leaf and

d+ (yaTv, zaTv) ≤ ε
C ′3

1− C′

C

,

(iv) γz andzaTv belong to the sameT 0-leaf and

d0 (γz, zaTv) ≤ εC ′4.

In (iii) and (iv) we already used that the metric and the flow are left invariant. So by (iv) and
since theT 0-leaf containingzaT is zAM , there existw ∈M andt0 ∈ R such thatγz = zat0w.
So

d0 (at0−T w, 1) ≤ εC ′4,

and so, sinceAM ' R×M isometrically, we see that

d ((t0, w) , (T, 1)) ≤ εC ′4 = εe2T1 ≤ εC1.

In particular,|t0 − T | ≤ T1, and sot0 > 0.
Now let τ ∈ [0, T ]. Then sincex andy belong to the sameT−-leaf, the same is true forxaτ

andyaτ , and

d− (xaτ , yaτ ) ≤ d− (x, y) e−τ ≤ ε
C ′

1− C′

C

e−τ ≤ εC1e
−τ .
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Sincey andz belong to the sameT+-leaf, the same is true foryaτ andzaτ , and

d+ (yaτ , zaτ ) ≤ d+ (yaT , zaT ) e−(T−τ)

≤ ε
C ′3

1− C′

C

e−(T−τ) ≤ εC1e
−(T−τ).

Combining these two inequalities we obtain

d (xaτ , zaτ ) ≤ εC1

(
e−τ + e−(T−τ)

)
.

(ii) Let L ⊂ G be compact and letc ≥ 1 be given such that||Adg|| ,
∣∣∣∣Ad−1

g

∣∣∣∣ ≤ c and therefore

1

c
d(ag, bg) ≤ d(a, b) ≤ cd(ag, bg)

for all g ∈ L anda, b ∈ G. Let ε0 > 0 be given by Lemma 5.2 and define

ε2 :=
ε0

c
> 0.

Let x ∈ L, γ ∈ Γ andT ∈ [0, T0] such that

ε := d (γx, xaT ) ≤ ε2.

Then sincex ∈ L, we get
d
(
γ, xaT x−1

)
≤ cε ≤ ε0

and soγ ∈ Γ ∩NL,T0,ε0. This impliesγ = 1 and sod (1, aT ) = ε and thereforeT ≤ ε. �

6. THE UNBOUNDED REALIZATION

Let n @ g′ be the standard maximal nilpotent sub LIE algebra, which is at the same time the
direct sum of all root spaces ofg′ of positive roots with respect toa. Let N := exp n. Then we
have an IWASAWA decomposition

G = NAK,

N is 2-step nilpotent, and soN ′ := [N, N ] is at the same time the center ofN .
Now we transform the whole problem to the unbounded realization via the partial CAYLEY

transformation

R :=

 1√
2

0 1√
2

0 1 0
− 1√

2
0 1√

2

 ← 1
}n− 1
← n + 1

∈ G′C = SL(n + 1, C)

mappingB biholomorphically onto the unbounded domain

H :=

{
w =

(
w1

w2

)
← 1
}n− 1

∈ Cn

∣∣∣∣Re w1 >
1

2
w∗

2w2

}
.

We see that

RG′R−1 @ G′C = SL(n + 1, C) ↪→ GL(n + 1, C)×GL(r, C)

acts holomorphically and transitively onH via fractional linear transformations, and explicit
calculations show that

a′t := RatR
−1 =

 et 0 0
0 1 0
0 0 e−t

 ← 1
}n− 1
← n + 1
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for all t ∈ R, andRNR−1 is the image of

R× Cn−1 → RG′R−1, (λ,u) 7→ n′λ,u :=

 1 u∗ iλ + 1
2
u∗u

0 1 u
0 0 1

 ,

which is aC∞-diffeomorphism onto its image, with the multiplication rule

n′λ,un′µ,v = n′λ+µ+Im (u∗v),u+v

for all λ, µ ∈ R andu,v ∈ Cn−1, soN is exactly the HEISENBERGgroupHn acting onH as
pseudo translations

w 7→
(

w1 + u∗w2 + iλ + 1
2
u∗u

w2 + u

)
.

Definej (R, z) =
√

2
1−z1
∈ O(B), j (R−1,w) := j (R,R−1w)

−1
=

√
2

1+w1
∈ O(H), and for all

g ∈ RGR−1 =

 A b
c d

0

0 E

 ∈ RGR−1

define

j (g,w) = j
(
R,R−1gw

)
j
(
R−1gR, R−1w

)
j
(
R−1,w

)
=

1

cw + d
.

LetH := H |r with even coordinate functionsw1, . . . , wn and odd coordinate functionsϑ1, . . . , ϑr.
R commutes with allg ∈ ZG (G′), and we have a right-representation of the groupRGR−1 on
D(H) given by

|g : D(H)→ D(H), f 7→ f

(
g

(
♦
ϑ

))
j (g,♦)k

for all g ∈ RGR−1. If we define

|R : D(H)→ D(B), f 7→ f

(
R

(
♦
ζ

))
j (R,♦)k

and

|R−1 : D(B)→ D(H), f 7→ f

(
R−1

(
♦
ϑ

))
j
(
R−1,♦

)k
,

then we see that we get a commuting diagram

D(H)
|RgR−1

−→ D(H)
|R ↓ ↓ |R
D(B) −→

|g
D(B)

.

Now define the sesqui polynomial∆′ onH×H, holomorphic in the first and antiholomorphic
in the second variable, as

∆′ (z,w) := ∆
(
R−1z, R−1w

)
j
(
R−1, z

)−1
j (R−1,w)

−1
= z1 + w1 −w∗

2z2

for all z,w ∈ H. Clearly
∣∣det (z 7→ Rz)′

∣∣ = |j (R, z)|n+1 for all z ∈ B. So∣∣det (w 7→ gw)′
∣∣ = |j (g,w)|n+1 ,

|j (g, e1)| = ∆′ (ge1, ge1)
1
2
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for all g ∈ RGR−1 and∆′ (w,w)−(n+1) dVLeb is theRGR−1 -invariant volume element onH.
If f =

∑
I∈℘(r) fIζ

I ∈ O(B), all fI ∈ O(B)C, I ∈ ℘(r), then

f |R−1 =
∑

I∈℘(r)

fI

(
R−1♦

)
j
(
R−1,♦

)k+|I|
ϑI ∈ O(H),

and iff =
∑

I∈℘(r) fIϑ
I ∈ O(H), all fI ∈ C∞(H)C, I ∈ ℘(r), andg ∈ RGR−1, then

f |g =
∑

I∈℘(r)

fI (g♦) j (g,♦)k+|I| (Egϑ)I ∈ O(H).

Let ∂H =
{
w ∈ Cn

∣∣Re w1 = 1
2
w∗

2w
}

be the boundary ofH in Cn. Then∆′ and∂H are
RNR−1-invariant, andRNR−1 acts transitively on∂H and on each{

w ∈ H
∣∣∆′ (w,w) = e2t

}
= RNat0,

t ∈ R.

Figure 6.1: The geometry ofH.

All geodesics inH can be written in the form

R→ H, t 7→ wt := Rgat0 = RgR−1a′te1

with someg ∈ G, and conversely all these curves are geodesics inH. We have to distinguish
two cases: Either the geodesic connects∞ with a point in∂H, or it connects two points in∂H.
In the second case we have

lim
t→±∞

∆′ (wt,wt) = 0,

J. Inequal. Pure and Appl. Math., 10(1) (2009), Art. 2, 33 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


18 ROLAND KNEVEL

so we may assume without loss of generality that∆′ (wt,wt) is maximal fort = 0, otherwise
we have to reparametrize the geodesic usinggaT , T ∈ R appropriately chosen, instead ofg.

Lemma 6.1.
(i) Let

R→ H, t 7→ wt := Rgat0 = RgR−1a′te1

be a geodesic inH such thatlimt→∞wt = ∞ and limt→−∞wt ∈ ∂H with respect to the
euclidian metric onCp. Then for allt ∈ R

∆′ (wt,wt) = e2t∆′ (w0,w0) ,

and if insteadlimt→−∞wt =∞ and limt→∞wt ∈ ∂H, then

∆′ (wt,wt) = e−2t∆′ (w0,w0) .

(ii) Let
R→ H, t 7→ wt := Rgat0 = RgR−1a′te1

be a geodesic inH connecting two points in∂H such that∆′ (wt,wt) is maximal fort = 0.
Then

R→ R>0, t 7→ ∆′ (wt,wt)

is strictly increasing onR≤0 and strictly decreasing onR≥0, and for all t ∈ R
∆′ (w−t,w−t) = ∆′ (wt,wt)

and
e−2|t|∆′ (w0,w0) ≤ ∆′ (wt,wt) ≤ 4e−2|t|∆′ (w0,w0) .

Proof. (i) SinceRNR−1 acts transitively on∂H and∆′ is RNR−1-invariant we can assume
without loss of generality that the geodesic connects0 and∞. But in H a geodesic is uniquely
determined up to reparametrization by its endpoints. So we see that in the first case

wt = a′txe1 = e2txe1

and in the second case
wt = a′−txe1 = e−2txe1

both with an appropriately chosenx > 0.

(ii) Let u, y ∈ R ands ∈ Cp−1 such thaty2 + s∗s = 1. Then

R→ H, t 7→ w
(u,y,s)
t :=

eu

1 + y2 tanh2 t

(
eu
(
1− y2 tanh2 t + 2iy tanh t

)
√

2 tanh t (1 + iy tanh t) s

)
is a geodesic throughe2ue1 in H since it is the image of the standard geodesic

R→ B, t 7→ at0 =

(
tanh t

0

)
in B under the transformation

a′u︸ ︷︷ ︸
∈RAR−1@RG′R−1

R

 iy −s∗ 0
s −iy 0
0 0 1


︸ ︷︷ ︸

∈K′@G′

.

So we see that

∂tw
(u,y,s)
t

∣∣∣
t=0

=

(
2ie2uy√

2eus

)
∈ Te2ue1

H
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is a unit vector with respect to theRGR−1-invariant metric onH coming fromB via R. Now
sinceRNR−1 acts transitively on each{

w ∈ H
∣∣∆′ (w,w) = e2t

}
= RNat0,

t ∈ R, and∆′ is invariant underRNR−1 we may assume without loss of generality thatw0 =
e2ue1 with an appropriateu ∈ R. Since∆′ (wt,wt) is maximal fort = 0 we know that∂twt|t=0

is a unit vector iniR ⊕ Cp−1 @ Te1H, and therefore there existy ∈ R ands ∈ Cp−1 such that
y2 + s∗s = 1 and

∂twt|t=0 =

(
2ie2uy√

2eus

)
.

Since the geodesic is uniquely determined byw0 and∂twt|t=0 we see thatwt = w
(u,y,s)
t for all

t ∈ R, and so a straight forward calculation shows that

∆′ (wt,wt) = 2e2u 1− tanh2 t

1 + y2 tanh2 t

=
8e2u

(1 + y2) (e2t + e−2t) + 2s∗s
.

The rest is an easy exercise usingy2 + s∗s = 1. �

For all t ∈ R defineA>t := {aτ | τ > t} ⊂ A.

Theorem 6.2 (A ’fundamental domain’ forΓ\G ). There existη ⊂ N open and relatively
compact,t0 ∈ R andΞ ⊂ G′ finite such that if we define

Ω :=
⋃
g∈Ξ

gηA>t0K

then
(i) g−1Γg ∩NZG (G′) @ NZG (G′) andg−1Γg ∩N ′ZG (G′) @ N ′ZG (G′) are lattices, and

NZG (G′) =
(
g−1Γg ∩NZG (G′)

)
ηZG (G′)

for all g ∈ Ξ ,
(ii) G = ΓΩ,
(iii) the set{γ ∈ Γ|γΩ ∩ Ω 6= ∅} is finite.

Proof. The theorem is a direct consequence of Theorem 0.6 (i) - (iii), Theorem 0.7, Lemma
3.16 and Lemma 3.18 of [5]. For a detailed derivation see [10] or Section 3.2 of [11]. �

Now clearly the set of cusps ofΓ\B in Γ\∂B is contained in the set{
lim

t→+∞
Γgat0|g ∈ Ξ

}
,

and is therefore finite as expected, where the limits are taken with respect to the Euclidian metric
onB.

Corollary 6.3. Let t0 ∈ R, η ⊂ N andΞ ⊂ G be given by Theorem 6.2. Leth ∈ C (Γ\G)C and
s ∈]0,∞]. Thenh ∈ Ls (Γ\G) if and only ifh (g♦) ∈ Ls (ηA>t0K) for all g ∈ Ξ.

Let f ∈ sMk(Γ) andg ∈ Ξ. Then we can decomposef |g|R−1 =
∑

I∈℘(r) qIϑ
I ∈ O(H), all

qI ∈ O(H), I ∈ ℘(r), and by Theorem 6.2 (i) we know thatg−1Γg ∩ N ′ZG (G′) 6@ ZG (G′).
So letn ∈ g−1Γg ∩N ′ZG (G′) \ ZG (G′),

RnR−1 = n′λ0,0

(
ε1 0
0 E0

)
,

J. Inequal. Pure and Appl. Math., 10(1) (2009), Art. 2, 33 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


20 ROLAND KNEVEL

λ0 ∈ R \ {0}, ε ∈ U(1), E0 ∈ U(r), εn+1 = det E.
j (RnR−1) := j (RnR−1,w) = ε−1 ∈ U(1) is independent ofw ∈ H. So there existsχ ∈ R

such thatj (RnR−1) = e2πiχ. Without loss of generality we can assume thatE0 is diagonal,
otherwise conjugaten with an appropriate element ofZG (G′). So there existsD ∈ Rr×r

diagonal such thatE0 = exp (2πiD).

Theorem 6.4(FOURIER expansion off |g|R−1 ).
(i) There exist uniquecI,m ∈ O (Cn−1), I ∈ ℘(r), m ∈ 1

λ0
(Z− trID − (k + |I|) χ), such that

qI (w) =
∑

m∈ 1
λ0

(Z−trID−(k+|I|)χ)

cI,m (w2) e2πmw1

for all w ∈ H andI ∈ ℘(r), and so

f |g|R−1 (w) =
∑

I∈℘(r)

∑
m∈ 1

λ0
(Z−trID−(k+|I|)χ)

cI,m (w2) e2πmw1ϑI

for all w =

(
w1

w2

)
← 1
}n− 1

∈ H, where the convergence is absolute and compact.

(ii) cI,m = 0 for all I ∈ ℘(r) andm > 0 (this is a super analogon forKOECHER’s principle,
see for example Section 11.5 of[1] ), and iftrID + (k + |I|) χ ∈ Z, thencI,0 is a constant.

(iii) Let I ∈ ℘(r) ands ∈ [1,∞] . If trID + (k + |I|) χ 6∈ Z, then

qI∆
′ (w,w)

k+|I|
2 ∈ Ls (RηA>t00)

with respect to theRGR−1 -invariant measure∆′ (w,w)−(n+1) dVLeb onH. If trID+(k + |I|) χ ∈
Z andk ≥ 2n− |I| then

qI∆
′ (w,w)

k+|I|
2 ∈ Ls (RηA>t00)

with respect to theRGR−1 -invariant measure onH if and only ifcI,0 = 0.

A proof can be found in [10] or [11] Section 3.2.

7. PROOF OF THE M AIN RESULT

We have a LIE algebra embedding

ρ : sl(2, C) ↪→ g′C = sl(n + 1, C),

(
a b
c −a

)
7→

 a 0
0 0

b
0

c 0 −a

 .

Obviously the preimage ofg′ underρ is su(1, 1), the preimage ofk′ underρ is s (u(1)⊕ u(1)) '
u(1) andρ lifts to a LIE group homomorphism

ρ̃ : SL(2, C)→ G′C = SL(n + 1, C),

(
a b
c d

)
7→

 a 0
0 0

b
0

c 0 d


such that̃ρ (SU(1, 1)) @ G′.
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Let us now identify the elements ofg with the corresponding left invariant differential oper-
ators. They are defined on a dense subset ofL2 (Γ\G), and define

D := ρ

(
0 1
1 0

)
∈ a , D′ := ρ

(
0 i
−i 0

)
∈ g′ and

φ := ρ

(
i 0
0 −i

)
∈ k′.

TheR-linear span ofD,D′ andφ is the3-dimensional sub LIE algebraρ (su(1, 1)) of g′ @ g,
andD generates the flowϕt. φ generates a subgroup ofK ′, being the image of the LIE group
embedding

R/2πZ ↪→ K, t 7→ exp (tφ) = ρ̃

(
eit 0
0 e−it

)
.

Now define

D+ :=
1

2
(D − iD′) ,D− :=

1

2
(D + iD′) andΨ := −iφ

as left invariant differential operators onG. Then we get the commutation relations[
Ψ,D+

]
= 2D+,

[
Ψ,D−

]
= −2D− and

[
D+,D−

]
= Ψ,

and sinceG is unimodular(
D+
)∗

= −D−,
(
D−
)∗

= −D+ andΨ∗ = Ψ.

So by standard FOURIER analysis

L2 (Γ\G) =
⊕̂
ν∈Z

Hν

as an orthogonal sum, where

Hν :=
{

F ∈ L2 (Γ\G) ∩ domainΨ
∣∣ΨF = νF

}
for all ν ∈ Z. By a simple calculation we obtain

D+
(
Hν ∩ domainD+

)
⊂ Hν+2 andD−

(
Hν ∩ domainD−

)
⊂ Hν−2

for all ν ∈ Z.

Lemma 7.1.D−h̃ = 0 for all h ∈ O(B).

Proof. Let g ∈ G. Then againh|g ∈ O(B), andh̃ (g♦) = h̃|g. So

D−h̃(g) = D−
(
h̃ (g♦)

)
(1) = ∂1h|g = 0.

�

Lemma 7.2. Letf ∈ sS
(ρ)
k (Γ). Thenf̃ is uniformlyL IPSCHITZ continuous.

Proof. Since onG we use a left invariant metric it suffices to show that there exists a constant
c ≥ 0 such that for allg ∈ G andξ ∈ g with ||ξ||2 ≤ 1∣∣∣ξf̃(g)

∣∣∣ ≤ c.
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Thenc is a LIPSCHITZ constant forf̃ . So choose an orthonormal basis(ξ1, . . . , ξN) of g and a
compact neighbourhoodL of 0 in B. Then by CAUCHY ’s integral formula there existC ′, C ′′ ≥
0 such that for allh ∈ O(B) ∩ L∞k (B) andn ∈ {1, . . . , N}∣∣∣(ξnh̃

)
(1)
∣∣∣ ≤ C ′

∫
L

|h| ≤ C ′vol L ||h||∞,L ≤ C ′′vol L
∣∣∣∣∣∣h̃∣∣∣∣∣∣

∞
,

and sinceg→ C, ξ 7→
(
ξh̃
)

(1) is linear we obtain∣∣∣(ξh̃) (1)
∣∣∣ ≤ NC ′′vol L

∣∣∣∣∣∣h̃∣∣∣∣∣∣
∞

for generalξ ∈ g with ||ξ||2 ≤ 1. Now letg ∈ G. Then againf |g ∈ O(B), f̃ (g♦) = f̃ |g, and
by SATAKE ’s theorem, Theorem 2.1,f and sof |g ∈ L∞k (B). So∣∣∣ξf̃(g)

∣∣∣ =
∣∣∣(ξf̃ (g♦)

)
(1)
∣∣∣ ≤ NC ′′vol L

∣∣∣∣∣∣f̃ (g♦)
∣∣∣∣∣∣
∞
≤ NC ′′vol L

∣∣∣∣∣∣f̃ ∣∣∣∣∣∣
∞

,

and we can definec := NC ′′vol L
∣∣∣∣∣∣f̃ ∣∣∣∣∣∣

∞
. �

Now letf ∈ sS
(ρ)
k (Γ) such that(ϕγ0,I,m, f)Γ = 0 for all ϕγ0,I,m, γ0 ∈ Γ primitive loxodromic,

I ∈ ℘(r), |I| = ρ, m ∈]− C, C[. We will show thatf = 0 in several steps.

Lemma 7.3.There existsF ∈ C (Γ\G)C⊗
∧

(Cr) uniformlyL IPSCHITZcontinuous on compact
sets and differentiable along the flowϕt such that

f = ∂τF (♦aτ )|τ=0 = DF.

Proof. Here we use that the right translation withA on Γ\G′Z̃ is topologically transitive. So
let g0 ∈ G′ such thatΓg0A = G′Z̃ and defines ∈ C∞ (R)C ⊗

∧
(Cr) by

s(t) :=

∫ t

0

f̃ (g0aτ ) dτ

for all t ∈ R.

Step I. Show that for all L ⊂ G′Z̃ compact there exist constantsC3 ≥ 0 and ε3 > 0 such
that for all t ∈ R, T ≥ 0 and γ ∈ Γ if g0at ∈ L and

ε := d (γg0at, g0at+T ) ≤ ε3

then |s(t)− s(t + T )| ≤ C3ε.
Let L ⊂ G′Z̃ be compact,T0 > 0 be given by Lemma 5.2 andC1 ≥ 1 andε1 be given by

Theorem 5.3 (i) withT1 := T0. DefineC3 := max
(
C1 (C2 + 2c) ,

∣∣∣∣∣∣f̃ ∣∣∣∣∣∣
∞

)
≥ 0, whereC2 ≥ 0

is the LIPSCHITZ constant from Theorem 4.1 (ii) andc ≥ 0 is the LIPSCHITZ constant off̃ .

Defineε3 := min
(
ε1, ε2,

T0

2C1

)
> 0, whereε2 > 0 is given by Theorem 5.3 (ii).

Let t ∈ R, T ≥ 0 andγ ∈ Γ such thatg0at ∈ L andε := d (γg0at, g0at+T ) ≤ ε3.
First assumeT ≥ T0. Then by Theorem 5.3 (i) sinceε ≤ ε1 there existg ∈ G, w0 ∈ M and

t0 > 0 such thatγg = gat0w0, d ((t0, w0) , (T, 1)) ≤ C1ε, and for allτ ∈ [0, T ]

d (g0at+τ , gaτ ) ≤ C1ε
(
e−τ + e−(T−τ)

)
.

We get

s(t + T )− s(t) =

∫ T

0

f̃ (gaτ ) dτ︸ ︷︷ ︸
I1:=

+

∫ T

0

(
f̃ (g0at+τ )− f̃ (gaτ )

)
dτ︸ ︷︷ ︸

I2:=
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and

|I2| ≤
∫ T

0

∣∣∣f̃ (g0at+τ )− f̃ (gaτ )
∣∣∣ dτ

≤ c

∫ T

0

d (g0at+τ , gaτ ) dτ

≤ cC1ε

∫ T

0

(
e−τ + e−(T−τ)

)
dτ

≤ 2cC1ε.

Sinceγ ∈ Γ is regular loxodromic, there existsγ0 ∈ Γ primitive loxodromic andν ∈ N\{0}
such thatγ = γν

0 . γ0 ∈ gAWg−1 since Lemma 3.2 tells us thatg ∈ G is already determined
by γ up to right translation with elements ofANK(A). Choosew′ ∈ NK(M), t′0 > 0 and
w′

0 ∈ M such thatEw′
0

is diagonal andγ = gw′at′0
w′

0 (gw′)−1, and letg′ := gw′. We define

h ∈ C∞ (R×M)C ⊗
∧

(Cr) as

h(τ, w) := f̃ (g′aτw) = f̃ (gaτw
′w)

for all τ ∈ R andw ∈M . Then

I1 =

∫ T

0

h
(
τ, w′−1

)
dτ.

We can apply Theorem 4.1 (i) and, sincef is perpendicular to allϕγ0,I,m, I ∈ ℘(r), m ∈
]− C, C[, also Theorem 4.1 (ii) withg′ := gw′ instead ofg, and so

|I1| =
∣∣H (T,w′−1

)
−H

(
0, w′−1

)∣∣
=
∣∣H (T,w′−1

)
−H

(
t0, w

′−1w0

)∣∣
≤ C2d ((T, 1) , (t0, w0))

≤ C1C2ε,

where we used thatH (0, w′−1) = H (t′0, w
′
0w

′−1), choosing the left invariant metric onM , and
the claim follows.

Now assumeT ≤ T0. Then by Theorem 5.3 (ii), sinceε ≤ ε0 we getT ≤ ε and so

|s(t + T )− s(t)| =
∣∣∣∣∫ T

0

f̃ (g0at+τ ) dτ

∣∣∣∣ ≤ ε
∣∣∣∣∣∣f̃ ∣∣∣∣∣∣

∞
.

Step II. Show that there exists a uniqueF1 ∈ C
(
Γ\G′Z̃

)C
⊗
∧

(Cr) uniformly L IPSCHITZ

continuous on compact sets such that for allt ∈ R
s(t) = F1 (g0at) .

By Step I for allL ⊂ Γ\G′Z̃ compact withL◦ ⊂
dense

L there exists a uniqueFL ∈ C
(
Γ\G′Z̃

)C

uniformly LIPSCHITZ continuous such that for allt ∈ R if Γg0at ∈ L thens(t) = FL (Γg0at).

So we see that there exists a uniqueF1 ∈ C
(
Γ\G′Z̃

)C
⊗
∧

(Cr) such thatF1|L = FL for all

L ⊂ Γ\G′Z̃ compact withL◦ ⊂
dense

L.

Step III. Show thatF1 is differentiable along the flow and that for all g ∈ G′Z̃

∂τF1 (gaτ ) |τ=0 = f̃(g).
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Let g ∈ G′Z̃. It suffices to show that for allT ∈ R∫ T

0

f̃ (gaτ ) dτ = F1 (gaT )− F1(g).

If g = g0at for somet ∈ R then it is clear by construction. For generalg ∈ G′Z̃, since
Γg0A = G′Z̃ there exists(γn, tn)n∈N ∈ (Γ× R)N such that

lim
n→∞

γng0atn = g,

and so
lim

n→∞
γng0aτ+tn = gaτ

compact inτ ∈ R. Finally f̃ is uniformly LIPSCHITZcontinuous. Therefore we can interchange
integration and taking the limitn ∞:∫ T

0

f̃ (gaτ ) dτ = lim
n→∞

∫ T

0

f̃ (γng0aτ+tn) dτ

= lim
n→∞

(F1 (γng0aT+tn)− F1 (γng0atn))

= F1 (gaT )− F1(g).

Step IV. Conclusion.
DefineF ∈ C(G)C ⊗

∧
(Cr) as

F (gw) :=

∫
Z̃

F1

(
gu−1, Euwη

)
j(uw)k+ρdu

for all g ∈ G′Z̃ andw ∈ ZG (G′), where we normalize the HAAR measure on the compact LIE

groupZ̃ such thatvol Z̃ = 1. Then we see thatF is well defined and fulfills all the desired
properties. �

Lemma 7.4.
(i) For all L ⊂ G compact there existsε4 > 0 such that for allg, h ∈ L if g andh belong to the
sameT−-leaf andd−(g, h) ≤ ε4 then

lim
t→∞

(F (gat)− F (hat)) = 0,

and ifg andh belong to the sameT+-leaf andd+(g, h) ≤ ε4 then

lim
t→−∞

(F (gat)− F (hat)) = 0.

(ii) F is continuously differentiable alongT−- andT+-leafs, more precisely ifρ : I → G is a
continuously differentiable curve in aT−-leaf, then

∂t (F ◦ ρ) (t) = −
∫ ∞

0

∂tf̃ (ρ(t)aτ ) dτ,

and ifρ : I → G is a continuously differentiable curve in aT+-leaf then

∂t (F ◦ ρ) (t) =

∫ 0

−∞
∂tf̃ (ρ(t)aτ ) dτ.
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Proof. (i) Let L ⊂ G be compact, and letL′ ⊂ G be a compact neighbourhood ofL. LetT0 > 0
be given by Lemma 5.2 andε2 > 0 by Theorem 5.3 (ii) both with respect toL′. Define

ε4 :=
1

3
min

(
ε1, ε2,

T0

2C1

)
> 0,

whereε1 > 0 andC1 ≥ 1 are given by Theorem 5.3 (i) withT1 := T0. Let δ0 > 0 such that
Uδ0(L) ⊂ L′ and let

δ ∈ ]0, min (δ0, ε4)[ .

Let g, h ∈ L be in the sameT−-leaf such thatε := d−(g, h) ≤ ε4. Since the splitting ofTG
is left invariant andT−

1 (G) @ g′ we see that there existg′, h′ ∈ G′ andu ∈ ZG (G′) such that
g = g′u andh = h′u. Fix someT ′ > 0. Again by assumption there existsg0 ∈ G′ such that
Γg0A = G′Z̃, and sog, h ∈ Γg0uA. So there existγg, γh ∈ Γ andtg, th ∈ R such that

d
(
gat, γgg0uatg+t

)
, d (hat, γhg0uath+t) ≤ δ

for all t ∈ [0, T ′], and so in particularγgg0uatg , γhg0uath ∈ L′. We will show that for all
t ∈ [0, T ′] ∣∣F (γgg0uatg+t

)
− F (γhg0uath+t)

∣∣ ≤ C ′
3

(
εe−t + 2δ

)
with the same constantC ′

3 ≥ 0 as in Step I of the proof of Lemma 7.3 with respect toL′.
Without loss of generality we may assumeT := th − tg ≥ 0. Defineγ :=
γgγ

−1
h ∈ Γ. Then for allt ∈ [0, T ′]

d
(
γγhg0uatg+t, γhg0uatg+t+T

)
≤ εe−t + 2δ.

First assumeT ≥ T0 and fix t ∈ [0, T ′]. Then by Theorem 5.3 (i), since

εe−t + 2δ ≤ ε + 2δ ≤ min
(
ε1,

T0

2C1

)
, there existz ∈ G, t0 ∈ R andw ∈ M

such thatγz = zat0w,

d ((t0, w) , (T, 1)) ≤ C1

(
2δ + εe−t

)
,

and for allτ ∈ [0, T ]

d
(
γgg0uatg+t+τ , zaτ

)
≤ C1

(
εe−t + 2δ

) (
e−τ + e−(T−τ)

)
.

And so by the same calculations as in the proof of Lemma 7.3 we obtain the
estimate ∣∣F (γgg0uatg+t

)
− F (γhg0uath+t)

∣∣ ≤ C ′
3

(
εe−t + 2δ

)
.

Now assumeT ≤ T0. Then by Theorem 5.3 (ii) sinceγgg0matg ∈ L′ and
ε + 2δ ≤ ε2 we obtainγ = 1 and so by the left invariance of the metric onG

d (1, aT ) ≤ εe−T ′
+ 2δ,

thereforeT ≤ εe−T ′
+ 2δ. So as in the proof of Lemma 7.3,∣∣F (γgg0uatg+t

)
− F (γhg0uath+t)

∣∣ ≤ ∣∣∣∣∣∣f̃ ∣∣∣∣∣∣
∞

(
εe−T ′

+ 2δ
)

≤ C ′
3

(
εe−t + 2δ

)
.

Now let us take the limitδ  0. Thenγgg0uatg  g andγhg0uath  h, so sinceF is
continuous

|F (gat)− F (hat)| ≤ C ′
3εe

−t

for all t ∈ [0, T ′], and sinceT ′ > 0 has been arbitrary, we obtain this estimate for allt ≥ 0 and
solimt→∞ F (gat)−F (hat) = 0. By similar calculations we can prove thatlimt→−∞ F (gat)−
F (hat) = 0 if g andh belong to the sameT+-leaf andd+ (g, h) ≤ ε4.
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(ii) Let ρ : I → G be a continuously differentiable curve in aT−-leaf, and lett0, t1 ∈ I, t1 > t0.
It suffices to show that

F (ρ (t1))− F (ρ (t0)) = −
∫ t1

t0

∫ ∞

0

∂tf̃ (ρ(t)aτ ) dτdt.

Let C ′ ≥ 0 such that||∂tρ(t)|| ≤ C ′ for all t ∈ [t0, t1]. Then sinceρ lies in aT−-leaf we have
||∂t (ρ(t)aτ )|| ≤ C ′e−τ and so ∣∣∣∂tf̃ (ρ(t)aτ )

∣∣∣ ≤ cC ′e−τ

for all τ ≥ 0 andt ∈ [t0, t1] wherec ≥ 0 is the LIPSCHITZconstant off̃ . So the double integral
on the right side is absolutely convergent and so we can interchange the order of integration:∫ t1

t0

∫ ∞

0

∂tf̃ (ρ(t)aτ ) dτdt =

∫ ∞

0

∫ t1

t0

∂tf̃ (ρ(t)aτ ) dtdτ

=

∫ ∞

0

(
f̃ (ρ (t1) aτ )− f̃ (ρ (t0) aτ )

)
dτ

= lim
T→∞

(F (ρ (t1) aT )− F (ρ (t0) aT ))

− F (ρ (t1)) + F (ρ (t0)) .

Now letL ⊂ G be compact such thatρ([t1, t2]) ⊂ L and letε4 > 0 as in (i). Without loss of
generality we may assume thatd− (ρ (t0) , ρ (t1)) ≤ ε4. Then

lim
T→∞

(F (ρ (t1) aT )− F (ρ (t0) aT )) = 0

by (i). By similar calculations one can also prove

∂t (F ◦ ρ) (t) =

∫ 0

−∞
∂tf̃ (ρ(t)aτ ) dτ

in the case whenρ : I → G is a continuously differentiable curve in aT+-leaf. �

Lemma 7.5.
(i) F ∈ L2 (Γ\G)⊗

∧
(Cr),

(ii) ξF ∈ L2 (Γ\G)⊗
∧

(Cr) for all ξ ∈ RD ⊕ g ∩ (T+ ⊕ T−).

Proof. (i) If Γ\G is compact then the assertion is trivial. So assume thatΓ\G is not compact,
then we use the unbounded realizationH of B introduced in Section 6. Sincevol (Γ\G) <∞, it
suffices to prove thatF is bounded, and by Corollary 6.3 it is even enough to show thatF (g♦)
is bounded onNA>t0K for all g ∈ Ξ, wheret0 ∈ R andΞ ⊂ G′ are given by Theorem 6.2. So
let g ∈ Ξ.

Step I. Show thatF (g♦) is bounded onNat0K.
Let η ⊂ N also be given by Theorem 6.2. ThenF (g♦) is clearly bounded on the compact

setηat0K. On the other handF (g♦) is left-g−1Γg -invariant, so it is also bounded on

Nat0K =
(
gΓg−1 ∩NZG (G′)

)
ηat0K

by Theorem 6.2 (i).

Step II. Show that there existsC ′ ≥ 0 such that for all g′ ∈ NA>t0K∣∣∣f̃ (gg′)
∣∣∣ ≤ C ′

∆′ (Rg′0, Rg′0)
.
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As in Section 6, letqI ∈ O(H) such thatf |g|R−1 =
∑

I∈℘(r) qIϑ
I . Then sincef̃ (g♦) ∈

L2 (ηA>t0K)⊗
∧

(Cr), by Theorem 6.4 we have FOURIER expansions

(7.1) qI (w) =
∑

m∈ 1
λ0

(Z−trID−(k+|I|)χ)∩R<0

cI,m (w2) e2πmw1

for all I ∈ ℘(I) and w =

(
w1

w2

)
← 1
}n− 1

∈ H, wherecI,m ∈ O (Cn−1), I ∈ ℘(r),

m ∈ 1
λ0

(z− trID − (k + |I|) χ) ∩ R<0. Define

M0 := max
⋃

I∈℘(r)

1

λ0

(Z− trID − (k + |I|) χ) ∩ R<0 < 0.

Rηat00 ⊂ H is compact, and so since the convergence of the FOURIER series (7.1) is absolute
and compact we can define

C ′′ := e−2πM0e2t0

× max
I∈℘(r)

∑
m∈ 1

λ0
(Z−trID−(k+|I|)χ)∩R<0

∣∣∣∣cI,m (w2) e2πmw1
∣∣∣∣
∞,Rηat00

<∞.

Then we have
|qI (w)| ≤ C ′′eπM0∆′(w,w)

for all I ∈ ℘(r) andw ∈ RηA>t00. Now let

g′ =

(
∗ 0
0 E ′

)
∈ ηA>0K,

E ′ ∈ U(r). Then

f̃ (gg′) = f |g|R−1

∣∣
RgR−1 (e1)

= f |g|R−1

(
Rg′R−1

(
e1

η

))
j
(
Rg′R−1, e1

)k
= f |g|R−1

(
Rg′0

Eηj (Rg′R−1)

)
j
(
Rg′R−1, e1

)k
=
∑

I∈℘(r)

qI (Rg′0) (Eη)I j
(
Rg′R−1, e1

)k+|I|
.

Therefore since|j (Rg′R−1, e1)| =
√

∆′ (Rg′0, Rg′0) we get∣∣∣f̃ (gg′)
∣∣∣ ≤ 2rC ′′eπM0∆′(Rg′0,Rg′0)

×
(
∆′ (Rg′0, Rg′0)

k
2 + ∆′ (Rg′0, Rg′0)

k+r
2

)
.

So we see that there existsC ′ > 0 such that∣∣∣f̃ (gg′)
∣∣∣ ≤ C ′

∆′ (Rg′0, Rg′0)

for all g′ ∈ ηA>t0K. However, on the one hand̃f (g♦) is left- g−1Γg -invariant, and on the
other hand∆′ is RNZG (G′) R−1 -invariant. Therefore the estimate is correct even for all

g′ ∈ NA>t0K =
(
gΓg−1 ∩NZG (G′)

)
ηA>t0K

by Theorem 6.2 (i).
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Step III. Conclusion: Prove that

|F (g♦)| ≤ ||F (g♦)||∞,Nat0K + 2C ′e−2t0

on NA>t0K.
Let g′ ∈ G be arbitrary. We will show the estimate ong′A ∩NA>t0K.

R→ H, t 7→ wt := Rg′at0

is a geodesic inH, and for allt ∈ R we haveg′at ∈ NA>t0K if and only if ∆′ (wt,wt) > 2e2t0 .
Now we have to distinguish two cases.

In the first case the geodesic connects∞ with a point in∂H. First assume thatlimt→∞wt =
∞ andlimt→−∞wt ∈ ∂H. Thenlimt→∞ ∆′ (wt,wt) = ∞ andlimt→−∞ ∆′ (wt,wt) = 0. So
we may assume without loss of generality that∆′ (w0,w0) = 2e2t0, and thereforeg′ = g′a0 ∈
Nat0K andg′at ∈ NA>t0K if and only if t > 0. So lett > 0. Then

F (gg′at) = F (gg′) +

∫ t

0

f̃ (gg′aτ ) dτ,

and so

|F (gg′at)| ≤ ||F (g♦)||∞,Nat0K +

∫ t

0

∣∣∣f̃ (gg′aτ )
∣∣∣ dτ.

By Step II and Lemma 6.1 (i),∫ t

0

∣∣∣f̃ (gg′aτ )
∣∣∣ dτ ≤ C ′

∫ t

0

dτ

∆′ (wτ ,wτ )

=
C ′

∆′ (w0,w0)

∫ t

0

e−2τdτ

≤ C ′e−2t0 .

The case wherelimt→−∞ =∞ andlimt→∞ ∈ ∂H is done similarly.
In the second case the geodesic connects two points in∂H. Then without loss of generality

we may assume that∆′ (Rwt, Rwt) is maximal fort = 0. So if ∆′ (w0,w0) < 2e2t0 , we have
g′A∩NA>t0K = ∅. Otherwise by Lemma 6.1 (ii) there existsT ≥ 0 such that∆′ (wT ,wT ) =
∆′ (w−T ,w−T ) = 2e2t0, and since∆′ (wT ,wT ) ≤ 4

e2|T |∆
′ (w0,w0), we see that

T ≤ 1

2
log (2∆′ (wT ,wT ))− t0.

Sog′aT , g′a−T ∈ Nat0K andg′at ∈ NA>t0K if and only if t ∈]− T, T [. Let t ∈]− T, T [ and
assumet ≥ 0 first. Then

F (gg′at) = F (gg′aT )−
∫ T

t

f̃ (gg′aτ ) dτ,

and so

|F (gg′at)| ≤ ||F (g♦)||∞,Nat0K +

∫ T

0

∣∣∣f̃ (gg′aτ )
∣∣∣ dτ.
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By Step II and Lemma 6.1 (ii), now∫ T

0

∣∣∣f̃ (gg′aτ )
∣∣∣ dτ ≤ C ′

∫ T

0

dτ

∆′ (wτ ,wτ )

≤ C ′

∆′ (w0,w0)

∫ T

0

e2τdτ

≤ C ′

2∆′ (w0,w0)
e2T

≤ 2C ′e−2t0 .

The caset ≤ 0 is done similarly.

(ii) Since on one hand∂τF (♦aτ ) |τ=0 = f̃ ∈ L2 (Γ\G) ⊗
∧

(Cr) and on the other hand
vol (Γ\G) <∞, it suffices to show thatξF is bounded for allα ∈ Φ \ {0} andξ ∈ gα. So let
α ∈ Φ \ {0} andξ ∈ gα. First assumeα > 0, which clearly implies thatα ≥ 1 andξ ∈ T−. So
there exists a continuously differentiable curveρ : I → G contained in theT−-leaf containing
1 such that0 ∈ I, ρ(0) = 1 and∂tρ(t)|t=0 = ξ. Let g ∈ G. Then by Theorem 7.4 (ii), we have

(ξF ) (g) = ∂tF (gρ(t))|t=0

= −
∫ ∞

0

∂tf̃ (gρ(t)aτ )
∣∣∣
t=0

dτ

= −
∫ ∞

0

∂tf̃ (gaτa−τρ(t)aτ )
∣∣∣
t=0

dτ

= −
∫ ∞

0

((
Ada−τ (ξ)

)
f̃
)

(gaτ ) dτ

= −
∫ ∞

0

e−ατ
(
ξf̃
)

(gaτ ) dτ,

so
|(ξF ) (g)| ≤ c ||ξ||2 <∞,

wherec is the LIPSCHITZ constant off̃ . The caseα < 0 is done similarly. �

Therefore by the FOURIER decomposition described above we have

F =
∑

I∈℘(r),|I|=ρ

∑
ν∈Z

FIνη
I ,

whereFIν ∈ Hν for all I ∈ ℘(r), |I| = ρ, andν ∈ Z. D = D+ +D−, and a simple calculation
shows thatD+ andD− ∈ RD ⊕ g ∩ (T+ ⊕ T−), and soD+F,D−F ∈ L2 (Γ\G)⊗

∧
(Cr) by

Lemma 7.5 (ii). So we get the FOURIER decomposition of̃f as

f̃ = DF =
∑

I∈℘(r),|I|=ρ

∑
ν∈Z

(
D+FI,ν−2 +D−FI,ν+2

)
ηI

with D+FI,ν−2 +D−FI,ν+2 ∈ Hν for all ν ∈ Z. But sincef ∈ sSρ
k(Γ) the FOURIER decompo-

sition of f̃ is exactly
f̃ =

∑
I∈℘(r),|I|=ρ

qIη
I

with qI ∈ C∞(G)C ∩Hk+ρ, and so for allI ∈ ℘(r), |I| = ρ, andν ∈ Z

D+FI,ν−2 +D−FI,ν+2 =

{
qI if ν = k + ρ
0 otherwise

.
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Lemma 7.6. FI,ν = 0 for I ∈ ℘(r), |I| = ρ, andν ≥ k + ρ.

Proof. Similar to the argument of GUILLEMIN and KAZHDAN in [6]. Let I ∈ ℘(r) such that
|I| = ρ. Then by the commutation relations ofD+ andD− we get for alln ∈ Z

(7.2)
∣∣∣∣D+FI,n

∣∣∣∣2
2

=
∣∣∣∣D−FI,n

∣∣∣∣2
2
+ ν ||FI,n||22 ,

and for alln ≥ k + ρ + 1 we haveD+FI,n−2 +D−FI,n+2 = 0 and so∣∣∣∣D−FI,n+2

∣∣∣∣
2

=
∣∣∣∣D+FI,n−2

∣∣∣∣
2
.

Now letν ≥ k + ρ. We will prove that∣∣∣∣D+FI,ν+4l

∣∣∣∣
2
≥ ||FI,ν ||2

for all l ∈ N by induction onl:

If l = 0 then the inequality is clear by (7.2). So let us assume that the inequality
is true for somel ∈ N. Then again by (7.2) we have∣∣∣∣D+FI,ν+4l+4

∣∣∣∣2
2
≥
∣∣∣∣D−FI,ν+4l+4

∣∣∣∣2
2

=
∣∣∣∣D+FI,ν+4l

∣∣∣∣2
2
≥ ||FI,ν ||22 .

On the other hand,D+FI ∈ L2 (Γ\G) by Lemma 7.5 and so||D+FI,n||2  0 for n  ∞.
This impliesFν = 0. �

So for allI ∈ ℘(r), |I| = ρ, we obtainD+FI,k+ρ−2 = qI and finallyD−qI = 0 by Lemma
7.1, sincef ∈ O(B), so

||qI ||22 =
(
qI ,D+FI,k+ρ−2

)
= −

(
D−qI , FI,k+ρ−2

)
= 0,

and sof̃ = 0, which completes the proof of our main theorem. �

8. COMPUTATION OF THE ϕγ0,I,m

Fix a regular loxodromicγ0 ∈ Γ, g ∈ G, t0 > 0 andw0 ∈M such thatE0 := Ew0 is diagonal
andγ0 = gat0w0g

−1 ∈ gAMg−1. Let D ∈ Rr×r be diagonal such thatexp(2πiD) = E0 and
χ ∈ R such thatj(w0) = e2πiχ. Now we will computeϕγ0,I,m ∈ sSk(Γ), I ∈ ℘(r), m ∈
1
t0

(Z− (k + |I|) χ− trID), as a relative POINCARÉ series with respect toΓ0 := 〈γ0〉 @ Γ.
Hereby again ’≡’ means equality up to a constant6= 0 not necessarily independent ofγ0, I and
m.

Theorem 8.1.LetI ∈ ℘(r) andk ≥ 2n+1−|I|. Then for allm ∈ 1
t0

(Z− (k + |I|) χ− trID)
(i)

ϕγ0,I,m ≡
∑

γ∈Γ0\Γ

q|γ ∈ sS
(|I|)
k (Γ),

where

q :=

∫ ∞

−∞
e2πimt∆ (♦, gat0)−k−|I| j (gat,0)

k+|I|
dt
(
E−1

g ζ
)I

∈ sM
(|I|)
k (Γ0) ∩ L1

k (Γ0\B) .

(ii) For all z ∈ B we have

q (z) ≡
(
∆
(
z,X+

)
∆
(
z,X−))− k+|I|

2

(
1 + v1

1− v1

)πim (
E−1

g ζ
)I

,
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where

X+ := g


1
0
...
0

 and X− := g


−1
0
...
0


are the two fixpoints ofγ0 in ∂B, and

v := g−1z ∈ B ⊂ Cp.

Proof. Let ρ := |I|.

(i) Let f ∈ sS
(ρ)
k (Γ), and defineh =

∑
J∈℘(r),|J |=ρ hJηJ ∈ C∞ (R×M)C ⊗

∧
(Cr), all hJ ∈

C∞ (R×M)C, andbI,m ∈ C, m ∈ 1
t0

(Z− (k + |I|) χ− trID), as in Theorem 4.1. Then by
standard FOURIER theory and Lemma 2.3 we have

bI,m ≡
∫ t0

0

e−2πimthI(t, 1)dt

≡
∫ t0

0

e−2πimt
(
∆ (♦, gat0)−k−ρ (E−1

g ζ
)I

, f
)

j (gat,0)k+ρ dt

=

∫ t0

0

e−2πimt

∫
G

〈
f̃ ,
(
∆ (♦, gat0)−k−ρ (E−1

g ζ
)I)∼〉

j (gat,0)k+ρ dt.

Since by SATAKE ’s theorem, Theorem 2.1,̃f ∈ L∞(G)⊗
∧

(Cr), and∫ t0

0

∫
G

∣∣∣(∆ (♦, gat0)−k−ρ (E−1
g ζ
)I)∼

j (gat,0)k+ρ
∣∣∣ dt

=

∫ t0

0

∫
G

∣∣∣(∆ (♦,0)−k−ρ ζI
)∼ (

(gat)
−1♦

)∣∣∣ dt

≡
∫

G

∣∣∣ζ̃I

∣∣∣
=

∫
G

∣∣∣j (♦,0)k+ρ
∣∣∣

≡
∫

B

∆ (Z,Z)
k+ρ
2
−(p+1) dVLeb <∞,

by TONELLI ’s and FUBINI ’s theorem we can interchange the order of integration:

bI,m ≡
∫

G

〈
f̃ ,

∫ t0

0

e2πimt
(
∆ (♦, gat0)−k−ρ (E−1

g ζ
)I)∼

j (gat,0)
k+ρ

dt

〉
=

(∫ t0

0

e2πimt∆ (♦, gat0)−k−ρ j (gat,0)
k+ρ

dt
(
E−1

g ζ
)I

, f

)
= (q, f)Γ0 ,

where (∫ t0

0

e2πimt∆ (♦, gat0)−k−ρ j (gat,0)
k+ρ

dt
(
E−1

g ζ
)I)∼ ∈ L1(G)⊗

∧
(Cr) ,

∫ t0

0

e2πimt∆ (♦, gat0)−k−ρ j (gat,0)
k+ρ

dt
(
E−1

g ζ
)I ∈ O(B)
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since∆ (♦,w) ∈ O(B) for all w ∈ B and the convergence of the integral is compact, and so
by Lemma 2.2,

q :=
∑

γ′∈Γ0

∫ t0

0

e2πimt∆ (♦, gat0)−k−ρ j (gat,0)
k+ρ

dt
(
E−1

g ζ
)I∣∣∣∣

γ′

∈ sMk (Γ0) ∩ L1
k (Γ0\B) .

Clearly

∆ (♦, gat0)−k−ρ (E−1
g ζ
)I∣∣∣

γ0

= ∆ (γ0♦, gat0)−k−ρ (E0E
−1
g ζ
)I

j (γ0,♦)k+ρ

= ∆
(
♦, γ−1

0 gat0
)−k−ρ (

E0E
−1
g ζ
)I

j
(
γ−1

0 , gat0
)k+ρ

,

so for allz ∈ B we can computeq (z) as

q (z) =
∑
ν∈Z

∫ t0

0

e2πimt∆ (♦, gat0)−k−ρ (E−1
g ζ
)I

j (gat,0)
k+ρ

dt

∣∣∣∣
γν
0

(z)

=
∑
ν∈Z

∫ t0

0

e2πimt∆
(
z, γ−ν

0 gat0
)−k−ρ (

Eν
0E−1

g ζ
)I × j

(
γ−ν

0 gat,0
)k+ρ

dt

=
∑
ν∈Z

∫ t0

0

e2πimt∆ (z, gat−νt00)−k−ρ (E−1
g ζ
)I

e2πiνtrIDj (gat−νt0 ,0)
k+ρ

e2πiν(k+ρ)χdt

=
∑
ν∈Z

∫ t0

0

e2πim(t−νt0)∆ (z, gat−νt00)−k−ρ j (gat−νt0 ,0)
k+ρ

dt
(
E−1

g ζ
)I

=

∫ ∞

−∞
e2πimt∆ (z, gat0)−k−ρ j (gat,0)

k+ρ
dt
(
E−1

g ζ
)I

.

Again by Lemma 2.2 we see that
∑

γ∈Γ0\Γ q|γ ∈ sM
(ρ)
k (Γ) ∩ L1

k (Γ\B), and so by SATAKE ’s

theorem, Theorem 2.1, it is even an element ofsS
(ρ)
k (Γ), such that

bI,m ≡

 ∑
γ∈Γ0\Γ

q|γ, f


Γ

,

and so we conclude thatϕγ0,I,m ≡
∑

γ∈Γ0\Γ q|γ.

(ii) ∫ ∞

−∞
e2πimt∆ (z, gat0)−k−ρ j (gat,0)

k+ρ
dt

= j
(
g−1, z

)k+ρ
∫ ∞

−∞
e2πimt∆

(
g−1z, at0

)−k−ρ
j (at,0)

k+ρ
dt

= j
(
g−1, z

)k+ρ
∫ ∞

−∞
e2πimt (1− v1 tanh t)−k−ρ 1

(cosh t)k+ρ
dt
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= j
(
g−1, z

)k+ρ
∫ ∞

−∞

e2πimt

(cosh t− v1sinh t)k+ρ
dt

≡ j
(
g−1, z

)k+ρ 1

(1− v2
1)

k+ρ
2

(
1 + v1

1− v1

)πim

= j
(
g−1, z

)k+ρ
((1− v1) (1 + v1))

− k+ρ
2

(
1 + v1

1− v1

)πim

≡
(
∆
(
z,X+

)
∆
(
z,X−))− k+ρ

2

(
1 + v1

1− v1

)πim

.

�
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