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ABSTRACT. In this paper, by using one of Chen'’s theorems, combining the method of mathe-

matical analysis and nonlinear algebraic equation system, Mircea’s Inequality involving the area,
circumradius and inradius of the triangle is sharpened.
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1. INTRODUCTION AND MAIN RESULTS

Let S be the areaR the circumradiusy the inradius angh the semi-perimeter of a triangle.
The following laconic and beautiful inequality is the so-called Mircea inequality!in [1]

R+g>\/§.
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In 1991, D. S. Mitrinovt et al. [2] noted a Mircea-type inequality obtained by D.M. MiloSe-
vi€

(1.1) R+ g > 2\/5\@
In [4], L. Carliz and F. Leuenberger strengthened inequdlity (1.1) as follows (seé also [3])
(1.2) R+7 > V3VS,
since [1.2) can be written as
(1.3) R+ > 2\4/5\/?+é(3—2r),

and from the well-known Euler inequality > 2r.
The main purpose of this article is to give a generalization of inequaljties (1.1) and (1.2) or

€-3).

Theorem 1.1.1f & < ko, then for any triangle, we have

)
(1.4) R+g > 2VBVS + k(R - 2r),
wherek;, is the root on the intervalll, 2) of the equation

(1.5) 2304k* — 896k® — 2336k? — 856k + 1159 = 0.

The equality in(1.4)is valid if and only if the triangle is isosceles and the of ratio of its sides is
2 : xg : xo, Wherex, is the positive root of the following equation

(1.6) x* + 2823 — 1202 4+ 802z — 16 = 0.
From Theorem 1|1, we can make the following remarks.
Remark 1.2. k is the best constant which makgs {1.4) hold, &ne- 0.5660532114 . . ..

Remark 1.3. The function
(k) :R+g— g\“/ﬁ\@—k(}z—m«)
is @ monotone increasing function 6éroo, k).
Remark 1.4. Fork = 1 in (T.4), the inequality
R+ 3r > 2\4/5\/5
holds.

Remark 1.5. xy = 3.079485433 . . ..
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2. SOME LEMMAS
In order to prove Theorefn 1.1, we require several lemmas.

Lemma 2.1([5], /6], see alsa [12])

(i) If the homogeneous inequality> (>)f1(R,r) holds for any isosceles triangle whose
top angle is greater than or equal &9)°, then the inequality > (>) f1(R, r) holds for
any triangle.

(i) If the homogeneous inequality< (<) fi(R,r) holds for any isosceles triangle whose
top angle is less than or equal €9°, then the inequality < (<) fi(R, r) holds for any
triangle.

Lemma 2.2([[7]). Denote
f(x) = apx” + a1z + -+ + an,

and
g(x) = box™ + bya™ 4+ -+ by,
If ag # 0 or by # 0, then the polynomialg(x) and g(z) have common roots if and only if

ag ai as anp, O . e O
0 a a1 -+ Gup-1 ap
- 0 0 agp a, o
R(f.9) = bo by by e e e e 0 =0,
0 by by -+ o e e 0
0 0 0 - by by - by

whereR(f, g) is Sylvester’s resultant gf(z) and g(z).
Lemma 2.3([[7,[8]). For a given polynomiaff (x) with real coefficients
f(z) = apa" + ayz" ' + - + ay,
if the number of sign changes of the revised sign list of its discriminant sequence

{D1(f), Da(f), -, Du(f)}

is v, then, the number of the pairs of distinct conjugate imaginary rootg(of equalsv.
Furthermore, if the number of non-vanishing members of the revised sign listhen, the
number of the distinct real roots ¢fx) equalsl — 2v.

3. THE PROOF OF THEOREM [1.]

Proof. It is not difficult to see that the form of the inequality (1.4) is equivalent to
p < (<)fi(R,r) with the known identityS = rp. From Lemmd 2]1, we easily see that in-
equality [1.4) holds if and only if this triangle is an isosceles triangle whose top angle is less
than or equal tG0°.
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Leta =2,b=c==xz (x> 2),then[1.4) is equivalent to

e T ).

or

(3.1) P tr—1> 2\4/3(902 — 13+ k(x
Forx = 2, (3.7) obviously holds. If: > 2, then [3.1) is equivalent to

b < B +x—1-2y/3(*—1)3

(x —2)?
Define a function
2 —1—=34/3(x2—-1)3
ga) = =7 (x_?’z)Q -1 (x> 2).

Calculating the derivative faj(z), we get
, 5[V3(2? + 6z — 4) — 6av/a? — 1]
gle)= s
Let ¢/(x) = 0, we obtain

(3.2) V3(2? + 61 —4) — 62va2 — 1 =0.

It is easy to see that the roots of equation](3.2) must be the roots of the following equation

(z* + 282® — 1202% + 80z — 16)(z + 2)(z — 2)* = 0.

For the range of roots of equatidn (B.2) @ +oc), the roots of equatioi (3.2) must be the roots

of equation[(1.B).
It shows that equatiof (1.6) has only one positive real root on the open intervato). Let

x be the positive real root of equatidn (1.6). Then= 3.079485433 ..., and
xg+axo—1—2v/3(23 — 1)
(w0 — 2)°

11 4
3.3 = (0.5660532114 - - - — = .
(3.3) 6(20,7>

g(‘x)min = g(l’o) =

Therefore, the maximum dfis g(x).
Now we prove thay(z) is the root of equatior (1.5).
Consider the nonlinear algebraic equation system as follows
T + 2823 — 12022 + 8029 — 16 =0
(3.4) ug —3(z2 —1)*=0 ,
xg+ a9 —1—3ug— (w0 — 2)*t =0

or

F(.To) =0
(3.5) {G(xo) _o
where

F(x0) = xp + 28z7 — 12022 4 80z — 16,
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and
Glzg) =81 (=1 4+) x® — 324 (1 +4t) (=1 +1)° 2"

+ (—1713 + 2592t + 3402 ¢* — 15228 t* 4+ 9072 ¢*) x,°
— 324 (=24 7t) (=1 +1) (1 4+41)% z°
+ (5220 — 6480 ¢ — 26730 > — 6480 > + 90720 ¢*) zo*
— 324 (=24 7t) (1 +41)° z°
+ (—5463 + 4212 + 34992 1% + 1192327 + 145152 ") 2p”
— 324 (1+4)" 19 4 1956 + 1296 t 4+ 7776 1> + 20736 t> + 20736 ¢.

We have thay(z,) is also the solution of the nonlinear algebraic equation system (3.4) or (3.5).
From Lemma 22, we get
R(F,G) = 44079842304p, (t)p2(t)ps(t) = 0,
where
p1(t) = 2304t* — 896t* — 2336t* — 856t 4 1159,
po(t) = 2304t" — 46976t> + 51104¢* — 35496t + 10939,

pa(t) = 1327104¢% — 2757427217 4 270856192t° — 2187632641° — 111704320t
+ 78507776t + 170893152t% — 164410112t + 621958609.

The revised sign list of the discriminant sequenceJ0f) is
(3.6) (1,1, -1, —1].

The revised sign list of the discriminant sequence;0f) is
(3.7) [1,-1,—-1,-1,1,—1,1,1].

So the number of the sign changes of the revised sign list gf (3.6) equhén with Lemma 2]2,
the equatiorp(t) = 0 has2 distinct real roots. And by using the function "realroot()"[10, 11]
in Maple 9.0, we can find that(¢) = 0 has2 distinct real roots in the following intervals
117 77 617
) (%]
and no real root on the intervaj:, 2).

If the number of the sign changes of the revised sign list of (3.7) equ#ten from Lemma
2.3, the equatiom;(t) = 0 has4 pairs distinct conjugate imaginary roots. That is to say,
ps(t) = 0 has no real root.

From (3.3), we easily deduce thgtz,) is the root of the equatiop, (1) = 0. Namely,g(x)
is the root of equation (1.5).

Further, considering the proof above, we can easily obtain the required re$ulfin (1.4).

Thus, the proof of Theorem 1.1 is completed. O
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