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In this paper, by using one of Chen’s theorems, combining the method of math-
ematical analysis and nonlinear algebraic equation system, Mircea’s Inequality
involving the area, circumradius and inradius of the triangle is sharpened.
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1. Introduction and Main Results

Let S be the areaR the circumradiusy the inradius ang the semi-perimeter of
a triangle. The following laconic and beautiful inequality is the so-called Mircea

inequality in [1]
R+ g > VS.

In 1991, D. S. MitrinovE et al. ] noted a Mircea-type inequality obtained by
D.M. MiloSevic

(1.1) R+g > g\/ﬁﬁ

In [4], L. Carliz and F. Leuenberger strengthened inequality)(as follows (see

also B])
(1.2) R+1r>V3V5,

since (L.2) can be written as

(1.3) R+ > ff+ G(B—2),

and from the well-known Euler inequality > 2r.
The main purpose of this article is to give a generalization of inequaliti€$ (
and (L.2) or (1.3).

Theorem 1.1.If k£ < kg, then for any triangle, we have

(1.4) \/_\/_+k(R 2r),

[\.'DIY
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wherek;, is the root on the intervall;, 7) of the equation

(1.5) 2304k* — 896k — 2336k% — 856k + 1159 = 0.

The equality in(1.4) is valid if and only if the triangle is isosceles and the of ratio of
its sides i : z : xy, Wherez, is the positive root of the following equation

(1.6) ot 42823 — 1202% + 80z — 16 = 0.

From Theoremni..1, we can make the following remarks.
Remarkl. &, is the best constant which makés4) hold, andk, = 0.5660532114. . ..
Remark2. The function

f(k):R+g—g€/§\/§—k(R—2r)

is @ monotone increasing function ¢roo, k.
Remark3. Fork = % in (1.4), the inequality

R+3r2§\4/§\/§

holds.
Remarkd. xq = 3.079485433. ...
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2. Some Lemmas

In order to prove Theorem.1, we require several lemmas.
Lemma 2.1 ([, 6], see also12)).

(i) If the homogeneous inequality> (>) f1(R, ) holds for any isosceles triangle
whose top angle is greater than or equal@@’, then the inequality > (>
)f1(R,r) holds for any triangle.

(i) If the homogeneous inequality< (<) fi(R,r) holds for any isosceles trian-
gle whose top angle is less than or equabt, then the inequality < (<
)f1(R, ) holds for any triangle.

Lemma 2.2 ([7]). Denote
f(x) = apx™ + arz™ ™ 4 -+ ay,

and
g(x) = box™ + bya™t + -+ by

If ap # 0 or by # 0, then the polynomialg(z) and g(z) have common roots if and
only if

Qo ai a9 Qnp, 0 e 0
0 ay a1 -+ Gn_1 an
_ O O ag a, .
R(f,9) = bo by by e e e oo 0 =0,
0 b b 0
0 0 0 bo by b
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whereR(f, g) is Sylvester’s resultant gf(z) and g(z).
Lemma 2.3 ([7, 8]). For a given polynomiaff (x) with real coefficients
f(z) = apx™ + ayz" P+ -+ ay,
if the number of sign changes of the revised sign list of its discriminant sequence
{D1(f), D2(f), -+, Du(f)}

is v, then, the number of the pairs of distinct conjugate imaginary rootg(of
equalsv. Furthermore, if the number of non-vanishing members of the revised sign
listis [, then, the number of the distinct real rootsfdfr) equalsl — 2v.
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3. The Proof of Theorem1.1

Proof. It is not difficult to see that the form of the inequality.{) is equivalent to
p < (<) fi(R,r) with the known identityS = rp. From Lemma2.1, we easily see
that inequality {.4) holds if and only if this triangle is an isosceles triangle whose
top angle is less than or equal@o°.

Leta =2,b=c=z (z > 2),then (L.4) is equivalent to

2 2 VP -1
r Y Sy e - 2T,
Va2 =1 2(x+1) 2V/a% — z+1
or
(3.1) 4 —1> 2\4/3(952 — 13 4 k(z — 2)?

Forx = 2, (3.1) obviously holds. Ifx > 2, then .1) is equivalent to

pe OHTT 1o 3VSE Y

“+ax—1
(z —2)?

Define a function
P tr—1- 333 1)
(z —2)?
Calculating the derivative faj(z), we get
5 [{75(3:2 +6x—4)— GIW]
6(z —2)3va2 —1 .

g(x) = (x> 2).

g'(x) =
Let ¢'(x) = 0, we obtain

(3.2) V3(2® + 62 — 4) — 62va® — 1 =0.
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It is easy to see that the roots of equatiGri’ must be the roots of the following
equation
(! + 282° — 1202% + 80z — 16)(z + 2)(z — 2)* = 0.

For the range of roots of equatiof.f) on (2, +o0), the roots of equatior(2) must
be the roots of equatior (5).
It shows that equationl(6) has only one positive real root on the open interval

+00). Letz, be the positive real root of equation §). Thenz, = 3. ey Mircea’s Inequality
(2,400). Letz, be the posit | root of equatich €). Thenz, = 3.079485433
and Yu-dong Wu, Zhi-hua Zhang
and V. Lokesha
x% +ax9—1— g 4/3@% _ 1)3 vol. 8, iss. 4, art. 116, 2007
9(T)min = g(20) = (o — 2)?
11 4 Title P
(3.3) — 0.5660532114 - - - € (—,—) . Te rage
2077 Contents
Therefore, the maximum dfis g(z). <« N
Now we prove thay(z,) is the root of equationl(5).
Consider the nonlinear algebraic equation system as follows < 4
zd + 2823 — 12022 4 8029 — 16 = 0 Page 8 of 12
(3.4) ug —3(xd —1)> =0 , Go Back
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or Close
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and

Glzo) =81 (=1 + ) m® — 324 (1 +4t) (=1 +1)%
+ (—1713 + 2592t + 3402¢* — 15228 ¢ + 9072 ¢*) 2°
— 324 (=24 T7t) (=1 +t) (1 +4t)%z°
+ (5220 — 6480 ¢ — 26730 > — 6480 > + 90720 ¢*) "
— 324 (=24 78) (1 +41)° zo? Yu-dong W, Zhi hua Zhang
+ (—5463 + 42121 + 349922 + 119232 + 145152 ¢*) 2 o toresta
— 324 (1+4t)" o + 1956 + 1296 t 4 7776 12 4+ 20736 t> 4 20736 ™.
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So the number of the sign changes of the revised sign lisB.@j €qualsi, then
with Lemmaz2.2, the equatiom,(t) = 0 has2 distinct real roots. And by using the
function "realroot()"LL0, 11] in Maple 9.0, we can find that,(¢) = 0 has2 distinct
real roots in the following intervals

117 77 617
[2’32}’ [4’ 32}
and no real root on the intervaj:, 2).

If the number of the sign changes of the revised sign list3oi) (equals4, then
from Lemma?2.3, the equatiorp;(t) = 0 has4 pairs distinct conjugate imaginary
roots. That is to say;(t) = 0 has no real root.

From (3.3), we easily deduce that(x,) is the root of the equatiop, (t) = 0.
Namely,g(zo) is the root of equationi(5).

Further, considering the proof above, we can easily obtain the required result in
(1.4).

Thus, the proof of Theorem.1is completed. O
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