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1. I NTRODUCTION

Integral inequalities play an important role in the qualitative analysis of the solutions to dif-
ferential and integral equations. Many retarded inequalities have been discovered (see [2], [3],
[5], [7]). However, we almost neglect the importance of advanced inequalities. After all, it does
great benefit to solve the bound of certain integral equations, which help us to fulfill a diversity
of desired goals. In this paper we establish two advanced integral inequalities and an application
of our results is also given.

2. PRELIMINARIES AND L EMMAS

In this paper, we assume throughout thatR+ = [0,∞), is a subset of the set of real numbers
R. The following lemmas play an important role in this paper.

Lemma 2.1. Let ϕ ∈ C(R+,R+) be an increasing function withϕ(∞) = ∞. Let ψ ∈
C(R+,R+) be a nondecreasing function and letc be a nonnegative constant. Letα ∈ C1(R+,R+)
be nondecreasing withα(t) ≥ t onR+. If u, f ∈ C(R+,R+) and

(2.1) ϕ(u(t)) ≤ c+

∫ ∞

α(t)

f(s)ψ(u(s))ds, t ∈ R+,
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2 XUEQIN ZHAO AND FANWEI MENG

then for0 ≤ T ≤ t <∞,

(2.2) u(t) ≤ ϕ−1

{
G−1[G(c) +

∫ ∞

α(t)

f(s)ds]

}
,

whereG(z) =
∫ z

z0

ds
ψ[ϕ−1(s)]

, z ≥ z0 > 0, ϕ−1, G−1 are respectively the inverse ofϕ andG,
T ∈ R+ is chosen so that

G(c) +

∫ ∞

α(t)

f(s)ds ∈ Dom(G−1), t ∈ [T,∞).(2.3a)

G−1

[
G(c) +

∫ ∞

α(t)

f(s)ds

]
∈ Dom(ϕ−1), t ∈ [T,∞).(2.3b)

Proof. Define the nonincreasing positive functionz(t) and make

(2.4) z(t) = c+ ε+

∫ ∞

α(t)

f(s)ψ(u(s))ds, t ∈ R+,

whereε is an arbitrary small positive number. From inequality (2.1), we have

(2.5) u(t) ≤ ϕ−1[z(t)].

Differentiating (2.4) and using (2.5) and the monotonicity ofϕ−1, ψ, we deduce that

z′(t) = −f
(
α(t)

)
ψ

[
u
(
α(t)

)]
α′(t)

≥ −f
(
α(t)

)
ψ

[
ϕ−1

(
z(α(t))

)]
α′(t)

≥ −f
(
α(t)

)
ψ

[
ϕ−1

(
z(t)

)]
α′(t).

For
ψ[ϕ−1(z(t))] ≥ ψ[ϕ−1(z(∞))] = ψ[ϕ−1(c+ ε)] > 0,

from the definition ofG, the above relation gives

d

dt
G(z(t)) =

z′(t)

ψ[ϕ−1(z(t))]
≥ −f

(
α(t)

)
α′(t).

Settingt = s, and integrating it fromt to∞ and lettingε→ 0 yields

G
(
z(t)

)
≤ G(c) +

∫ ∞

α(t)

f(s)ds, t ∈ R+.

From (2.3), (2.5) and the above relation, we obtain the inequality (2.2). �

In fact, we can regard Lemma 2.1 as a generalized form of an Ou-Iang type inequality with
advanced argument.

Lemma 2.2. Let u f and g be nonnegative continuous functions defined onR+, and letϕ ∈
C(R+,R+) be an increasing function withϕ(∞) = ∞ and letc be a nonnegative constant.
Moreover, letw1, w2 ∈ C(R+,R+) be nondecreasing functions withwi(u) > 0 (i = 1, 2) on
(0,∞), α ∈ C1(R+,R+) be nondecreasing withα(t) ≥ t onR+. If

(2.6) ϕ(u(t)) ≤ c+

∫ ∞

α(t)

f(s)w1(u(s))ds+

∫ ∞

t

g(s)w2(u(s))ds, t ∈ R+,

then for0 ≤ T ≤ t <∞,

(i) For the casew2(u) ≤ w1(u),

(2.7) u(t) ≤ ϕ−1

{
G−1

1

[
G1(c) +

∫ ∞

α(t)

f(s)ds+

∫ ∞

t

g(s)ds

]}
.
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(ii) For the casew1(u) ≤ w2(u),

(2.8) u(t) ≤ ϕ−1

{
G−1

2

[
G2(c) +

∫ ∞

α(t)

f(s)ds+

∫ ∞

t

g(s)ds

]}
,

where

Gi(r) =

∫ r

r0

ds

wi(ϕ−1(s))
, r ≥ r0 > 0, (i = 1, 2)

andϕ−1, G−1
i (i = 1, 2) are respectively the inverse ofϕ,Gi, T ∈ R+ is chosen so that

(2.9) Gi(c) +

∫ ∞

α(t)

f(s)ds+

∫ ∞

t

g(s)ds ∈ Dom(G−1
i ), (i = 1, 2), t ∈ [T,∞).

Proof. Define the nonincreasing positive functionz(t) and make

(2.10) z(t) = c+ ε+

∫ ∞

α(t)

f(s)w1(u(s))ds+

∫ ∞

t

g(s)w2(u(s))ds, 0 ≤ T ≤ t <∞,

whereε is an arbitrary small positive number. From inequality (2.6), we have

(2.11) u(t) ≤ ϕ−1[z(t)], t ∈ R+.

Differentiating (2.10) and using (2.11) and the monotonicity ofϕ−1, w1, w2, we deduce that

z′(t) = −f
(
α(t)

)
w1

[
u
(
α(t)

)]
α′(t)− g(t)w2

[
u(t)

]
,

≥ −f
(
α(t)

)
w1

[
ϕ−1

(
z(α(t))

)]
α′(t)− g(t)w2

[
ϕ−1

(
z(t)

)]
,

≥ −f
(
α(t)

)
w1

[
ϕ−1

(
z(t)

)]
α′(t)− g(t)w2

[
ϕ−1

(
z(t)

)]
.

(i) Whenw2(u) ≤ w1(u)

z′(t) ≥ −f
(
α(t)

)
w1

[
ϕ−1

(
z(t)

)]
α′(t)− g(t)w1

[
ϕ−1

(
z(t)

)]
, t ∈ R+.

For

w1[ϕ
−1(z(t))] ≥ w1

[
ϕ−1(z(∞))

]
= w1[ϕ

−1(c+ ε)] > 0,

from the definition ofG1(r), the above relation gives

d

dt
G1(z(t)) =

z′(t)

w1[ϕ−1(z(t))]
≥ −f

(
α(t)

)
α′(t)− g(t), t ∈ R+.

Settingt = s and integrating it fromt to∞ and letε→ 0 yields

G1

(
z(t)

)
≤ G1(c) +

∫ ∞

α(t)

f(s)ds+

∫ ∞

t

g(s)ds, t ∈ R+,

so,

z(t) ≤ G−1
1

[
G1(c) +

∫ ∞

α(t)

f(s)ds+

∫ ∞

t

g(s)ds

]
, 0 ≤ T ≤ t <∞.

Using (2.11), we have

u(t) ≤ ϕ−1

{
G−1

1

[
G1(c) +

∫ ∞

α(t)

f(s)ds+

∫ ∞

t

g(s)ds

]}
, 0 ≤ T ≤ t <∞.

(ii) Whenw1(u) ≤ w2(u), the proof can be completed similarly. �
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3. M AIN RESULTS

In this section, we obtain our main results as follows:

Theorem 3.1. Let u, f and g be nonnegative continuous functions defined onR+ and let c
be a nonnegative constant. Moreover, letϕ ∈ C(R+,R+) be an increasing function with
ϕ(∞) = ∞, ψ ∈ C(R+,R+) be a nondecreasing function withψ(u) > 0 on (0,∞) and
α ∈ C1(R+,R+) be nondecreasing withα(t) ≥ t onR+. If

(3.1) ϕ(u(t)) ≤ c+

∫ ∞

α(t)

[f(s)u(s)ψ(u(s)) + g(s)u(s)]ds, t ∈ R+

then for0 ≤ T ≤ t <∞,

(3.2) u(t) ≤ ϕ−1

{
Ω−1

[
G−1

(
G[Ω(c) +

∫ ∞

α(t)

g(s)ds] +

∫ ∞

α(t)

f(s)ds

)]}
,

where

Ω(r) =

∫ r

r0

ds

ϕ−1(s)
, r ≥ r0 > 0, G(z) =

∫ z

z0

ds

ψ{ϕ−1[Ω−1(s)]}
, z ≥ z0 > 0,

Ω−1, ϕ−1, G−1 are respectively the inverse ofΩ, ϕ,G andT ∈ R+ is chosen so that

G

[
Ω(c) +

∫ ∞

α(t)

g(s)ds

]
+

∫ ∞

α(t)

f(s)ds ∈ Dom(G−1)

and

G−1

{
G

[
Ω(c) +

∫ ∞

α(t)

g(s)ds

]
+

∫ ∞

α(t)

f(s)ds

}
∈ Dom(Ω−1)

for t ∈ [T,∞).

Proof. Let us first assume thatc > 0. Define the nonincreasing positive functionz(t) by the
right-hand side of (3.1). Thenz(∞) = c, u(t) ≤ ϕ−1[z(t)] and

z′(t) = −
[
f
(
α(t)

)
u
(
α(t)

)
ψ

[
u
(
α(t)

)]
− g

(
α(t)

)
u
(
α(t)

)]
α′(t)

≥ −
[
f
(
α(t)

)
ϕ−1

(
z(α(t))

)
ψ

[
ϕ−1

(
z(α(t))

)]
− g

(
α(t)

)
ϕ−1

(
z(α(t))

)]
α′(t)

≥ −
[
f
(
α(t)

)
ϕ−1

(
z(t)

)
ψ

[
ϕ−1

(
z(α(t))

)]
− g

(
α(t)

)
ϕ−1

(
z(t)

)]
α′(t).

Sinceϕ−1(z(t)) ≥ ϕ−1(c) > 0,

z′(t)

ϕ−1
(
z(t)

) ≥ −
{
f
(
α(t)

)
ψ

[
ϕ−1

(
z(α(t))

)]
+ g

(
α(t)

)}
α′(t).

Settingt = s and integrating it fromt to∞ yields

Ω(z(t)) ≤ Ω(c) +

∫ ∞

α(t)

g(s)ds+

∫ ∞

α(t)

f(s)ψ[ϕ−1(z(s))]ds.

Let T ≤ T1 be an arbitrary number. We denotep(t) = Ω(c) +
∫∞
α(t)

g(s)ds. From the above
relation, we deduce that

Ω(z(t)) ≤ p(T1) +

∫ ∞

α(t)

f(s)ψ[ϕ−1(z(s))]ds, T1 ≤ t <∞.

Now an application of Lemma 2.1 gives

z(t) ≤ Ω−1

{
G−1

[
G(p(T1)) +

∫ ∞

α(t)

f(s)ds

]}
, T1 ≤ t <∞,
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so,

u(t) ≤ ϕ−1

{
Ω−1

[
G−1

(
G(p(T1)) +

∫ ∞

α(t)

f(s)ds

)]}
, T1 ≤ t <∞.

Takingt = T1 in the above inequality, sinceT1 is arbitrary, we can prove the desired inequality
(3.2).

If c = 0 we carry out the above procedure withε > 0 instead ofc and subsequently let
ε→ 0. �

Corollary 3.2. Let u, f and g be nonnegative continuous functions defined onR+ and let c
be a nonnegative constant. Moreover, letψ ∈ C(R+,R+) be a nondecreasing function with
ψ(u) > 0 on (0,∞) andα ∈ C1(R+,R+) be nondecreasing withα(t) ≥ t onR+. If

u2(t) ≤ c2 +

∫ ∞

α(t)

[f(s)u(s)ψ(u(s)) + g(s)u(s)]ds, t ∈ R+,

then for0 ≤ T ≤ t <∞,

u(t) ≤ Ω−1

[
Ω

(
c+

1

2

∫ ∞

α(t)

g(s)ds

)
+

1

2

∫ ∞

α(t)

f(s)ds

]
,

where

Ω(r) =

∫ r

1

ds

ψ(s)
, r > 0,

Ω−1 is the inverse ofΩ, andT ∈ R+ is chosen so that

Ω

(
c+

1

2

∫ ∞

α(t)

g(s)ds

)
+

1

2

∫ ∞

α(t)

f(s)ds ∈ Dom(Ω−1)

for all t ∈ [T,∞).

Corollary 3.3. Letu, f andg be nonnegative continuous functions defined onR+ and letc be
a nonnegative constant. Moreover, letα ∈ C1(R+,R+) be nondecreasing withα(t) ≥ t onR+.
If

u2(t) ≤ c2 +

∫ ∞

α(t)

[f(s)u2(s) + g(s)u(s)]ds, t ≥ 0,

then

u(t) ≤
(
c+

1

2

∫ ∞

α(t)

g(s)ds

)
exp

[
1

2

∫ ∞

α(t)

f(s)ds

]
, t ≥ 0.

Corollary 3.4. Let u, f and g be nonnegative continuous functions defined onR+ and letc
be a nonnegative constant. Moreover, letp, q be positive constants withp ≥ q, p 6= 1. Let
α ∈ C1(R+,R+) be nondecreasing withα(t) ≥ t onR+. If

up(t) ≤ c+

∫ ∞

α(t)

[f(s)uq(s) + g(s)u(s)]ds, t ∈ R+,

then fort ∈ R+,

u(t) ≤



(
c(1−

1
p
) + p−1

p

∫∞
α(t)

g(s)ds
) p

p−1
exp

[
1
p

∫∞
α(t)

f(s)ds
]
, whenp = q,

[(
c(1−

1
p
) + p−1

p

∫∞
α(t)

g(s)ds
) p−q

p−1
+ p−q

p

∫∞
α(t)

f(s)ds

] 1
p−q

, when p > q.
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Theorem 3.5. Let u, f and g be nonnegative continuous functions defined onR+, and let
ϕ ∈ C(R+,R+) be an increasing function withϕ(∞) = ∞ and letc be a nonnegative constant.
Moreover, letw1, w2 ∈ C(R+,R+) be nondecreasing functions withwi(u) > 0 (i = 1, 2) on
(0,∞) andα ∈ C1(R+,R+) be nondecreasing withα(t) ≥ t onR+. If

(3.3) ϕ(u(t)) ≤ c+

∫ ∞

α(t)

f(s)u(s)w1(u(s))ds+

∫ ∞

t

g(s)u(s)w2(u(s))ds,

then for0 ≤ T ≤ t <∞,

(i) For the casew2(u) ≤ w1(u),

(3.4) u(t) ≤ ϕ−1

{
Ω−1

[
G−1

1

(
G1(Ω(c)) +

∫ ∞

α(t)

f(s)ds+

∫ ∞

t

g(s)ds

)]}
,

(ii) For the casew1(u) ≤ w2(u),

(3.5) u(t) ≤ ϕ−1

{
Ω−1

[
G−1

2

(
G2(Ω(c)) +

∫ ∞

α(t)

f(s)ds+

∫ ∞

t

g(s)ds

)]}
,

where

Ω(r) =

∫ r

r0

ds

ϕ−1(s)
, r ≥ r0 > 0,

Gi(z) =

∫ z

z0

ds

wi{ϕ−1[Ω−1(s)]}
, z ≥ z0 > 0 (i = 1, 2),

Ω−1, ϕ−1, G−1 are respectively the inverse ofΩ, ϕ,G, andT ∈ R+ is chosen so that

Gi

(
Ω(c) +

∫ ∞

α(t)

f(s)ds+

∫ ∞

t

g(s)ds

)
∈ Dom(G−1

i ),

G−1
i

[
Gi

(
Ω(c) +

∫ ∞

α(t)

f(s)ds+

∫ ∞

t

g(s)ds

)]
∈ Dom(Ω−1),

for all t ∈ [T,∞).

Proof. Let c > 0, define the nonincreasing positive functionz(t) and make

(3.6) z(t) = c+

∫ ∞

α(t)

f(s)u(s)w1(u(s))ds+

∫ ∞

t

g(s)u(s)w2(u(s))ds.

From inequality (3.3), we have

(3.7) u(t) ≤ ϕ−1[z(t)].

Differentiating (3.6) and using (3.7) and the monotonicity ofϕ−1, w1, w2, we deduce that

z′(t) = −f
(
α(t)

)
u
(
α(t)

)
w1

[
u
(
α(t)

)]
α′(t)− g(t)u(t)w2

[
u(t)

]
,

≥ −f
(
α(t)

)
ϕ−1

(
z(α(t))

)
w1

[
ϕ−1

(
z(α(t))

)]
α′(t)− g(t)ϕ−1

(
z(t)

)
w2

[
ϕ−1

(
z(t)

)]
,

≥ −f
(
α(t)

)
ϕ−1

(
z(t)

)
w1

[
ϕ−1

(
z(t)

)]
α′(t)− g(t)ϕ−1

(
z(t)

)
w2

[
ϕ−1

(
z(t)

)]
.

(i) Whenw2(u) ≤ w1(u)

z′(t)

ϕ−1
(
z(t)

) ≥ −f
(
α(t)

)
w1

[
ϕ−1

(
z(t)

)]
α′(t)− g(t)w1

[
ϕ−1

(
z(t)

)]
.

For
w1[ϕ

−1(z(t))] ≥ w1[ϕ
−1(z(∞))] = w1[ϕ

−1(c+ ε)] > 0,
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settingt = s and integrating fromt to∞ yields

Ω(z(t)) ≤ Ω(c) +

∫ ∞

α(t)

f(s)w1

[
ϕ−1

(
z(t)

)]
ds+

∫ ∞

t

g(s)w1

[
ϕ−1

(
z(t)

)]
ds.

From Lemma 2.2, we obtain

z(t) ≤ Ω−1

{
G−1

1

[
G1(Ω(c)) +

∫ ∞

α(t)

f(s)ds+

∫ ∞

t

g(s)ds

]}
, 0 ≤ T ≤ t <∞.

Usingu(t) ≤ ϕ−1[z(t)], we get the inequality in (3.4)
If c = 0, we can carry out the above procedure withε > 0 instead ofc and subsequently let

ε→ 0.
(ii) Whenw1(u) ≤ w2(u), the proof can be completed similarly. �

4. AN APPLICATION

We consider an integral equation

(4.1) xp(t) = a(t) +

∫ ∞

t

F [s, x(s), x(φ(s))]ds.

Assume that:

(4.2) |F (x, y, u)| ≤ f(x)|u|q + g(x)|u|

and

(4.3) |a(t)| ≤ c, c > 0 p ≥ q > 0, p 6= 1,

wheref, g are nonnegative continuous real-valued functions, andφ ∈ C1(R+,R+) is nonde-
creasing withφ(t) ≥ t onR+. From (4.1), (4.2) and (4.3) we have

|x(t)|p ≤ c+

∫ ∞

t

f(s)|x(φ(s))|q + g(s)|x(φ(s))|ds.

Making the change of variables from the above inequality and taking

M = sup
t∈R+

1

φ′(t)
,

we have

|x(t)|p ≤ c+M

∫ ∞

φ(t)

f̄(s)|x(s)|q + ḡ(s)|x(s)|ds,

in which f̄(s) = f(φ−1(s)), ḡ(s) = g(φ−1(s)). From Corollary 3.4, we obtain

|x(t)| ≤



(
c(1−

1
p
) + M(p−1)

p

∫∞
φ(t)

ḡ(s)ds
) p

p−1
exp

[
M
p

∫∞
φ(t)

f̄(s)ds
]
, when p = q

[(
c(1−

1
p
) + M(p−1)

p

∫∞
φ(t)

ḡ(s)ds
) p−q

p−1
+ M(p−q)

p

∫∞
φ(t)

f̄(s)ds

] 1
p−q

, when p > q.

If the integrals off(s), g(s) are bounded, then we have the bound of the solution of (4.1).
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