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ABSTRACT. In this paper we consider some classesvgireinvex andxr-invex functions. We
study some properties of these classea-ireinvex g-invex) functions. In particular, we es-
tablish the equivalence among thereinvex functionsg-invex functions andv-monotonicity
of their differential under some suitable conditions.

Key words and phrasesPreinvex functionsy-monotone operators, Invex functions, Pseudo invex functions.

2000Mathematics Subject Classificat 086D07, 26D10, 39B62.

1. INTRODUCTION

In recent years, several extensions and generalizations have been considered for classical
convexity. A significant generalization of convex functions is that of invex functions introduced
by Hansonl[1]. Hanson's initial result inspired a great deal of subsequent work which has greatly
expanded the role and applications of invexity in nonlinear optimization and other branches of
pure and applied sciences. Weir and Mond [13], Jeyakumar and Mond [3] and [Noor [5, 7]
have studied the basic properties of the preinvex functions and their role in optimization and
mathematical programming problems. It is well-known that the preinvex functions and invex
sets may not be convex functions and convex sets.

In recent years, these concepts and results have been investigated extensively in [6, 7, 8,
11,12]. It is noted that some of the results obtained in [8] are incorrect and misleading. The
main purpose of this paper to suggest some appropriate and suitable modifications. We also
consider some classes of preinvex and invex functions, which are calpgdinvex anda-
invex functions. Several new conceptsc@jf-monotonicity are introduced. We establish the
relationship between these classes and derive some new results. As special cases, one can
obtain some new and correct versions of known results. Results obtained in this paper present
a refinement and improvement of previously known results.

ISSN (electronic): 1443-5756
(© 2004 Victoria University. All rights reserved.
215-04


http://jipam.vu.edu.au/
mailto:noor@ece.ac.ae
http://www.ams.org/msc/

2 MUHAMMAD ASLAM NOOR

2. PRELIMINARIES

Let K be a nonempty closed set fi. We denote by, -) and|| - || the inner product and
norm respectively. Lef’ : K — H andrn(-,-) : K x K — R be continuous functions. Let
a; K x K — R\{0} be a bifunction.

First of all, we recall the following well known results and concepts.

Definition 2.1. Letu € K. Then the sef( is said to bex-invex atu with respect toy(-, -) and
a(,-),if, forall u,v € K,t € [0,1],

u+ ta(v,u)n(v,u) € K.

K is said to be amv-invex set with respect tg anda, if K is a-invex at eachu € K. The
a-invex setK is also calledan-connected set. Note that the convex set witly, u) = 1
andn(v,u) = v — u iS an invex set, but the converse is not true. For example, th& set
R\ (-3, %) is an invex set with respect tpanda(v, u) = 1, where

v — u, for v>0,u>0 or v<0,u<O0
u— v, for v<0,u>0 or v<0,u<0O0.
It is clear thatX is not a convex set.

Remark 2.1. () If a(v,u) = 1, then the sefs is called the invexs{-connected) set, see
[6,[7,12/13].
(i) If n(v,u) =v—wandld < a(v,u) < 1, then the sek is called the star-shaped.
(iii) If o(v,u) =1andn(v,u) = v — u, then the sek is called the convex set.

From now onwardy is a nonempty closed-invex set ind with respect tax(-, -) andn(-, -),
unless otherwise specified.

Definition 2.2. The functionF' on thea-invex setK is said to bex-preinvex with respect tg,
if
F(u+ ta(v,u)n(v,u)) < (1 —t)F(u) +tF(v), Yu,ve K, te]0,1].

The functionF' is said to ben-preconcave if and only i F is a-preinvex. Note that every
convex function is a preinvex function, but the converse is not true. For example, the function
F(u) = —|u| is not a convex function, but it is a preinvex function with respect, tand
a(v,u) =1, where

v —u, if v<0,u<0 and v>0,u>0
77(717“) - .
u—v, otherwise.

Definition 2.3. The functionF’ on thea-invex setkK is called quasi-preinvex with respect to
a andn, if

F(u+ ta(v,u)n(v,u)) < max{F(u), F(v)}, Yu,veK, tel0,1].

Definition 2.4. The functionF’ on thea-invex setK is said to be logarithmie-preinvex with
respect tax andy, if

F(u+ta(v,u)n(v,u)) < (F(w)" (F@)), wvekK, tecl01],
whereF'(-) > 0.
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From the above definitions, we have
F(u+ ta(v,u)n(v,u)) < (F(u)' ™ (F(v))"
t

< (I —=t)F(u) +tF(v)
< max{F(u), F(v)}
< max{F(u), F(v)}.
Fort = 1, Definitiong 2.2 and 2|4 reduce to:
Condition A.

Fu+ a(v,u)n(v,u)) < F(v), Vu,veK,
which plays an important part in studying the properties of dhpreinvex (v-invex) functions.
Some properties of the-preinvex functions have been studieddn11].
For (v, u) = 1, Condition A reduces to the following for preinvex functions.
Condition B.
Fu+n(v,u)) < F(v), Vu,veK.
For the applications of Condition|B, s§€,(11,/12]
Definition 2.5. The functionF' on thea-invex setK is said to be pseuda-preinvex with
respect tav andn, if there exists a strictly positive functids-, -) such that
Fv) < F(u) = F(u+ta(v,u)n(v,u)) < F(u)+t(t—1)b(u,v), w,veK tel0,1].
Lemma 2.2. If the functionF' is a-preinvex function with respect teandn, thenF’ is pseudo
a-preinvex function with respect teandr.

Proof. Without loss of generality, we assume thatv) < F(u), VYu,v € K. For everyt €
0, 1], we have

F(u+ta(v,u)n(v,u)) < (1 —t)F(u) + tF(v)
< F(u)+t(t—1D){F(u)— F(v)}
= F(u) +t(t — 1)b(v,u),

whereb(v,u) = F(v) — F(u) > 0.
Thus it follows that the functiot’ is pseudax-preinvex function with respect @ andr, the
required result. O

Definition 2.6. The differentiable function” on thea-invex setX is said to be anx-invex
function with respect te(-, -) andn(-, -), if

F(v) — F(u) > {a(v,u)F'(u),n(v,u)), Yu,ve€ K,

whereF’(u) is the differential ofF" atu. The concepts of the-invex anda-preinvex functions
have played a very important role in the development of convex programming, see [2, 3].

Definition 2.7. An operator!’ : K — H is said to be:
(). strongly an-monotone,iff, there exists a constanat > 0 such that
(v, w)Tu, n(v,u) + {au, v)Tv,n(u, v)) < —af[ln(v, u)|
+ In(w, v)|?},  Vu,v € K.
(ii). an-monotoneiff,
(a(v,u)Tu,n(v,u)) + (a(u,v)Tv,n(u,v)) <0, Vu,ve K.

J. Inequal. Pure and Appl. Mattt(4) Art. 110, 2004 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

4 MUHAMMAD ASLAM NOOR

(iii). stronglyan-pseudomonotondff, there exists a constamnt> 0 such that
(a(v,u)Tu,n(v,u)) +v|nv,w)||> >0 = —(a(u,v)Tv,n(u,v)) >0, Yu,v€ K.
(iv). strictly n-monotone,iff,
{a(v,u)Tu,n(v,u)) + {a(u,v)Tv,n(u,v)) <0, Vu,ve K.

(V). an-pseudomonotondf,

(a(v,u)Tu,n(v,u)) >0 = (a(u,v)Tv,n(u,v)) <0, Yu,ve K.
(vi). quasian-monotoneiff,

(a(v,u)Tu,n(v,u)) >0 = (a(u,v)Tv,n(u,v)) <0, VYu,veK.
(vii). strictly n-pseudomonotonéff,

(a(v,u)Tu,n(v,u)) >0 = (a(u,v)Tv,n(u,v)) <0, VYu,vekK.

Note fora(v,u) = 1, Vu,v € K, thea-invex setK becomes an invex set. In this case,
Definition[2.7 is exactly the same as in [7] 11]. In additiony(if, u) = 1 andn(v,u) = v — u,
then thea-invex setk is the convex sek’ and consequently Definitign 2.7 reduces to the one
in [9] for the convex sefX. This clearly shows that Definition 2.7 is more general than and
includes the ones in [7] B, 12] as special cases.

Definition 2.8. A differentiable functionF' on ana-invex setK is said to be strongly pseudo
an-invex function, iff, there exists a constgmt> 0 such that

(a(v,u)F'(u), n(v,u)) + pln(u,v)||* > 0= F(v) — F(u) >0, VYu,v€ K.

Definition 2.9. A differentiable functionF’ on thea-invex setk is said to be strongly quasi
a-invex, if there exists a constapt> 0 such that

Fv) < Fu) = (a(v,u)F'(u),n(v,u)+ pln(v,u)]|* <0, Vu,veK.
Definition 2.10. The functionF’ on thea-invex setkK is said to be pseude-invex, if
(a(v,u)F'(u),n(v,uw)) 20, = F(v) = F(u), Yu,veK.

Note that ifa(v,u) = 1, then thea-invex setK is exactly the invex sef{ and conse-
quently Definitiong 2)8  2.10 are exactly the same same as in [7]. In particulgs, if) =
—n(v,u),Vu,v € K, thatis, the functiom)(-, -) is skew-symmetric, then Definitiops 2.7 — 2.10
reduce to the ones inl[8,11]. This shows that the concepts introduced in this paper represent an
improvement of the previously known ones. All the concepts defined above play an important
and fundamental part in mathematical programming and optimization problems.

We also need the following assumption regarding the functigns), anda(-, -).

Condition C. Letn(-,-) : Kx K — H anda(,-) : KxK — R\{0} satisfy the assumptions
n(u, u+ ta(v, u)n(v, u)) = —tn(v, u)
n(v,u + ta(v,u)n(v,u)) = (1 —t)n(v,u), Yu,v e K, tel0,1].

Clearly fort = 0, we haven(u,v) = 0, if and only ifu = v,Vu,v € K. One can easily show
[11] that
n(u+ ta(v,u)n(v,u),u) =tn(v,u), Yu,v € K.

Note that fora(v,u) = 1, Condition[C collapses to the following condition, which is due to
Mohan and Neogi4].
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Condition D. Letn(-,-) : K x K — H satisfy the assumptions

n(u,u+ tn(v,u)) = —tn(v, u)

nv,u+tn(v,u)) = (1 —t)n(v,u), Yu,v e K, te]0,]1]
For the applications of Condition|D, s¢é,[11,[12]and the references therein.

3. MAIN RESULTS
In this section, we study some basic properties-gireinvex functions on the-invex setk.

Theorem 3.1.Let F' be a differentiable function on theinvex setk” and let Conditior € hold.
Then the functiorf' is a a-preinvex function if and only if" is a a-invex function.

Proof. Let F' be aa-preinvex function on the-invex setk. Then,Vu,v € K,t € [0,1], u+
ta(v,u)n(v,u) € K and
F(u+ta(v,u)n(v,u)) < (1 —t)F(u) +tF(v), Yu,ve K,
which can be written as
F(u+ ta(v,u)n(v,u)) — F(u)
t

F(v)— F(u) >
Lettingt — 0 in the above inequality, we have
F(v) = F(u) = {a(v,u) F'(u), n(v,w)),

which implies thatF' is aa-invex function.
Conversely, lett’ be aa-invex function on thex-invex functionk. Then VYu,v € Kt €
0,1], v =u+ta(v,u)n(v,u) € K and using Conditioh |C, we have

F(v) — F(u+ ta(v,u)n(v,u))
> {a(v,u)F'(u + ta(v,u)n(v,w)), n(v, u + ta(v, u)n(v,u)))
(3.1) = (1 —t){a(v,u)F'(u+ ta(v,u)n(v,u)),n(v,u)).
In a similar way, we have
F(u) — F(u+ta(v,u)n(v,u))
> (a(v,u) F'(u + ta(v, u)n(v,u)), n(u, u + ta(v, u)n(v,u)))
(3.2) = —t{a(v,u)F'(u + ta(v,u)n(v,u)),n(v,u))).
Multiplying (8.1)) by¢ and [3.2) by(1 — ¢) and adding the resultant, we have
Fu+ta(v,u)n(v,u)) < (1 —t)F(u) + tF(v).
showing thatF' is a«-preinvex function. O

If a(v,u) = 1, then Theorem 3|1 reduces to the following result, which is mainly due to
Mohan and Neogy |4] for the preinvex and invex functions on the invex set.

Theorem 3.2. Let F' be a differentiable function on the invex gétand let Condition ID hold.
Then the functior is a preinvex function if and only K is an invex function.

Theorem 3.3. Let F' be differntiable function on the invex skt If F' is a-invex (-preinvex)
function, then its differentiat” () is an-monotone.
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Proof. Let F' be aa-invex function on thex-invex setk. Then

(3.3) F(v) — F(u) > {a(v,u)F'(u),n(v,u)), Yu,ve K.
Changing the role of andwv in (3.3), we have
(3.4) F(u) = F(v) > (a(u,v) F'(v),n(u, ), Vu,v € K.

Adding (3.3) and[(3}4), we have
(v, u) F'(u),n(v,u)) + (a(u, v)F'(v),n(u,v)) <0,
which shows that” is an-monotone. O

We now prove the converse of Theorem|3.3 for the caGeu) = «(u,v), that is, the
functiona(v, u) is a symmetric function. However, in general, the converse of Thejordm 3.3 is
an open problem.

Theorem 3.4. Let Conditiong A and IC hold and the functiarfv, u) be symmetric. If the
differential F”'(u) of a functionF'(u) is an-monotone, then the functiaf(u) is a-invex @-
preinvex) function.

Proof. Let F’(u) bean-monotone, that is,
{a(u,v)F'(v),n(u,v)) + {a(v,u)F'(u),n(v,u)) <0, Vu,ve K,
which implies that
(35) <F/(U)7 W(Ua U)> < _<Fl(u)7 77(7)7 U)>,
sincea(v, u) is a positive symmetric function.
SinceK is aa-invex setVu,v € K,t € [0,1],v; = u+ta(v,u)n(v,u) € K. Takingv = vy,
in (3.5) and using Conditidn|C, we have
—t(F'(u+ ta(v,u)n(v, u)),n(v,u)) < —t(F'(u),n(v,un)),
which implies that
(3.6) (F'(u+ ta(v,u)n(v, ), n(v,w)) = (F'(u),n(v, u)).
Let
g(t) = F(u+ ta(v,u)n(v,u)), Yu,ve K,tel0,1].
Then, using[(3]6), we have
g'(t) = (a(v, u) F'(u+ ta(v, u)n(v,u)),n(v,u))
> (v, u)F"(u),n(v, u)).
Integrating the above relation betwegand1, we have
9(1) = g(0) = {a(v, ) F'(u),n(v,w)),
that is,
F(u+ a(v,u)n(v,u) — F(u) > (a(v,u)F'(u), (v, u)),
which implies, using Condition]A,
F(U) - F(U) > <04(U7U)F/(“)77](U7U>>7
which shows that the functiofi(u) is aa-invex (a-preinvex) function, the required result]

Fora(v,u) = 1, thea-invex setK becomes the invex set and consequently from Theorem
[3.3 and Theorein 3.4, we have the following result for preinvex and invex functions.
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Theorem 3.5. Let Conditiong B an@ D hold and I€t” be an invex set. Then the differential
F'(u) of a functionF'(u) is n-monotone if and only if'(u) is a preinvex(invex) function on the
invex setk.

We now give a necessary condition for strongly-pseudo-invex functions, which is also a
generalization and refinement of a result proved in [8, 11].

Theorem 3.6. Let the differentialF”(u) of a functionF'(u) on thea-invex setk be strongly
an-pseudomonotone. If Conditions A C hold, tiheis strongly pseudan-invex function.

Proof. Let F’(u) be stronglyan-pseudomonotone. Then

(a(v, w)F'(u), (v, u)) + pln(v,w)[* >0, Vu,ve K,
implies that
(3.7) —({a(u,v)F'(v),n(u,v)) >0, Yu,ve K.

SinceK is ana-invex setVu,v € K, t € [0,1], vy = u + ta(v,u)n(v,u) € K. Takingv = v,
in (3.7) and using Conditidn|C, we have

(a(vg, u)F'(u + ta(v,u)n(v,u)),n(v,u)) >0, VYu,veK,
which implies that
(3.8) (F'(u+ ta(v,u)n(v,u)),n(v,u)) >0, VYu,ve K.
Let
g(t) = F(u+ ta(v,u)n(v,u)), Yu,ve K,tel0,1].
Then, using[(3]8), we have
g'(u) = {e(v, u) F'(u + ta(v,u)n(v, u)), (v, u)) > 0.
Integrating the above relation betwegand1, we have
9(1) — g(0) = 0,
that is,
Fu+a(v,u)n(v,u)) — F(u) 20,
which implies, using Condition A, that
F(v) — F(u) >0,
showing that the functiod’(u) is strongly pseuda-invex function. O
As special cases of Theorém|3.6, we have the following:

Theorem 3.7. Let the differential 7’ (u) of a function F'(u) on the a-invex setK be an-
pseudomonotone. If Conditions A C hold, tleis pseudaxn-invex function.

Theorem 3.8. Let the differentialF” () of a functionF'(u) on thea-invex setiK be strongly
n-pseudomonotone. If Conditions A C hold, tleis a strongly pseudg-invex function.

Theorem 3.9. Let the differential#’(u) of a functionF'(u) on the invex sef be strongly
n-pseudomonotone. If Conditions B D hold, ti#eis a strongly pseudg-invex function.

Theorem 3.10.Let the differential” () of a functionF'(u) on the invex sek” ben-pseudomonotone.
If Conditiong B and D hold, thef' is a pseudo invex function.
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Theorem 3.11. Let the differentialF’(u) of a differentiablex-preinvex function'(u) be Lips-
chitz continuous on the-invex seti with a constant > 0. If Condition[A holds, then

F(v) — F(u) < (a(v,u)F'(u),n(v,u)) + gHa(v,u)n(v,u)HQ, Vu,v € K.
Proof. Vu,v € K,t € [0,1], u+ ta(v,u)n(v,u) € K, sinceK is ana-invex set. Now we
consider the function
o(t) = F(u+ ta(v,u)n(v,u)) — F(u) — t{a(v,u) F'(u), n(v,u)).
from which it follows thaty(0) = 0 and
(3.9) ¢'(t) = (v, u) F'(u + ta(v, u)n(v, u)), n(v,u)) — (e(v,u) F'(uv), n(v, u)).
Integrating [@9) betweemand1, we have
p(1) = F(u+ a(v,u)n(v,u) — F(u) — (a(v, u)F'(u),n(v,u))

/ & (0))de

- / (e, u) ' + ta(v, uy(o, w), n(v, u)) — (alo, ) F'(u), nv, u))| dt
<5 / Hla(v, u)n(o, w)|dt

p
= Sllatw, upn(v,u)?
which implies that

(3.10)  F(u+ a(v,u)n(v,u)) — F(u) < (a(v,u)F'(u),n(v, u)) + gHOé(v’ wn(v, u)|*.

from which, using Condition A, we obtain

F(v) = F(u) < {a(v,u) F'(u),n(v, u)) + gH&(v,U)U(U,U)HQ-
0J

Remark 3.12. Forn(v,u) = v — u anda(v,u) = 1, the a-invex setK becomes a convex set
and consequently Theorg¢m 3.11 reduces to the well known result in convexity, see [14].
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