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ABSTRACT. In this paper is defined am-inner product of typda,...,a,|b; ---b,) where
ai,...,ap, by,..., b, are vectors from a vector spate This definition generalizes the defini-
tion of Misiak of n-inner product([5], such that in special case if we consider only such pairs of
sets{ay,...,a;} and{b; - - - b,, } which differ for at most one vector, we obtain the definition
of Misiak. The Cauchy-Schwarz inequality for this general typeréfner product is proved
and some applications are given.
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1. INTRODUCTION
A. Misiak [5] has introduced an-inner product by the following definition.

Definition 1.1. Assume that: is a positive integer and’ is a real vector space such that

dimV > nand(e,e|e, ... e)isareal function defined o x VV x --. x V such that:
N—— -—
n—1 n+1
) (x1,x1]|x2,...,%,) >0, foranyx;,xs,...,x, € V and(xy, x1|xs,...,%,) = 0ifand
only if x1,xs,...,x, are linearly dependent vectors;

i) (a,blxy,...,x,-1) = (¢(a),p(b)|r(x1),...,7(x,-1)), foranya, b, x;,...,x,_1 €
V" and for any bijections

miA{x1, .., Xpo1f — {x1,...,x,-1} and ¢:{a,b} — {a,b};

ISSN (electronic): 1443-5756
(© 2006 Victoria University. All rights reserved.
219-04


http://jipam.vu.edu.au/
mailto:kostatre@iunona.pmf.ukim.edu.mk
mailto:rmalcheski@yahoo.com
http://www.ams.org/msc/

2 KOSTADIN TRENCEVSKI AND RISTO MAL CESKI

i) If n > 1, then(xy,x|xg,...,X,) = (Xg,Xa|X1, X3, ...,X,), foranyx;, x,,...,x, €
Vi
V) (aa,b|xi,...,x,-1) = a(a,b|xi,...,x,_1), foranya,b,x;,...,x,_1 € V and any
scalara € R;
V) (a+ay,blxy,...,x,-1) = (a,b|xy,...,%x,-1)+ (ar, b|x1,...,x,_1), foranya, b, a;,
X1,...,Xp-1 € V.
Then(e,e|e, ... e)iscalledthei-innerproductandV, (e, e|e, ..., e))is called the:-prehilbert
1 1
space.

If n = 1, then Definitiorj 1./l reduces to the ordinary inner product.
This n-inner product induces amnorm ([5]) by

Ix1, ..., x| = \/(Xl,X1|X2, cey Xp)-

In the next section we introduce a more general and more convenient definitieinoér prod-
uct and prove the corresponding Cauchy-Schwarz inequality. In the last section some related
results are given.

Although in this paper we only consider real vector spaces, the results of this paper can easily
be generalized for the complex vector spaces.

2. n-INNER PRODUCT AND THE CAUCHY-SCHWARZ INEQUALITY

First we give the following definition ofi-inner products.

Definition 2.1. Assume that is a positive integefl/ is a real vector space such thlatn V' > n
and(e,... ele ... e)isareal function o/?" such that

)
(2.1) (a1,...,a,]a;,...,a,) >0
if a;,...,a, are linearly independent vectors,
i)
(22) (al,. .. ,an|b1,. .. 7bn> = <b1,. .. ,bn]al, .. ,an)
forany a;,...,a,,by,...,b, €V,
iii)
(23) </\a1, e ,an|b1, ce 7bn> = /\(al, e ,an|b1, e ,bn>

for any scalat\ R and anyay,...,a,,bq,...,b, €V,
iv)

(24) (al, Ce ,an|b1, R 7bn> = —<aa(1), . ,aa(n)|b1, C ,bn>

for any odd permutation in the set{1,...,n} and anyay,...,a,,by,...,b, € V,
v)

(2.5) (a; + c,ag,...,a,|by,...,by,)
= (aj,as,...,a,|by,...,b,) +(c,as,...,a,|by,...,by,)

foranya,,...,a,,by,...,b,,c eV,
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vi) if
(2.6) (a;,by,...,b;1,bi11,...,bylby,....;b,) =0
foreachi € {1,2,...,n}, then
(2.7) (ar,...,a,|by,...,b,) =0
for arbitrary vectors., . . ., a,.

Then the function(e, ... e|e ... e) is called ann-inner product and the pailV/, (e,... o
e ...,e))is called am-prehilbert space.

We give some consequences from the conditions i) — vi) of Defirfition 2.1.
From ) it follows that if two of the vectora,...,a, are equal, thena,,...,a,
by,...,b,) = 0.
From [2.3) it follows that
(ar,...,a,|by,...,b,) =0
if there exists such that, = 0.
From (2.4) and[(2]2) it follows more generally that
iv’)
<a1, S ,an|b1, e ,bn> = (—1>Sgn(ﬂ)+5gn(7) <a7r(1), R ,aﬂ(n)|b7(1), e ,bT(n)>
for any permutations andr on{1,...,n} and a;,...,a,,by,...,b, € V.

From (2.3),[(2.%#) and (25) it follows that
(al,...,an|b1,...,bn> =0

if a;,...,a, are linearly dependent vectors. Thus i) can be replaced by
i) (aj,...,a,la;,...,a,) > 0foranya;,...,a, € Vand(ay,...,a,la;,...,a,) = 0if
and only ifay, ..., a, are linearly dependent vectors.

Note that thew-inner product orl” induces am-normed space by

%1, Xl = V(X0 - XX, LX),
and it is the same norm induced by Definitjon|1.1.

In the special case if we consider only such pairs of sets..,a; andby,...,b, which
differ for at most one vector, for exampde = a, b, = b anda; = b, = x3,...,a, = b, =
X,_1, then by putting

(a,b|x1,..., X, 1) = {(a,x1,..., X, 1|b, X1, .., X,_1)

we obtain am-inner product according to Definitign 1.1 of Misiak. Indeed, the conditions i),
iv) and v) are triavially satisfied. The condition ii) is satisfied for an arbitrary permutation
because according to')v
<a1, Ce ,an|b1, Ce ,bn> == (al, aﬂ(g), e ,aw(n)|b1, bﬂ(g), ce ,bﬂ(n)>

for any permutatiornr : {2,3,...,n} — {2,3,...,n}. Similarly the condition iii) is satisfied.
Moreover, in this special case of Definitipn 2.1 we do not have any restriction of Definition 1.1.
For example, then the condition vi) does not say anything. Namely, & {b,,...,b,}, then
the vectorsa,, ..., a, must be from the setb,,...,b,}, and ’) is satisfied because the
assumptior(2.6/) is satisfied. Ifa; € {by,...,b,}, for examplea; = b;, then(2.6]) implies
that (b;,by,...,b;_1,bji1,...,b,|b1,...,b,) = 0, and it is possible only ib,, ..., b, are
linearly dependent vectors. However, thRr|') is satisfied. Thus Definition 2.1 generalizes
Definition[1.].

Now we give the following example of the-inner product.
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Example 2.1. We refer to the classical known example, asmamner product according to
Definition[2.1. Letl” be a space with inner produgt-). Then

(al,..

v) are trivial, and we will prove vi). Iby, ..
(al, bl, e

.,an\bl,...

,by)

(ai|by)
(az|b1)

(a1|by)
(az|ba)

(an[b1)  (an[by)
satisfies the conditions i) - vi) and hence it definesianner product ori/. The conditions i) -

(a1|by)
(az[bn)

(an|by)

., b, are linearly independent vectors and

ybio1, b, ... ,bn|b1, o ,bn>

(—1)i71<b1, e 7bi—17 al,biH, e
(bi1|b1) (bi|by)
(ba|by) (ba|by)

IR

(=1) (ai/b1) (ai|by)
(bn|b1) (by|bs)

,bu|bi, ..., by)
(b1|by,)
(ba|by,)

- 0
<al|bn> ’
(by|br)

then the vector
(<al|b1>7 <al|b2>7 cee <al|bn>) eR"
is a linear combination of
(<b1|b1>a SRR <b1|bn>)7 s ((bi—1|b1>7 SR <bz—1|bn>)a
(<bi+1|b1>v SO <bz+1|bn>)7 ceey (<bn|b1>v SO <bn|bn>)

Since this is true for each € {1,2,...,n}, it must be thata;|b;) = --- = (a;|b,) = 0.
Hence
<a1,...,an|b1,...,bn) =0
for arbitraryas, . . ., a,,.
Note that the inner product defined by
(ai|b1) (ai|by) (ai|bn)
(az[b1) (az|by) (az[by)
(a; A= Nayby Ao+ Ab,) = '
<an|b1> <an|b2> <an|bn>

can uniquely be extended to ordinary inner products over the spgdé) of n-forms overl’
[4]. Indeed, if{e;}:c;, I an index set, is an orthonormal basig f (x|x)), then

<ei1 A A ein|ej1 VANKIIRIVAN ejn> = (S;i;’:b

where the expressiofi! " is equal to 1 or -1 if{iy,...,i,} = {ji,...,ja} with different
i1, ..., i, and additionally the permutatiqrji Z - 3") is even or odd respectively, and where the
above expression is 0 otherwise. It implies an inner product Qyévr’).

Before we prove the next theorem, we give the following remarks assumingdith&t > n.
Letb,,..., b, be linearly independent vectors. If a vectois such that

<a,b1,...7bi_1,bi+1,...,bn|b1,...,bn> :0, (1 SZS”)
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then we say that the vectaris orthogonal to the subspace generatedbpy . ., b,. Note that
the set of orthogonal vectors to thisdimensional subspace is a vector subspadé,and the
orthogonality ofa to the considered vector subspace is invariant of the base végtors, b,,.

If x is an arbitrary vector, then there exist unique. .., A, € R such thatk — \;b; — --- —
M. b, is orthogonal to the vector subspace generateld;by. . , b,,. Namely, the orthogonality
conditions

<b1,--.,bi,1,X— )\1b1 - AnbnabiJrla"':bn‘bla'"abn> = O, (1 < { < n)
have unigue solutions
b17 s >bi—17xabi+1a s 7bn|b17' . abn>’ (1 < i < 77,)
(by,...,b,|by,...,by,)
Hence each vectat can uniquely be decomposed &as= A\;b; + --- + \,b,, + ¢, where
the vectorc is orthogonal to the vector subspace generated by. ., b,. According to this
definition, the condition vi) of Definitiop 2] 1 says that if the vecigiis orthogonal to the vector

subspace generated by, ..., b,,, then(2.6[") holds for arbitrary vectors,, .. ., a,.
Now we prove the Cauchy-Schwarz inequality as a consequence of Definitjon 2.1.

Theorem 2.1.1f (e, ... oo ... o) isann-inner product on, then the following inequality
(28) <a1, Ce ,an]bl, Ce 7bn>2 S <a1, e ,an|al, e ,an><b1, Ce ,bn‘bl, . 7bn>7

is true for any vectoray, ..., a,, by,...,b, € V. Moreover, equality holds if and only if at
least one of the following conditions is satisfied

i) the vectorsay, as, ..., a, are linearly dependent,
i) the vectordy, by, ..., b, are linearly dependent,
iii) the vectorsa;,as,...,a, andby, b,,..., b, generate the same vector subspace of di-
mensiom.

Proof. If a, ..., a, are linearly dependent vectorslay, . . . , b, are linearly dependent vectors,
then both sides of (2.8) are zero and hence equality holds. Thus, suppose thata, and
alsoby, ..., b, are linearly independent vectors. Note that the inequality (2.8) does not depend
on the choice of the basis, . . ., a,, of the subspace generated by thesectors. Indeed, each
vector row operation preserves the inequality |(2.8), because both sides are invariant or both
sides are multiplied by a positive real scalar after any elementary vector row operation. We
assume thatim V' > n, because iflim V' = n, then the theorem is obviously satisfied.

Let > be a space generated by the vectgrs . ., a, andX* be the orthogonal subspace to
Y. Let us decompose the vectdssasb; = c; + d; wherec; € ¥ andd; € X*. Thus

bi:ZPijaj—i—di, (1§z§n)

j=1

(a1,...,a,|by,...,b,) = <a1,...,an

Z Pljlajl —+ dl, RN Z Pnjnajn + dn>

Jji=1 Jn=1

n n
= E E P1j1P2j2~--Pnjn<a1,...,an|aj17...,ajn>

Ji=1 Jn=1

n n
= Z s Z P1j1P2j2 cee Pnjn(—1)89n0<al, .. ,an\al, ce ,an>
j1=1 Jn=1
=detP - (aj,...,a,|a;,...,a,)
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where we used the conditions ii) - vi) from Definitipn .1 and we denotef liye matrix with

entriesP;, ando = (127"

Jij2-jn/’
If det P = 0, then the left side of (2]8) is 0, the right side is positive and hence the inequality
(2.9) is true. So, let us suppose thatis a non-singular matrix an@ = P~'. Now the
inequality [2.8) is equivalent to

(detP)2<a1, o agag, ... ,an)2 < (aj,...,a,|a;,...,a,)(by,...,b,|b1,..., b)),

(2.9) (ar,...,a,la;,...,a,) < (b},...,b,|bl, ..., b)),
whereb; =377 | Q;;b;, (1 <i < n). Note thatb; decomposes as

b; = ZQZ’]’ (Z Pja + dj) =a; +d;
=1 =1

whered] = ", Q;;d; € ¥*. Now we will prove ), i.e.
(2.10) (ay,...,a,lay,...,a,) < (a;+d},...,a,+d |a; +d},...,a,+d)

and equality holds if and only ®; = a;, ..., b), = a,, i.e.,,d} = --- = d, = 0. More
precisely, we will prove thaf (2.10) is true for at least one basis. . , a,, of 3.
Using (2.5) and[(2]2) we obtain

(ay +dj,...,a,+d,|a; +d},...,a,+d))

= (aj,ay+dy,...,a, +d |a;,a + dj, ..., a, +d))
+(d},as +dj,...,a, +d,|d},a; +d5,...,a, +d)
+2(aj,ay +d), ... a, +d,|d},a; +d5, ... a, +d)

= (aj,as,a3 +dj,...,a, +d,|a;,a,a3 +dj,...,a, +d))
+ (a;,d}, a3 +dj,...,a, +d)|a;,dy, a3 +dj, ... a, +d),)
+(d},as +d),...,a, +d,|d},as +d),...,a, +d))
+2(aj,ap +d), ... a, +d,|d},a; + d5,...,a, +d)
+2(a;,a,a3 +ds, ..., a, +d, |a;,dy, a3 +dj, ..., a, +d))

=(ay,...,a,la;,...,a,) +(as,...,a,-1,d,|as,...,a,1,d))
+ -+ (ay,d), ..., a, +d)|a;,d), ..., a, +d))
+<d/173-2+dl27'--7an+d;z|d/17a2+dl27"->an+d;1>+Sv
where

S =2aj,ay+d,,...,a,+d,|d},a +d),...,a,+d)
+2(aj,ag,a3 +dj,...,a, +d,|a;,dy a3 + dj,...,a, +d),)
+ -+ 2 <ala ag,...,dp_1, an|a1a ag,...,dp_1, d;L> .

We can change the basis, . . ., a, of X such that the suny vanishes. Indeed, if we replace
a; by A\a; we can choose almost always a scalasuch thatS = 0. The other cases can be
considered by another analogous linear transformations. Thus without loss of generality we can
putS = 0.

According to i) the inequality|(2.10) is true and equality holds if and only if the following sets
of vectors{ay,...,a,_1,d,}, ..., {a;,d},as +dj,...,a, +d,},{d|,aa +d),...,a,+d,}

n
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are linearly dependent. This is satisfied if and onl’if=d}, = --- = d/, = 0, i.e. if and only
if b =ay,...,b, =a,. O
3. SOME APPLICATIONS

Let >, and>:; be two subspaces &f of dimensionn. We define the angle betweer>; and
hI by

(ag,...,a,|by,...,by,)

(3.1) cos p = ,
lag, ... a,] - [|b1,- -, bl
whereay, ..., a, are linearly independent vectors Bf, by,..., b, are linearly independent
vectors of¥, and
Hal, . ,an|| = \/(&1, Ce ,an|a1, Ce ,an>, Hbl, . ,an = \/(bl, Ce 7bn|b1, . ,bn>

The anglep does not depend on the choice of the bases. ., a, andb, ..., b,.
Note that any:-inner product induces an ordinary inner product over the vector sSpgdé)
of n-forms onV” as follows. Let{e, }, be a basis o¥’. Then we define

< Z ail"'ineil /\ e /\ ein Z bjl"'jnejl /\ T /\ ejn>

11 4eeyln J1yedn

= Z Wiy ooii Djy g (€iys -y €0 €515 -, €5,).

$1yeenytn,J1se0rdn
The first requirement for the inner product is a consequence of Th¢oreém 2.1. For example, if
w=pe; N---Ne, —qej N\N---/Nej,
then
(wlw) = p*{ei,....e;,len, ..., e ) +a (e, ....e;lej,....ej)
—2pgle;,,... e lej,....e;) >0
and moreover, the last expression is 0 if and only if

(e,-l,...,ein|ej1,...,ejn> = \/(eil,...,ein\eil,...,ein>\/<ejl,...,ejn]ejl,...,ejn>

whichmeansthat;, . ..., e;, ande;,,...,e;, generate the same subspace,andh- - -Ae;, =
qej, \---Aej, ,i.e. ifand only ifw = 0. The other requirements for inner products are obviously
satisfied. Hence we obtain an induced ordinary inner product on the vector/spaceof n-
forms onV'.

Remark 3.1. Note that the inner product ok, (V) introduced in Example 2.1 is only a special
case of an inner product ok, (V') and alsor-inner product. It is induced via the existence of
an ordinary inner product ow.

The angle between subspaces defined by (3.1) coincides with the angle betweefotms
in the vector spacd,, (V). Since the angle between two "lines" in any vector space with ordi-
nary inner product can be considered as a distance, we obtain that

(al, Ce ,an|b1, Ce 7bn>
|lai, ..., au| - [|b1,- .., bl
determines a metric among thedimensional subspaces df. Indeed, it induces a metric
on the Grassmann manifold, (1'), which is compatible with the ordinary topology of the

(3.2) = arccos
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Grassman manifold,, (V7). This metric over Grassmann manifolds appears natural and appears
convenient also for the infinite dimensional vector spaces

Further, we shall consider a special case ohanner product for which there exists a ba-
sis{e,} of V such that the vectas; is orthogonal to the subspace generated by the vectors

€;,,-..,e,, fordifferent values ot,,...,1i,. For such am-inner product we have
(33) (eil, Ce ,ein\ejl, RN ,ejn> = C“zn(S;i;Z

Whereéﬁjjéz is equal to 1 or -1 if{dy,...,i,} = {Jj1,...,7.} With differentiy,...,1,, the

permutation(;ﬁi ;z jj:;.’;) is even or odd respectively, the expression is 0 otherwise, and where
Ci,..., > 0. Moreover, one can verify that the previous formula induces-amer product,
i.e. the six conditions i) - vi) are satisfied if and only if all the coefficie@ts..;, are equal
to a positive constant’ > 0. Moreover, we can assume th@t= 1, because otherwise we
can consider the basig,/C"/>"} instead of the basiée, } of V. Hence this special case of
n-inner product reduces to theinner product given by the Examgle P.1. Indeed, the ordinary
inner product is uniquely defined such tHat,} has an orthonormal system of vectors.

If the dimension ofV/ is finite, for exampledim V' = m > n, then the previous-inner

product induces a duén — n)-inner product orl which is induced by

(34) <ei1> cee aeim—nleha S 7ejm—n>* = 5;1;::2

The dual(m — n)-inner product is defined using the "orthonormal basis,’} of V. If we have
chosen another "orthonormal basis", the result will be the same. Further we prove the following
theorem.

Theorem 3.2.Let V' be a finite dimensional vector space and let thimner product onV be
defined as in Examp|e 2.1. Then

(X1, Xa) = @(X7, X3),

whereX; and>, are arbitrary n-dimensional subspaces Bfand >} andX; are their orthog-
onal subspaces ii.

Proof. Let ¥y = (w1), Xz = (w2), X7 = (w]), 3 = (w3), where[jw; || = [lwa| = [lwi] =
|lws |l = 1. We will prove that

Wy - wy = Fwi - wy.
Indeedw; - we = wi - wi if w; A wy andwi A wi have the same orientation inandw; - wy =
—wj - w; if w; A wy andwi A w; have the opposite orientationslin
Assume that the dimension bfis m. Without loss of generality we can assume that
wi=e ANesA---ANe, and wi=-e, 1 A€ 2 - Aepy.

Without loss of generality we can assume that

we=ajNasA---ANa, and w;=a, 1 Aa,a/A---Aapy,
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whereay, ..., a,, is an orthonormal system. Suppose that= (a1, ..., a;,) (1 < i < m),
and let us introduce an orthogonalx m matrix
[ an T Ain a1,n+1 T A1 |
A= Qan1 T Qpn Qpn+1 e Qpm
Ap+1,1 *°° Qpn+ln Auyin+l " Anilm
L Qm1 e Amn Ay n+1 e Amm

We denote byA;,..;. (1 < iy < iy < --- < i, < m), then x n submatrix ofA whose rows
are the first» rows of A and whose columns are theth,...;,,-th column of A. We denote by
Ar . the(m —n) x (m — n) submatrix ofA which is obtained by deleting the rows and the

110n

columns corresponding to the submat#y...; . It is easy to verify that
wy-we =det Ao, and wi-w; =det A, ,
and thus we have to prove that
(3.5) det Ayp_n, = £det AJy _,,,
i.e.
det Ajp. ., =det A}, ,, if detA=1
and
det A12...n = —det Ai2n if det A = —1.
Assume thatlet A = 1. Let us consider the expression
L . 2
F= . [(det N G ) I G e c Aflz-z.--in)] '
1< <9< <in<m
Using ||ws|| = 1 and||w3|| = 1 we get
> (detApi)’ = D (detAr,, )7 =1
1<ii<-<in<m 1<ii<-<in<m
and using the Laplace formula for decomposition of determinants, we obtain

F = Z (det Ai1i2~-~in>2 + Z (det Ajlig---in)Q

1<iy < <in<m 1<iy <-<in<m

) Z (_1)n(n+1)/2(_1)i1+i2+-~+in det A

1<iy <-<in<m

=14+1—2-detA=2-2=0.

det A?

il’izmin 21i2""in

HenceF' = 0 implies that

det Ailig---in _ (_1)n(n+1)/2(_1)i1+i2+--.+in det A;kﬂzln
In particular, fori; = 1,...,4, = n we obtain
det Ai1i2~~in = det A;kllzln
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10 KOSTADIN TRENCEVSKI AND RISTO MAL CESKI

Assume thatlet A = —1. Then we consider the expression
L . 2
Fre 3 (et Ay, + (-1) 2 (1)t det A7)
1< <9< <in<m

and analogously we obtain that
n(n+1)/2 1412+ +1in *
det A —(—1)n D2yttt det AT L

In particular, fori; = 1,...,4, = n we obtain
det A = —det A}

1192°in "

1192 0

iriz-in
0J

Finally we make the following remark. The presented approachitmer products appears
to be essential for applications in functional analysis. Since the correspondiogm is the
same as the correspondingnorm from the definition of Misiak, we have the same results in
the normed spaces. It is an open question whether from Defifiition 2.1 a generalizeer
product andr-semi-inner product with characteristiccan be introduced. It may also be of
interest to research the strong convexity in the possibly introduced space\sémi-inner
product with characteristig.
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