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1. INTRODUCTION AND MAIN RESULTS

Bleimann, Butzer and Hahin![1] introduced the Bernstein type opefataver the interval
[0, 00) given by

u k
Ln(f, .T) = Zf (n——kj—l—]_> bmk([I}), xr 2 O, n = 1,2, ey
k=0

wheref is a real function or0, c), and

n _ T 1
(1.2) bn () == (k)piq;‘ k’, Dy = , G i=1—p, =
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2 JESUS DE LACAL AND VIJAY GUPTA

The approximation of uniformly continuous functions by these operators has been considered
in [1] — [4]. For other properties of,, (preservation of global smoothness, preservation-of
variation, behavior of the iterates, etc.) we refer, for instance,/to [4] - [10]. In some of the
mentioned works, the results are achieved by using probabilistic methods. This comes from the
fact thatL,, is an operator of probabilistic type. We can actually write

Ln(f,2) = Ef(Zna),
whereE denotes mathematical expectation, afgd. is the random variable given by
S
n—=Sy.+1

where¢, ,, &2, ... are independent random variables having the same Bernoulli distribution
with parametep,, i.e.,

(12) Zn,x = Sn,ac = gl,w + -+ gn,xa

(so thatS,, ., has the binomial distribution with parametersp,). This probabilistic represen-
tation also plays a significant role in the present paper (for a more refined representation useful
for other purposes, see [5, 6]).

Here, we discuss the approximation of real functighan the semi axis which are locally
bounded, i.e., bounded on each finite subintervdbofo). In such a case, we set, for> 0
andh > 0,

wi(fih) = sup |f(t)— f(z)],

r<t<x+h

wy (fih) = sup [f(t) = f(z)],
(z—h)*T<t<z

we(fih) =W (fih) +wg (fih),
where(z — h)* := max(x — h,0), and we observe that these functions are (nonnegative and)
nondecreasing off), co). In particular, every continuous function is locally bounded. Also, if
f is locally of bounded variation, i.e., such that

b

\/(f)<oo, 0<a<b< o,

a

Where\/Z(f) stands for the total variation ¢f on the intervala, b], thenf is locally bounded,

and we obviously have
z+h

wo(fih) <\ (),  0<h<w
x—h
This kind of problem has been already considered for other Bernstein-type operators (see, for
instance,[[11] -{[14] and the references therein). Our main results are stated as follows.

Theorem 1.1.Letg be a real locally bounded function g, co) such thayy(¢) = O(t") (t —

o0), forsomer = 1,2, . ... If g is continuous at: > 0, then, forn large enough, we have
T(1+2) <& ( :c) (1)

1.3 L,(g,x)—g(x) < ——— Wy — |+ 0, — ).

(1.3) |Ln(g, ) — g()] (n+2)x; NG o

In the following statements (and throughout the paper), we use the notations:
fr(@) = flz+) = f(z—)

oy o= L0 1 S02)
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fo = (f = fla=)) 1) + (f = f24) 1200
(14 being the indicator function of the sdj, provided that the lateral limit§(z+) and f (z—)
exist (such a condition is fulfilled wheyi is locally of bounded variation). We also use the
symbol |« | to indicate the integral part of the real numher

Theorem 1.2.Let f be a real locally bounded function ¢&, co) such thatf(¢) = O(t") (t —
o0), forsomer = 1,2,.... If x > 0, and f(z+) and f(z—) exist, then we have for large
enough

Lu(f.2) = J(@)]

2 *

Vnz(l+ x) 2 V2enx F(@) = f)l
whereA,, . (f,) is the right-hand side of (1.3) withreplaced byf,, and
{ 1 if (n+1)p, € {1,2,...,n}

0 otherwise.

€

Theorem 1.3. Let g be a real function on0, co) such thaty(t) = O(t") (¢t — o), for some
r=1,2,...,and having the form

g(t)=0+/0tf(U)du, 150,

wherec is a constant and’ is measurable and locally bounded noo). If x > 0, and f(z+)
and f(z—) exist, then we have for large enough

(o) - gte) ~ Y1 ()

5(1 + )%

< e (1) Hr@lor (17 107

The proofs of the preceding theorems are given in Sedtiorig 3 — 5. In Seiction 2, we collect the
necessary auxiliary results. Some remarks on moments close the paper.

2. AUXILIARY RESULTS

In the following lemmag® denotes the standard normal distribution function, Afpd stands

for the distribution function of5}; | := (Spz — nps) / /Mp.qz ,, Wheres,, , is the same as in
(1.72). Such a lemma is nothing but the application of the well-known Berry-Esseen theorem
(cf. [15]) to the situation at hand.

Lemma 2.1. We have, for > 0 andn > 1,
0.8(p2qs + pxgd)  0.8(1 + 2?)

sup |Fr (t) — ®(t)| <

Ccoctcoo " = Vnlpeq)?? Vnz(l+a)
Lemma 2.2. Letxz > 0 andn > 1. Then, we have:
()
3z(1+z)?

Ln(( —x)Q,x) :E(Zn,x_x)Q S n+2
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(b)
3z(1+x)?

(c)

‘P(Zn,x>x)_P(Zn r)] < = \1/%1(+$))
(d)
Lo((- —2),2) = E(Zy . — 1) = —xp) = 0,(n 1)7 (n — o0)

(e)

B B V2 (1 + ) _1/9
Lo(] - —z|,2) = E|Zy . — x| = N x( / ), (n — o0)

Proof. Part (a) was shown in_[10]. Part (b) follows from (a) and the fact that, by Markov’s

inequality,
E(Z,. — x)?
P(Zoa S &= 1)+ P(Zna 2 4+ 1) = P(|Zyp —a] 2 h) £ =20

To show (c), observe that

\P(Zyy > 1) — P(Zn, < 2)|= |1 — 2P(Z,.,
= |1 —2P(

)
oo () = (D) - (2]

Thus, the conclusion in part (c) follows from Lemmal2.1 and the fact that (cf. [16])

<
< (n+ 1)pa)]

1/2
0<20(t) — 1< (1 —e*t2) <t (t>0).

Part (d) is immediate. Finally, to show (e), tet:= | (n + 1)p,|. We have

Bl =l ) = Ll = ). 2)= 23 (7= ) et

prd n—k+1

n!
1

=2z bmm( )
= M + ox(n_m) (n — 00),

Jan

the last equality by [13, Lemma 1], and the conclusion follows from (d). O
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Lemma 2.3. Letx > 0 andr = 1,2,.... Then, we have for all integers such that(n +
1)(p2e — P3aj2) =7
k.r 5~ 1 1 r—s+2 |
S iy b= 120 Y S
(n—k+1)r ntr—s+2 (n+r—s)
keK
= O,.(n7"), (n — o0),

where the{’;} are the Stirling numbers of the second kind, dids the set of all integerg
suchthatn > k> (n — k+ 1)2z (i.e.,n > k > (n+ 1)pa,).

Proof. Using the well known identity

a—Z{ } (a—1)---(a—s+1),

we can write
k" " r
2.1 — b, = A,
e S gy i =32 {7)
ke K s=1
where
(k—s+1)
Z n—k—i—l) k()
ceK
Daly
ZKn—kjL " (k= s)l(n— k)
Since
1 _11[ 1 n—k+i
(n—/’{:—i—l)r_i:1 n—k+in—k+1
_11[ 1 Ly i1
_izl n—=k+i n—k+1
a i ri(n —k)!
< -
_gn—k—i-i (n—k+r)
we have

n!
As< ! k _n—k
<) (k—s)(n—Fk+ryl=h

keK

I+s n—l—s
=rl
Zl'n—l—r—s l)'p$ T

IEK,
_rinlple,” (n +r— 3) !
(n—i—r—s'lKg [ (14 z)ntr—s
rinlpiq. " Z n+r—s !
(n+r—s'lK, [ (1 4 x)ntr—s’

whereK, := {k — s : k € K}, andK’ stands for the set of all integetsuch that. > | >
(n — 1+ 1)(3z/2) (observe that, by the assumptiononwe havek; C K’). The probabilistic
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interpretation of the last sum together with Lermimg 2.2(b) yield

[P ] r—s
A< rinlz®(1 + x) Pz .. >3_x
(n4+r—s)! T2
127l (1 + z) 512
“(n+r—s)ln+r—s+2)
and the conclusion follows from (2.1) arid (2.2). O

(2.2)

Remark 2.4. The same procedure as in the preceding proof leads to the following upper bound
for the integral moments df,, (or Z,, ,):

L,(t" x)=E(Z,.)"
n k:,r.
(n—k+1)r

bn,k(l‘)

R‘

=0
r

(e

3. PROOF OF THEOREM [1.1

Without loss of generality, we assume théat) = 0. Denote byk,, ,, the distribution function
of Z, ., i.e.,

Koo(t) = P(Zno <t)= > buslx) >0

k<(n—k+1)t

We can writeL,, (g, =) as the Lebesgue-Stieltjes integral

Lu(g,x) = Eg(Zn.) =/ t) AR (t Z/ t) AR . (t

[O,OO)
where

I == [O,a:—

]3 = (l“i‘

We obviously have
|g(t)| dKn,:Jc@)ﬁ Wz | 9,

12 )
< wy (9; in)

e (57)
We | 95 —F—=] -
= vk

On the other hand, from the asymptotic assumptiog,ome have

%} ]2::(:L‘—%,x+%},
7

,24 and [ := (2z,00).

dK, .(t)

QI

(3.1)

S|

lg(t)] < Mt t> a,
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for some constantd/ > 0 anda > 2z. Therefore,

oo s, (0 (/] /m)w | dE ()

k.’/‘

< —z)P(Z 2 M R ——— .
wilgia — ) P(Zny > 22) + > CET— b o)
E>(n—k+1)ao
By Lemmg 2.2(b) and Lemnja 2.3, this shows that
(3.2) 9(t)| K0 (t) = Opo(n™) (n — o0).

Iy
Finally, using Lemma 2]2(b) and integration by parts (follow the same procedure as in the proof
of Theorem 1 in[[18]), we obtain

(1)) ()< / W (gr — 1) dE o (1)

I I
3z(1+2)? |w, (9;2) T )
m+2) | o +2/0 (c— 1) dt]

6(1+2)% & s

33) <rmr 2 (v7),

and, analogously,

6(1+ )% & oﬁ( i)
(3.4) i 9] dEoa(t) < 7= H)x; o)

The conclusion follows fron{ (3]1) £ (3.4).

4. PROOF OF THEOREM

We can write, fort > 0,
[ (x)

(4.1) F() = fz) = fu(t) + 5 0. () + (f (@) = f(2))d.(),

whereo, := —1jp,) + 1(z,x), @aNdd, := 1y, is Dirac’s delta atr (this is the so called Bojanic-
Vuilleumier-Cheng decomposition).
By Theorenj 1.1, we have

(4.2) | Ln(fo )| < Apa(fa),
whereA,, . (f.) is the right-hand side o-.2) withreplaced byf,. Moreover,
Ly(0y,2)=P(Zn, >x)— P(Zp. < x)

(4.3) =(P(Zps >2)— P(Zy, <2))+ P(Zy, =),
and
(4.4) L,(0y,2) = P(Z,,, = x).

Using Lemma 2]2(c) and the fact that (¢f. [17, Theorem 1])

(Mpkqr < S if (4 Vp, =k e {1,2,...,n}

P(Z,,=x)=
{ 0 otherwise,

the conclusion readily follows from (4.1) |- (4.4).
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5. PROOF OF THEOREM [1.3

Using the decompositiofn (4.1), it is easily checked that

(5.1) La(g.7) — g(z) = Z Ai(n,z),
where ) .
A 2) = F@L(( — 2).2) + T L ()l ),

As(n, /[O . ( / Folu du) dK,.,
As(n, z) /m (/ Folu du) dK,.,
Ay(n, z) = /Qm (/ falu du) dK .

andK, ,(t) is the same as in the preceding proofs.
From Lemma 22(d,e), we have

62 Alma)= YD by o) o), (n— o0).

2mn
Next, we estimatel,(n, x). By Fubini’s theorem,

Ay(n,z) = /O " Ko () £ () du — < /0 B / ;/ﬁ) Ko a(u) £ () du.

It is clear that

’ (u)| du
<[ 1w

g/ wy (fe;x —u) du
-

[ K fofw) da
—

IA IA

&E|
& TN
8 :h
= o
1 5 3_/
\\,_/

and, using Lemmia 2.2(b),

/ T ) fou) d du

3:17 1—1—:102/m /vn |fa;
- n+2 0

3x1+x /$ oV - wy (fasz —u)
(n+2) Jy C(x—u)?

<M [ ()
§ L

1
vn) "

- (#7)-
k=1

ZL'—U

du

(1+2)
)
3(1 +z)? Zw

n+ 2
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We therefore conclude that

5(1+4x) _ x
. < — i
(5.3) Aol )] € S 3 (£:7)
Similarly,
LV
5(1 + x)? n x
. < — = -
(5.4) r&mwt_n+2kl%(mg
Finally,

Ayln,z) = /( SO0 - /( o)+ S =) K ()

and, by the asymptotic assumption @gremmg 2.2(b) and Lemnja 2.3, we obtain
(5.5) As(n,2)| = Opu(n™), (0 — o),
The conclusion follows fronf (5]1) £ (8.5).

6. REMARKS ON MOMENTS

Fix z > 0, and letg(-) := | - —z|?, with 8 > 2. Since
wz(g,h) = 2h°, 0<h<uz,
and .
Y kPP =001),  (n— o),
we conclude from Theoreﬁk{.ll that
Lo(|- =2/, 2) = O,..(n™1), (n — 00).

In the case thad < § < 2, we have, by Jensen’s inequality (or Holder’s inequality) and

Lemmd 2.2(a),

B
32(1 + 2)%\ 2
La(| - —al.2) = E|Zuny — 2l < (B(Zns —2)2)"? < (32LED) 7
| | sk

forall n > 1.
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