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Abstract

We estimate the rate of the pointwise approximation by operators of Bleimann,
Butzer and Hahn of locally bounded functions, and of functions having a locally
bounded derivative.
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Bleimann, Butzer and HahriJintroduced the Bernstein type operaioy over
the intervall0, co) given by

& k
Ln(f,IE) :Zf(m) bn,k("lj’), IZO, n = 1,2,...,
k=0

wheref is a real function ori0, o), and T

Locally Bounded Functions By

n n— T 1 Operators Of Bleimann, Butzer
(1.1) boi(x) = (k)piﬁqm b pe= T == l—p, = s And Hahn

Jesus de la Cal and Vijay Gupta
The approximation of uniformly continuous functions by these operators has
been considered inJ - [4]. For other properties of,, (preservation of global
smoothness, preservationg@fvariation, behavior of the iterates, etc.) we refer,
for instance, to4] — [10]. In some of the mentioned works, the results are Contents
achieved by using probabilistic methods. This comes from the facLthistan

Title Page

T : <44 >»
operator of probabilistic type. We can actually write
< >
Ln(fv (L’) = Ef(Zn,x)a Go Back
where E denotes mathematical expectation, &g, is the random variable Close
given by Quit
STL €T
(1_2) Zn,a: . Mnz Sn,x - fl,r R gn’m’ Page 3 of 23

T n—S,.+1

)
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whereg; ,, & .., ... are independent random variables having the same Bernoulli
distribution with parameter,, i.e.,

(so thatS,, , has the binomial distribution with parametersp,). This prob-
abilistic representation also plays a significant role in the present paper (for a
more refined representation useful for other purposes, sé@ [

Here, we discuss the approximation of real functighen the semi axis

On The Approximation Of

which are locally bounded, i.e., bounded on each finite subintervya) of). In Locally Bounded Functions By
Operators Of Bleimann, But
such a case, we set, for> 0 andh > 0, P e bt o
w+(f; h) = sup |f(t) _ f($)|, Jesus de la Cal and Vijay Gupta
* r<t<z+h
wy (fsh) == sup [f(t) = f(z)], i [P
(z—h)*<t<z
Contents
we(fih) == wy (fih) +w (f;h), « "
where(z —h)* := max(z —h, 0), and we observe that these functions are (non- % N
negative and) nondecreasing [0noo). In particular, every continuous function
is locally bounded. Also, if is locally of bounded variation, i.e., such that Go Back
b Close
\/(f)<oo7 0<a<b< oo, Quit
‘ Page 4 of 23
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where\/’(f) stands for the total variation gf on the intervala, b], then f is
locally bounded, and we obviously have

z+h

wo(fih) <\ (f), 0<h<w

z—h

This kind of problem has been already considered for other Bernstein-type
operators (see, for instance,] — [14] and the references therein). Our main
results are stated as follows.

On The Approximation Of
Locally Bounded Functions By

Theorem 1.1. Let g be a real locally bounded function df, co) such that Operators Of Bleimann, Butzer
g(t) = O(t") (t — o0), forsomer = 1,2,.... If g is continuous at: > 0, And Hahn
then, forn large enough, we have Jests de la Cal and Vijay Gupta
7(1+2)? B 1
(1.3) [Enlg: ) = 9()] < m ;wx (97 ﬁ) O (ﬁ) ' Title Page
In the following statements (and throughout the paper), we use the notations: Contents
* <44 >
(@) = fla+) = f(z—) ) ,
RGO E (o
T 9 J Go Back
fo = (f — f(x_))l[o,x) + (f - f(x"i"))l(x,w) Close
(14 being the indicator function of the set), provided that the lateral lim- Quit
its f(z+) and f(x—) exist (such a condition is fulfilled whef is locally of Page 5 of 23

bounded variation). We also use the sympo| to indicate the integral part of
the real numbeud..
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Theorem 1.2. Let f be a real locally bounded function df, oo) such that
ft) =0(@{") (t —» ), forsomer = 1,2,.... If z > 0, and f(z+) and
f(z—) exist, then we have for large enough

Lo(f.2) = J(@)]

2 *

Vvnz(l+x) 2 V2enx
whereA,, ..(f.) is the right-hand side ofl(3) with g replaced byf,,, and

{ 1 if (n+1)p, €4{1,2,...,n}

[f(z) = flz—)l,

€ng =

0 otherwise.

Theorem 1.3.Letg be a real function o0, oo) such thaty(t) = O(t") (t —
o0), forsomer = 1,2, ..., and having the form

g(t):c+/0 f(u) du, t>0,

wherec is a constant andf is measurable and locally bounded @hoo). If
x > 0, and f(z+) and f(z—) exist, then we have for large enough

oo (fii ) I @) 0s (0772) +0,0(n 7).
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The proofs of the preceding theorems are given in Secfiens. In Section
2, we collect the necessary auxiliary results. Some remarks on moments close
the paper.
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In the following lemma,® denotes the standard normal distribution function,
andF}; , stands for the distribution function 6. . := (S,.. —np.) /\/Palz »»
wheres,, , is the same as inl(2). Such a lemma is nothing but the application
of the well-known Berry-Esseen theorem (cfo]) to the situation at hand.

Lemma 2.1. We have, for > 0 andn > 1,

3 3 2
sup |F* (t) — CI)(t)| < 0.8(]?qu —i—pqu) = 0'8(1 T ) . On The Approximation Of
—cost<oo T Vnpe)? Vna(1+ ) Operators Of Bieimann, Butzer
And Hahn

Lemma2.2. Letz > 0 andn > 1. Then, we have:
Jesus de la Cal and Vijay Gupta

(a) Sa(1 + o)
9 _ 9 z(l+=x
Lo(( —2)s2) = B(Zne —2)" < — =5 Title Page
(b) Contents
3z(1+ x)? <4< >
P Z,.<xz—h P(Z,. > h) < ———, h .
(Znz <x—h)+P(Z,, >x+h) (20 >0 ) R
(c) Go Back
r  1.6(1+ 2%
P(Z, . —P(Z,, < <GS Close
P(Zna > 0) = Pl S 2)| £\ [1 4+~ _
Quit
(@) Page 8 of 23

Lo((- = 2),2) = BE(Zy o — ) = —ap = 0,(n 1), (n — 00).
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(e)

2x(1
Ll =a),2) = Bl Zns —a = Y22LED o am12), (0= o0).

Jn

Proof. Part (a) was shown in.[]]. Part (b) follows from (a) and the fact that, by
Markov’s inequality,

On The Approximation Of

E(Z _ x)2 Locally Bounded Functions By
P(Zy,, <x—h)+P(Z,, >x+h)=P(|Z,, —x| > h) < nZz ‘ Operators C:‘ngleHigwha:]nn, Butzer
To show (C), observe that Jesus de la Cal and Vijay Gupta
P(Zna > 2) = P(Zna < )] Title Page
=|1-2P(Z,. < x)]
Contents
=|1-2P(Sh. < (n+1)p,)]|
T 44 44
=[i-2m (1) <
<2fo(yf3) =5 ()l = (V)]
n ’ n n
Close
Thus, the conclusion in part (c) follows from Lemral and the fact that (cf. Quit
[ 1/2 Page 9 of 23

0<20(t)— 1< (1—e—t2> <t (t>0)
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Part (d) is immediate. Finally, to show (e), tet:= [ (n + 1)p..|. We have

Ln(] - =l 2) = Lo((- = ), )

k=0
=22 bux(x) -2 phar
,; ;<k DICETESY
m m—1 On The Approximation Of
Locally Bounded Functions By
- Z — 2x b ( ) Operators Of Bleimann, Butzer
k— -0 And Hahn
b ( ) Jesus de la Cal and Vijay Gupta
V2z(1
_ M +o,(nY/?), (n — o0),
VT Title Page
the last equality by13, Lemma 1], and the conclusion follows from (d). [ Contents
Lemma 2.3.Letz > 0andr = 1,2, .... Then, we have for all integerssuch < 44
that (n + 1)(pex — P3ayj2) > 7, P >
T 5~ 1 T—s5+2 ! Go Back
kEK(n_k+1)T n+r—s+2 (n+r—s) Close
= Om(n ), (n — 00), Quit

where the{;"} are the Stirling numbers of the second kind, dids the set of Page 10 of 23

allintegersk suchthatn > k£ > (n — k + 1)2z (i.e.,n > k > (n + 1)pa,).
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Proof. Using the well known identity

ar:i{:}a(a—1)~-(a—s+1),

s=1

we can write

(2.1) ) M @) ) {T}A
. k\T) = )
n—k+1)r " s
K ( T ) s=1 On The Approximation Of
Locally Bounded Functions By

Operators Of Bleimann, Butzer

Where And Hahn
Z k — s+ 1) N k(l’) Jesus de la Cal and Vijay Gupta
— (n—Fk+1) ’
Z n! phgnh Title Page
— 1) (k—s)! | Pate
€K n k - <k S) ( k> Contents
Since <4< 44
1 _ ﬁ [ 1 n—=k+ z] 4 >
(n—k+1)’“_, n—k+in—k+1 Go Back
7 —1 Close
S (e
srln—k+i n—k+1 Quit
< H i o rl(n — k)! | Page 11 of 23
n—k+i (n—k+r)!
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we have

n!
As< | k n—k
—Tg;w—@mn—k+mwﬂx

n!
7’! 2 pl-i—sqn—l—s
‘ _ _ ' X X
= Nn+r—s—1)

B rinlpiq.” Z n+r—s x!
 (n4r—s)! ; l (14 x)ntr—s

€K, On The Approximation Of
Lor IS o —T 1 Locally Bounded Functions By
< rnipLq, n+r—s X Operators Of Bleimann, Butzer
- — And Hah
(n+r—s)!l€K, l (14 z)wtr—s’ nd Hahn

Jesus de la Cal and Vijay Gupta

whereK; := {k — s : k € K}, andK’ stands for the set of all integetsuch
thatn > [ > (n — [+ 1)(3x/2) (observe that, by the assumption@nve have

Title Page
K, C K'). The probabilistic interpretation of the last sum together with Lemma ?
2.2(b) yield Contents
T'?’L‘ZL‘S(]_ ‘l‘ x)rfsp Z >35L' ‘4 "
= -9 et Ty ¢ >
(2.2) 127rInles=1 (1 + z)r—st2 Go Back
: < —; = :
(n+r—s)l(n+r—s+2) Close
and the conclusion follows fron2(1) and @.2). O Quit
Remark 1. The same procedure as in the preceding proof leads to the following Page 12 of 23
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upper bound for the integral momentsiof (or 7, .):

k,T

(n—k+1)r

}

bn’k(l’)

nle®(1 4+ )"~

(n+7—s)!
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1.1

Without loss of generality, we assume thgt:)
distribution function ofZ,, ,, i.e.,

Koolt) =P(Zyo <t)= > buplz) >0
k<(n—k+1)t

We can writeL,, (g, x) as the Lebesgue-Stieltjes integral
[0,00)

where
T

x x
Il.— |:07ZL’—%:|, ]2~— <I—%,I+%:|,
I3 := (:1: + %,24 and [, := (2x,00).

We obviously have

[lo01aru = o0 (572 ) [ arato
)

< w, (g;

n

S 5l

(3.1) <

SRS

Wy
k=1

VR

3

= 0. Denote byk, , the
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On the other hand, from the asymptotic assumptiog,ome have
lg(t)| < M, t>a,

for some constantd/ > 0 anda > 2z. Therefore,

|9(t)] dKn (1)

o ( /(] ¥ /(W)) 98] a1

kT’
< wi(g o — —_— :
<w/(gia—a)P(Zpy >2x)+ M Z RS b k()
k>(n—k+1)a
By Lemma2.2(b) and Lemm&.3, this shows that
(3.2) lg(t)| dK, . (t) = Or,z(n_l) (n — o0).

Iy

Finally, using Lemma&.2(b) and integration by parts (follow the same proce-
dure as in the proof of Theorem 1 ind]), we obtain

9(0)|dKal) [ i (g1 = 1) B

11 Il

3(1+2)* |wy (g5 2) VW (g — 1)
mt2) | 2 +2/0 w_n &
6(1+12)° < T
(3.3) < 3o ;wx (g, ﬂ) ,
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and, analogously,

1+x
34 | dK, ,(t) < ————
(3.4) | laldne(t) < 75

The conclusion follows from3.1) — (3.4).

Z

k=

(s

=)
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1.2

We can write, fort > 0,

P& o)+ (1) — Fl)aato),

whereo, 1= —1jp4) + 1(z,00), @Ndd, := 1y, is Dirac’s delta atr (this is the so
called Bojanic-Vuilleumier-Cheng decomposition).
By Theoreml.1, we have

whereA,, .(f.) is the right-hand side ofl(2) with ¢ replaced byf,. Moreover,

@1)  f(t)— fl2) = fo(t) +

Loz, 2)=P(Zye > ) — P(Zpy < x)

(4.3) = (P(Zps >x)— P(Z,, <2))+ P(Z,, =),
and

Using Lemma2.2(c) and the fact that (cf.l[/, Theorem 1])

n\ k n—k (+z) —
Pt < = if (n+ Dp, =ke{1,2,...,n}
P(vax =)= (k) Zenx

0 otherwise,

the conclusion readily follows fromi(1) — (4.4).
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1.3

Using the decompositiorit(1), it is easily checked that

where .
A 2) o= F@)La(( — a)0) + L) —al,),

Ay(n, /[ ) ( / Folu) ) a0,
As(n, z) / N ( / £.(u) du )dKW(t),
Ay(n,z) = /m (/ fulu du) 0K, . (1),

andK, ,(t) is the same as in the preceding proofs.
From Lemma2.2(d,e), we have

(6.2) Arinya) = V2D b0y 4 (@) 0y (n72) 400,

2mn

Next, we estimatel,(n, z). By Fubini's theorem,

Ay(n, z) = /0 " Koa () fo () du ( /0 B / :/ﬁ) Ko a(u) fu(u) du.
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It is clear that

L D Kl fulw)du

—z/Vn

and, using Lemma.2(b),

v—a/\ r(1+x)? [ fo(u
/0 Ko (1) fi(ur) du|< % /0 H du
3e(1+2)2 [V W, (fux — )
(n+2) /o (x —u)?

< 3(1_+x>2/1ﬁw; (£7) i

(n+2) t

du

2 Lvn]

<t e ().
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We therefore conclude that

Lv/n)
5(1 + z)? ~ T
. < — .
(5.3) Ao )] € T 3w (£:57)
Similarly,
Lvn]
5(1+x)? N T
. < — i -
(5.4) s PR (£:57)
Finally,

Ay(n, ) = /( IO - /( o)+ S =] 4K ()

and, by the asymptotic assumption gnLemma2.2(b) and Lemma2.3, we
obtain
(5.5) |Ay(n, z)| = Om(n_l),

The conclusion follows fromH.1) — (5.5).
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Fix z > 0, and letg(-) := | - —x|?, with 3 > 2. Since

wy(g,h) = 2h°, 0<h<u,

and
n
S EE=0(1),  (n— o),
k=1 On The Approximation Of
we conclude from Theorerh 1that Locally Bounded Functions By
Operators Of Bleimann, Butzer
And Hahn

L.(]- —x|ﬁ,x) = Om(n_l), (n — 00). , )
Jesus de la Cal and Vijay Gupta

In the case thad < 5 < 2, we have, by Jensen’s inequality (or Holder's
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