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ABSTRACT. We define the Littlewood-Paley decomposition associated with the Dunkl opera-
tors; from this decomposition we give the characterization of the Sobolev, Hölder and Lebesgue
spaces associated with the Dunkl operators. We construct the paraproduct operators associated
with the Dunkl operators similar to those defined by J.M. Bony in [1]. Using the Littlewood-
Paley decomposition we establish the Sobolev embedding, Gagliardo-Nirenberg inequality and
we present the paraproduct algorithm.
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1. I NTRODUCTION

The theory of function spaces appears at first to be a disconnected subject, because of the

variety of spaces and the different considerations involved in their definitions. There are the

Lebesgue spacesLp(Rd), the Sobolev spacesHs(Rd), the Besov spacesBs
p,q(Rd), the BMO

spaces (bounded mean oscillation) and others.

Nevertheless, several approaches lead to a unified viewpoint on these spaces, for exam-

ple, approximation theory or interpolation theory. One of the most successful approaches

is the Littlewood-Paley theory. This approach has been developed by the European school,

which reached a similar unification of function space theory by a different path. Motivated

by the methods of Hörmander in studying partial differential equations (see [6]), they used
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a Fourier transform approach. Pick Schwartz functionsφ andχ on Rd satisfyingsupp χ̂ ⊂
B(0, 2), supp φ̂ ⊂

{
ξ ∈ Rd, 1

2
≤ ‖ξ‖ ≤ 2

}
, and the nondegeneracy condition|χ̂(ξ)|, |φ̂(ξ)| ≥

C > 0. Forj ∈ Z, letφj(x) = 2jdφ(2jx). In 1967 Peetre [10] proved that

(1.1) ‖f‖Hs(Rd) ' ‖χ ∗ f‖L2(Rd) +

(∑
j≥1

22sj‖φj ∗ f‖2
L2(Rd)

) 1
2

.

Independently, Triebel [15] in 1973 and Lizorkin [8] in 1972 introducedF s
p,q (the Triebel-

Lizorkin spaces) defined originally for1 ≤ p <∞ and1 ≤ q ≤ ∞ by the norm

(1.2) ‖f‖F s
p,q

= ‖χ ∗ f‖Lp(Rd) +

∥∥∥∥∥∥
(∑

j≥1

(2sj|φj ∗ f |)q

) 1
q

∥∥∥∥∥∥
Lp(Rd)

.

For the special caseq = 1 ands = 0, Triebel [16] proved that

(1.3) Lp(Rd) ' F 0
p,2.

Thus by the Littlewood-Paley decomposition we characterize the functional spacesLp(Rd),

Sobolev spacesHs(Rd), Hölder spacesCs(Rd) and others. Using the Littlewood-Paley decom-

position J.M. Bony in [1], built the paraproduct operators which have been later successfully

employed in various settings.

The purpose of this paper is to generalize the Littlewood-Paley theory, to unify and extend

the paraproduct operators which allow the analysis of solutions to more general partial differ-

ential equations arising in applied mathematics and other fields. More precisely, we define the

Littlewood-Paley decomposition associated with the Dunkl operators. We introduce the new

spaces associated with the Dunkl operators, the Sobolev spacesHs
k(Rd), the Hölder spaces

Cs
k(Rd) and theBMOk(Rd) that generalizes the corresponding classical spaces. The Dunkl

operators are the differential-difference operators introduced by C.F. Dunkl in [3] and which

played an important role in pure Mathematics and in Physics. For example they were a main

tool in the study of special functions with root systems (see [4]).

As applications of the Littlewood-Paley decomposition we establish results analogous to (1.1)

and (1.3), we prove the Sobolev embedding theorems, and the Gagliardo-Nirenberg inequality.

Another tool of the Littlewood-Paley decomposition associated with the Dunkl operators is to

generalize the paraproduct operators defined by J.M. Bony. We prove results similar to [2].

The paper is organized as follows. In Section 2 we recall the main results about the harmonic

analysis associated with the Dunkl operators. We study in Section 3 the Littlewood-Paley de-

composition associated with the Dunkl operators, we give the sufficient condition onup so that

u :=
∑
up belongs to Sobolev or Hölder spaces associated with the Dunkl operators. We finish

this section by the Littlewood-Paley decomposition of the Lebesgue spacesLp
k(Rd) associated

with the Dunkl operators. In Section 4 we give some applications. More precisely we establish

the Sobolev embedding theorems and the Gagliardo-Nirenberg inequality. Section 5 is devoted
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L ITTLEWOOD-PALEY DECOMPOSITION 3

to defining the paraproduct operators associated with the Dunkl operators and to giving the

paraproduct algorithm.

2. THE EIGENFUNCTION OF THE DUNKL OPERATORS

In this section we collect some notations and results on Dunkl operators and the Dunkl kernel

(see [3], [4] and [5]).

2.1. Reflection Groups, Root System and Multiplicity Functions. We considerRd with the

euclidean scalar product〈·, ·〉 and‖x‖ =
√
〈x, x〉. On Cd, ‖ · ‖ denotes also the standard

Hermitian norm, while〈z, w〉 =
∑d

j=1 zjwj.

Forα ∈ Rd\{0}, letσα be the reflection in the hyperplaneHα ⊂ Rd orthogonal toα, i.e.

(2.1) σα(x) = x− 2
〈α, x〉
‖α‖2

α.

A finite setR ⊂ Rd\{0} is called a root system ifR ∩ R · α = {α,−α} andσαR = R

for all α ∈ R. For a given root systemR the reflectionsσα, α ∈ R, generate a finite group

W ⊂ O(d), called the reflection group associated withR. All reflections inW correspond

to suitable pairs of roots. For a givenβ ∈ Rd\∪α∈RHα, we fix the positive subsystemR+ =

{α ∈ R : 〈α, β〉 > 0}, then for eachα ∈ R eitherα ∈ R+ or−α ∈ R+. We will assume that

〈α, α〉 = 2 for all α ∈ R+.

A function k : R −→ C on a root systemR is called a multiplicity function if it is invariant

under the action of the associated reflection groupW . If one regardsk as a function on the

corresponding reflections, this means thatk is constant on the conjugacy classes of reflections

in W . For brevity, we introduce the index

(2.2) γ = γ(k) =
∑

α∈R+

k(α).

Moreover, letωk denote the weight function

(2.3) ωk(x) =
∏

α∈R+

| 〈α, x〉 |2k(α),

which is invariant and homogeneous of degree2γ. We introduce the Mehta-type constant

(2.4) ck =

∫
Rd

e−
‖x‖2

2 ωk(x)dx.

2.2. Dunkl operators-Dunkl kernel and Dunkl intertwining operator.

Notations. We denote by

– C(Rd) (resp. Cc(Rd)) the space of continuous functions onRd (resp. with compact

support).

– E(Rd) the space ofC∞-functions onRd.

– S(Rd) the space ofC∞-functions onRd which are rapidly decreasing as their deriva-

tives.

– D(Rd) the space ofC∞-functions onRd which are of compact support.
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We provide these spaces with the classical topology.

Consider also the following spaces

– E ′(Rd) the space of distributions onRd with compact support. It is the topological dual

of E(Rd).

– S ′(Rd) the space of temperate distributions onRd. It is the topological dual ofS(Rd).

The Dunkl operatorsTj, j = 1, . . . , d, on Rd associated with the finite reflection groupW

and multiplicity functionk are given by

(2.5) Tjf(x) =
∂

∂xj

f(x) +
∑

α∈R+

k(α)αj
f(x)− f(σα(x))

〈α, x〉
, f ∈ C1(Rd).

In the casek = 0, theTj, j = 1, . . . , d, reduce to the corresponding partial derivatives. In this

paper, we will assume throughout thatk ≥ 0.

Fory ∈ Rd, the system{
Tju(x, y) = yju(x, y), j = 1, . . . , d,

u(0, y) = 1, for all y ∈ Rd

admits a unique analytic solution onRd, which will be denoted byK(x, y) and called the Dunkl

kernel. This kernel has a unique holomorphic extension toCd×Cd. The Dunkl kernel possesses

the following properties.

Proposition 2.1. Let z, w ∈ Cd, andx, y ∈ Rd.

i)

(2.6) K(z, w) = K(w, z), K(z, 0) = 1 and K(λz, w) = K(z, λw), for all λ ∈ C.

ii) For all ν ∈ Nd, x ∈ Rd andz ∈ Cd, we have

(2.7) |Dν
zK(x, z)| ≤ ‖x‖|ν| exp(‖x‖‖Re z‖),

and for allx, y ∈ Rd:

(2.8) |K(ix, y)| ≤ 1,

withDν
z = ∂ν

∂z
ν1
1 ···∂z

νd
d

and|ν| = ν1 + · · ·+ νd.

iii) For all x, y ∈ Rd andw ∈ W we have

(2.9) K(−ix, y) = K(ix, y) and K(wx,wy) = K(x, y).

The Dunkl intertwining operatorVk is defined onC(Rd) by

(2.10) Vkf(x) =

∫
Rd

f(y)dµx(y), for all x ∈ Rd,

wheredµx is a probability measure given onRd, with support in the closed ballB(0, ‖x‖) of

center0 and radius‖x‖.
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L ITTLEWOOD-PALEY DECOMPOSITION 5

2.3. The Dunkl Transform. The results of this subsection are given in [7] and [18].

Notations. We denote by

– Lp
k(Rd) the space of measurable functions onRd such that

‖f‖Lp
k(Rd) =

(∫
Rd

|f(x)|pωk(x)dx

) 1
p

<∞, if 1 ≤ p <∞,

‖f‖L∞k (Rd) = ess sup
x∈Rd

|f(x)| <∞.

– H(Cd) the space of entire functions onCd, rapidly decreasing of exponential type.

– H(Cd) the space of entire functions onCd, slowly increasing of exponential type.

We provide these spaces with the classical topology.

The Dunkl transform of a functionf in D(Rd) is given by

(2.11) FD(f)(y) =
1

ck

∫
Rd

f(x)K(−iy, x)ωk(x)dx, for all y ∈ Rd.

It satisfies the following properties:

i) Forf in L1
k(Rd) we have

(2.12) ‖FD(f)‖L∞k (Rd) ≤
1

ck
‖f‖L1

k(Rd).

ii) Forf in S(Rd) we have

(2.13) ∀y ∈ Rd, FD(Tjf)(y) = iyjFD(f)y), j = 1, . . . , d.

iii) For allf in L1
k(Rd) such thatFD(f) is inL1

k(Rd), we have the inversion formula

(2.14) f(y) =

∫
Rd

FD(f)(x)K(ix, y)ωk(x) dx, a.e.

Theorem 2.2.The Dunkl transformFD is a topological isomorphism.

i) FromS(Rd) onto itself.

ii) FromD(Rd) ontoH(Cd).

The inverse transformF−1
D is given by

(2.15) ∀y ∈ Rd, F−1
D (f)(y) = FD(f)(−y), f ∈ S(Rd).

Theorem 2.3.The Dunkl transformFD is a topological isomorphism.

i) FromS ′(Rd) onto itself.

ii) FromE ′(Rd) ontoH(Cd).

Theorem 2.4.

i) Plancherel formula forFD. For all f in S(Rd) we have

(2.16)
∫

Rd

|f(x)|2ωk(x)dx =

∫
Rd

|FD(f)(ξ)|2ωk(ξ)dξ.

ii) Plancherel theorem forFD. The Dunkl transformf → FD(f) can be uniquely extended

to an isometric isomorphism onL2
k(Rd).
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2.4. The Dunkl Convolution Operator.

Definition 2.1. Let y be inRd. The Dunkl translation operatorf 7→ τyf is defined onS(Rd)

by

(2.17) FD(τyf)(x) = K(ix, y)FD(f)(x), for all x ∈ Rd.

Example 2.1.Let t > 0, we have

τx(e
−t‖ξ‖2)(y) = e−t(‖x‖2+‖y‖2)K(2tx, y), for all x ∈ Rd.

Remark 1. The operatorτy, y ∈ Rd, can also be defined onE(Rd) by

(2.18) τyf(x) = (Vk)x(Vk)y[(Vk)
−1(f)(x+ y)], for all x ∈ Rd

(see [18]).

At the moment an explicit formula for the Dunkl translation operators is known only in the

following two cases. (See [11] and [13]).

• 1st case: d = 1 andW = Z2.

• 2nd case: For allf in E(Rd) radial we have

(2.19) τyf(x) = Vk

[
f0

(√
‖x‖2 + ‖y‖2 + 2〈x, ·〉

)]
(x), for all x ∈ Rd,

with f0 the function on[0,∞[ given by

f(x) = f0(‖x‖).

Using the Dunkl translation operator, we define the Dunkl convolution product of functions

as follows (see [11] and [18]).

Definition 2.2. The Dunkl convolution product off andg in D(Rd) is the functionf ∗D g

defined by

(2.20) f ∗D g(x) =

∫
Rd

τxf(−y)g(y)ωk(y)dy, for all x ∈ Rd.

This convolution is commutative, associative and satisfies the following properties. (See

[13]).

Proposition 2.5.

i) For f andg inD(Rd) (resp.S(Rd)) the functionf ∗D g belongs toD(Rd) (resp.S(Rd))

and we have

FD(f ∗D g)(y) = FD(f)(y)FD(g)(y), for all y ∈ Rd.

ii) Let 1 ≤ p, q, r ≤ ∞, such that1
p

+ 1
q
− 1

r
= 1. If f is in Lp

k(Rd) and g is a radial

element ofLq
k(Rd), thenf ∗D g ∈ Lr

k(Rd) and we have

(2.21) ‖f ∗D g‖Lr
k(Rd) ≤ ‖f‖Lp

k(Rd) ‖g‖Lq
k(Rd) .

iii) LetW = Zd
2. We have the same result for allf ∈ Lp

k(Rd) andg ∈ Lq
k(Rd).
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3. L ITTLEWOOD -PALEY THEORY ASSOCIATED WITH DUNKL OPERATORS

We consider now a dyadic decomposition ofRd.

3.1. Dyadic Decomposition.Forp ≥ 0 be a natural integer, we set

(3.1) Cp = {ξ ∈ Rd; 2p−1 ≤ ‖ξ‖ ≤ 2p+1} = 2pC0

and

(3.2) C−1 = B(0, 1) = {ξ ∈ Rd; ‖ξ‖ ≤ 1}.

ClearlyRd =
⋃∞

p=−1Cp.

Remark 2. We remark that

(3.3) card
{
q; Cp

⋂
Cq 6= ∅

}
≤ 2.

Now, let us define a dyadic partition of unity that we shall use throughout this paper.

Lemma 3.1. There exist positive functionsϕ andψ in D(Rd), radial with suppψ ⊂ C−1, and

suppϕ ⊂ C0, such that for anyξ ∈ Rd andn ∈ N, we have

ψ(ξ) +
∞∑

p=0

ϕ(2−pξ) = 1

and

ψ(ξ) +
n∑

p=0

ϕ(2−pξ) = ψ(2−nξ).

Remark 3. It is not hard to see that for anyξ ∈ Rd

(3.4)
1

2
≤ ψ2(ξ) +

∞∑
p=0

ϕ2(2−pξ) ≤ 2.

Definition 3.1. Let λ ∈ R. Forχ in S(Rd), we define the pseudo-differential-difference opera-

tor χ(λT ) by

FD(χ(λT )u) = χ(λξ)FD(u), u ∈ S ′(Rd).

Definition 3.2. Foru in S ′(Rd), we define its Littlewood-Paley decomposition associated with

the Dunkl operators (or dyadic decomposition){∆pu}∞p=−1 as∆−1u = ψ(T )u and forq ≥ 0,

∆qu = ϕ(2−qT )u.

Now we go to see in which case we can have the identity

Id =
∑
p≥−1

∆p.

This is described by the following proposition.

Proposition 3.2. For u in S ′(Rd), we haveu =
∑∞

p=−1 ∆pu, in the sense ofS ′(Rd).
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Proof. For anyf in S(Rd), it is easy to see thatFD(f) =
∑∞

p=−1FD(∆pf) in the sense of

S(Rd). Then for anyu in S ′(Rd), we have

〈u, f〉 = 〈FD(u),FD(f)〉

=
∞∑

p=−1

〈FD(u),FD(∆pf)〉

=
∞∑

p=−1

〈FD(∆pu),FD(f)〉

=

〈
∞∑

p=−1

FD(∆pu),FD(f)

〉
=

〈
∞∑

p=−1

∆pu, f

〉
.

The proof is finished. �

3.2. The Generalized Sobolev Spaces.In this subsection we will give a characterization of

Sobolev spaces associated with the Dunkl operators by a Littlewood-Paley decomposition. First,

we recall the definition of these spaces (see [9]).

Definition 3.3. Let s be inR, we define the spaceHs
k(Rd) by{

u ∈ S ′(Rd) : (1 + ‖ξ‖2)
s
2FD(u) ∈ L2

k(Rd)
}
.

We provide this space by the scalar product

(3.5) 〈u, v〉Hs
k(Rd) =

∫
Rd

(1 + ‖ξ‖2)sFD(u)(ξ) FD(v)(ξ)ωk(ξ)dξ,

and the norm

(3.6) ‖u‖2
Hs

k(Rd) = 〈u, u〉Hs
k(Rd).

Another proposition will be useful. LetSqu =
∑

p≤q−1 ∆pu.

Proposition 3.3. For all s in R and for all distributionsu in Hs
k(Rd), we have

lim
n→∞

Snu = u.

Proof. For all ξ in Rd, we have

FD(Snu− u)(ξ) = (ψ(2−nξ)− 1)FD(u)(ξ).

Hence

lim
n→∞

FD(Snu− u)(ξ) = 0.

On the other hand

(1 + ‖ξ‖2)s|FD(Snu− u)(ξ)|2 ≤ 2(1 + ‖ξ‖2)s|FD(u)(ξ)|2.

Thus the result follows from the dominated convergence theorem. �
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The first application of the Littlewood-Paley decomposition associated with the Dunkl oper-

ators is the characterization of the Sobolev spaces associated with these operators through the

behavior onq of ‖∆qu‖L2
k(Rd). More precisely, we now define a norm equivalent to the norm

‖ · ‖Hs
k(Rd) in terms of the dyadic decomposition.

Proposition 3.4. There exists a positive constantC such that for alls in R, we have
1

C |s|+1
‖u‖2

Hs
k(Rd) ≤

∑
q≥−1

22qs‖∆qu‖2
L2

k(Rd) ≤ C |s|+1‖u‖2
Hs

k(Rd).

Proof. SincesuppFD(∆qu) ⊂ Cq, from the definition of the norm‖ · ‖Hs
k(Rd), there exists a

positive constantC such that we have

(3.7)
1

C |s|+1
2qs‖∆qu‖L2

k(Rd) ≤ ‖∆qu‖Hs
k(Rd) ≤ C |s|+12qs‖∆qu‖L2

k(Rd).

From (3.4) we deduce that

1

2
‖u‖2

Hs
k(Rd) ≤

∫
Rd

[
ψ2(ξ) +

∞∑
q=0

ϕ2(2−qξ)

]
(1 + ‖ξ‖2)s|FD(u)(ξ)|2ωk(ξ)dξ

≤ 2‖u‖2
Hs

k(Rd).

Hence
1

2
‖u‖2

Hs
k(Rd) ≤

∑
q≥−1

‖∆qu‖2
Hs

k(Rd) ≤ 2‖u‖2
Hs

k(Rd).

Thus from this and (3.7) we deduce the result. �

The following theorem is a consequence of Proposition 3.4.

Theorem 3.5. Let u be inS ′(Rd) and u =
∑

q≥−1 ∆qu its Littlewood-Paley decomposition.

The following are equivalent:

i) u ∈ Hs
k(Rd).

ii)
∑

q≥−1 22qs‖∆qu‖2
L2

k(Rd)
<∞.

iii) ‖∆qu‖L2
k(Rd) ≤ cq2

−qs, with {cq} ∈ l2.

Remark 4. Since foru in S ′(Rd) we have∆pu in S ′(Rd) and supp FD(∆pu) ⊂ Cp, from

Theorem 2.3 ii) we deduce that∆pu is in E(Rd).

The following propositions will be very useful.

Proposition 3.6. Let C̃ be an annulus inRd ands in R. Let (up)p∈N be a sequence of smooth

functions. If the sequence(up)p∈N satisfies

suppFD(up) ⊂ 2pC̃ and ‖up‖L2
k(Rd) ≤ Ccp2

−ps, {cp} ∈ l2,

then we have

u =
∑
p≥0

up ∈ Hs
k(Rd) and ‖u‖Hs

k(Rd) ≤ C(s)

(∑
p≥0

22ps‖up‖2
L2

k(Rd)

) 1
2

.
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Proof. SinceC̃ andC0 are two annuli, there exists an integerN0 so that

|p− q| > N0 =⇒ 2pC0

⋂
2qC̃ = ∅.

It is clear that

|p− q| > N0 =⇒ FD(∆qup) = 0.

Then

∆qu =
∑

|p−q|≤N0

∆qup.

By the triangle inequality and definition of∆qup we deduce that

‖∆qu‖L2
k(Rd) ≤

∑
|p−q|≤N0

‖up‖L2
k(Rd).

Thus the Cauchy-Schwartz inequality implies that

∑
q≥0

22qs‖∆qu‖2
L2

k(Rd) ≤ C

 ∑
q/|p−q|≤N0

22(q−p)s

(∑
p≥0

22ps‖up‖2
L2

k(Rd)

)
.

From Theorem 3.5 we deduce that if‖up‖L2
k(Rd) ≤ Ccp2

−ps thenu ∈ Hs
k(Rd). �

Proposition 3.7. LetK > 0 ands > 0. Let (up)p∈N be a sequence of smooth functions. If the

sequence(up)p∈N satisfies

suppFD(up) ⊂ B(0, K2p) and ‖up‖L2
k(Rd) ≤ Ccp2

−ps, {cp} ∈ l2,

then we have

u =
∑
p≥0

up ∈ Hs
k(Rd) and ‖u‖Hs

k(Rd) ≤ C(s)

(∑
q≥0

22ps‖up‖2
L2

k(Rd)

) 1
2

.

Proof. SincesuppFD(up) ⊂ B(0, K2p), there existsN1 such that

∆qu =
∑

p≥q−N1

∆qup.

So, we get that

2qs‖∆qu‖L2
k(Rd) ≤

∑
p≥q−N1

2qs‖up‖L2
k(Rd)

=
∑

p≥q−N1

2(q−p)s2ps‖up‖L2
k(Rd).

Sinces > 0, the Cauchy-Schwartz inequality implies∑
q

22qs‖∆qu‖2
L2

k(Rd) ≤
22N1s

1− 2−s

∑
p

22ps‖up‖2
L2

k(Rd).

From Theorem 3.5 we deduce the result. �
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Proposition 3.8. Let s > 0 and (up)p∈N be a sequence of smooth functions. If the sequence

(up)p∈N satisfies

up ∈ E(Rd) and for all µ ∈ Nd, ‖T µup‖L2
k(Rd) ≤ Ccp,µ2−p(s−|µ|), {cp,µ} ∈ l2,

then we have

u =
∑
p≥0

up ∈ Hs
k(Rd) and ‖u‖Hs

k(Rd) ≤ C(s)

(∑
p≥0

22ps‖up‖2
L2

k(Rd)

) 1
2

.

Proof. By the assumption we first haveu =
∑
up ∈ L2

k(Rd). Takeµ ∈ Nd with |µ| = s0 > s >

0, andχp(ξ) = χ(2−pξ) ∈ D(Rd) with suppχ ⊂ B(0, 2), χ(ξ) = 1, ‖ξ‖ ≤ 1 and0 ≤ χ ≤ 1,

then

suppχp(1− χp) ⊂
{
ξ ∈ Rd; 2p ≤ ‖ξ‖ ≤ 2p+2

}
.

Set

FD(up)(ξ) = χp(ξ)FD(up)(ξ) + (1− χp(ξ))FD(up)(ξ)

= FD(u(1)
p )(ξ) + FD(u(2)

p )(ξ),

and we have

‖up‖2
L2

k(Rd) = ‖FD(up)‖2
L2

k(Rd)

=

[∫
Rd

|FD(u(1)
p )(ξ)|2ωk(ξ)dξ +

∫
Rd

|FD(u(2)
p )(ξ)|2ωk(ξ)dξ

+2

∫
Rd

|FD(up)(ξ)|2χp(ξ)(1− χp(ξ))ωk(ξ)dξ

]
.

Since0 ≤ χp(ξ)(1− χp(ξ)) ≤ 1, we deduce that∥∥u(1)
p

∥∥2

L2
k(Rd)

+
∥∥u(2)

p

∥∥2

L2
k(Rd)

≤ ‖up‖2
L2

k(Rd) ≤ c2p2
−2ps.

Similarly, using Theorem 3.1 of [9], we obtain∥∥u(1)
p

∥∥2

H
s0
k (Rd)

+
∥∥u(2)

p

∥∥2

H
s0
k (Rd)

≤ ‖up‖2
H

s0
k (Rd)

≤ c2p2
−2p(s−s0).

Setu(1) =
∑

p u
(1)
p , u(2) =

∑
p u

(2)
p , thenu = u(1) + u(2), and from Proposition 3.7 we deduce

thatu(1) belongs toHs
k(Rd). Foru(2) the definition ofu(2)

p gives that

‖∆q(u
(2))‖2

L2
k(Rd) =

∫
Rd

∣∣∣∣∣ ∑
p≤q+1

ϕ(2−qξ)FD(u(2)
p )(ξ)

∣∣∣∣∣
2

ωk(ξ)dξ.

Thus by the Cauchy-Schwartz inequality we have

‖∆q(u
(2))‖2

L2
k(Rd)

≤

( ∑
p≤q+1

2−2p(s−s0)

)(∫
Rd

∑
p≤q+1

22p(s−s0)|ϕ(2−qξ)FD(u(2)
p )(ξ)|2ωk(ξ)dξ

)

≤ 1− 2−2(q+2)(s−s0)

1− 2−(s−s0)
2−2qs0

∑
p≤q+1

22p(s−s0)
∥∥∆q

(
u(2)

p

)∥∥2

H
s0
k (Rd)

.
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Moreover, sinces0 > s > 0,

1− 2−2(q+2)(s−s0)

1− 2−(s−s0)
2−2qs0 ≤ C2−2qs,

andC is independent ofq. Now set

c2q =
∑

p≤q+1

22p(s−s0)
∥∥∆q

(
u(2)

p

)∥∥2

H
s0
k (Rd)

,

then ∑
q≥−1

22qs‖∆q(u
(2))‖2

L2
k(Rd) ≤

∑
q≥−1

c2q ≤
∑

p

22p(s−s0)
∥∥u(2)

p

∥∥2

H
s0
k (Rd)

<∞.

Thus by Theorem 3.5 we deduce thatu(2) =
∑

q ∆q(u
(2)) belongs toHs

k(Rd). �

Corollary 3.9. The spacesHs
k(Rd) do not depend on the choice of the functionϕ andψ used

in the Definition 3.2.

3.3. The Generalized Hölder Spaces.

Definition 3.4. For α in R, we define the Hölder spaceCα
k (Rd) associated with the Dunkl

operators as the set ofu ∈ S ′(Rd) satisfying

‖u‖Cα
k (Rd) = sup

p≥−1
2pα‖∆pu‖L∞k (Rd) <∞,

whereu =
∑

p≥−1 ∆pu is its Littlewood-Paley decomposition.

In the following proposition we give sufficient conditions so that the series
∑

q uq belongs to

the Hölder spaces associated with the Dunkl operators.

Proposition 3.10.

i) Let C̃ be an annulus inRd andα ∈ R. Let (up)p∈N be a sequence of smooth functions.

If the sequence(up)p∈N satisfies

suppFD(up) ⊂ 2pC̃ and ‖up‖L∞k (Rd) ≤ C2−pα,

then we have

u =
∑
p≥0

up ∈ Cα
k (Rd) and ‖u‖Cα

k (Rd) ≤ C(α) sup
p≥0

2pα‖up‖L∞k (Rd).

ii) LetK > 0 andα > 0. Let (up)p∈N be a sequence of smooth functions. If the sequence

(up)p∈N satisfies

suppFD(up) ⊂ B(0, K2p) and ‖up‖L∞k (Rd) ≤ C2−pα,

then we have

u =
∑
p≥0

up ∈ Cα
k (Rd) and ‖u‖Cα

k (Rd) ≤ C(α) sup
p≥0

2pα‖up‖L∞k (Rd).

Proof. The proof uses the same idea as for Propositions 3.6 and 3.7. �
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Proposition 3.11.The distribution defined by

g(x) =
∑
p≥0

K(ix, 2pe), with e = (1, . . . , 1),

belongs toC0
k(Rd) and does not belong toL∞k (Rd).

Proposition 3.12. Let ε ∈]0, 1[ andf in Cε
k(Rd), then there exists a positive constantC such

that

‖f‖L∞k (Rd) ≤
C

ε
‖f‖C0

k(Rd) log

(
e+

‖f‖Cε
k(Rd)

‖f‖C0
k(Rd)

)
.

Proof. Sincef =
∑

p≥−1 ∆pf ,

‖f‖L∞k (Rd) ≤
∑

p≤N−1

‖∆pf‖L∞k (Rd) +
∑
p≥N

‖∆pf‖L∞k (Rd),

with N is a positive integer that will be chosen later. Sincef ∈ Cε
k(Rd), using the definition of

generalized Hölderien norms, we deduce that

‖f‖L∞k (Rd) ≤ (N + 1)‖f‖C0
k(Rd) +

2−(N−1)ε

2ε − 1
‖f‖Cε

k(Rd).

We take

N = 1 +

[
1

ε
log2

‖f‖Cε
k(Rd)

‖f‖C0
k(Rd)

]
,

we obtain

‖f‖L∞k (Rd) ≤
C

ε
‖f‖C0

k(Rd)

[
1 + log

(
‖f‖Cε

k(Rd)

‖f‖C0
k(Rd)

)]
.

This implies the result. �

Now we give the characterization ofLp
k(Rd) spaces by using the dyadic decomposition.

If (fj)j∈N is a sequence ofLp
k(Rd)-functions, we set

‖(fj)‖Lp
k(l2) =

∥∥∥∥∥∥
(∑

j∈N

|fj(x)|2
) 1

2

∥∥∥∥∥∥
Lp

k(Rd)

,

the norm inLp
k(Rd, l2(N)).

Theorem 3.13(Littlewood-Paley decomposition ofLp
k(Rd)). Let f be inS ′(Rd) and1 < p <

∞. Then the following assertions are equivalent

i) f ∈ Lp
k(Rd),

ii) S0f ∈ Lp
k(Rd) and

(∑
j∈N |∆jf(x)|2

) 1
2 ∈ Lp

k(Rd).

Moreover, the following norms are equivalent :

‖f‖Lp
k(Rd) and ‖S0f‖Lp

k(Rd) +

∥∥∥∥∥∥
(∑

j∈N

|∆jf(x)|2
) 1

2

∥∥∥∥∥∥
Lp

k(Rd)

.
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Proof. If f is inL2
k(Rd), then from Proposition 3.4 we have∥∥∥∥∥∥

(∑
j∈N

|∆jf(x)|2
) 1

2

∥∥∥∥∥∥
L2

k(Rd)

≤ ‖f‖2
L2

k(Rd).

Thus the mapping

Λ1 : f 7→ (∆jf)j∈N,

is bounded fromL2
k(Rd) intoL2

k(Rd, l2(N)).

On the other hand, from properties ofϕ we see that

‖(ϕ̃j(x))j‖l2 ≤ C‖x‖−(d+2γ), for x 6= 0,

‖(∂yi
ϕ̃j(x))j‖l2 ≤ C‖x‖−(d+2γ), for x 6= 0, i = 1, . . . , d,

where

ϕ̃j(x) = 2j(d+2γ)F−1
D (ϕ)(2jx).

We may then apply the theory of singular integrals to this mappingΛ1 (see [14]).

Thus we deduce that

‖∆jf‖Lp
k(l2) ≤ Cp,k‖f‖Lp

k(Rd), for 1 < p <∞.

The converse uses the same idea. Indeed we put

φ̃j =
1∑

i=−1

ϕ̃j+i.

From Proposition 3.4 the mapping

Λ2 : (fj)j∈N 7→
∑
j∈N

fj ∗D φ̃j,

is bounded fromL2
k(Rd, l2(N)) intoL2

k(Rd).

On the other hand, from properties ofϕ we see that

‖(φ̃j(x))j‖l2 ≤ C‖x‖−(d+2γ), forx 6= 0,

‖(∂yi
φ̃j(x))j‖l2 ≤ C‖x‖−(d+2γ), forx 6= 0, i = 1, . . . , d.

We may then apply the theory of singular integrals to this mappingΛ2 (see [14]).

Thus we obtain ∥∥∥∥∥∑
j∈N

∆jf

∥∥∥∥∥
Lp

k(Rd)

≤ Cp,k‖∆jf‖Lp
k(l2).

�
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4. APPLICATIONS

4.1. Estimates of the Product of Two Functions.

Proposition 4.1.

i) Letu, v ∈ Cα
k (Rd) andα > 0 thenuv ∈ Cα

k (Rd), and

‖uv‖Cα
k (Rd) ≤ C

[
‖u‖L∞k (Rd)‖v‖Cα

k (Rd) + ‖v‖L∞k (Rd)‖u‖Cα
k (Rd)

]
.

ii) Letu, v ∈ Hs
k(Rd)

⋂
L∞k (Rd) ands > 0 thenuv ∈ Hs

k(Rd), and

‖uv‖Hs
k(Rd) ≤ C

[
‖u‖L∞k (Rd)‖v‖Hs

k(Rd) + ‖v‖L∞k (Rd)‖u‖Hs
k(Rd)

]
.

Proof. Let u =
∑

p ∆pu andv =
∑

q ∆qv be their Littlewood-Paley decompositions. Then we

have

uv =
∑
p,q

∆pu∆qv

=
∑

q

∑
p≤q−1

∆pu∆qv +
∑

q

∑
p≥q

∆pu∆qv

=
∑

q

∑
p≤q−1

∆pu∆qv +
∑

p

∑
q≤p

∆pu∆qv

=
∑

q

Squ∆qv +
∑

p

Sp+1v∆pu

=
∑

1

+
∑

2

.

We have

supp (FD(Squ∆qv)) = supp (FD(∆qv) ∗D FD(Squ)).

Hence from Theorem 2.2 we deduce thatsupp (FD(Squ∆qv)) ⊂ B(0, C2q).

i) If u andv are inCα
k (Rd), then we have

‖Squ∆qv‖L∞k (Rd) ≤ ‖Squ‖L∞k (Rd)‖∆qv‖L∞k (Rd),

≤ C‖u‖L∞k (Rd)‖v‖Cα
k (Rd)2

−qα.

From Proposition 3.10 ii) we deduce∥∥∥∥∥∑
1

∥∥∥∥∥
Cα

k (Rd)

≤ C‖u‖L∞k (Rd)‖v‖Cα
k (Rd).

Similarly we prove that ∥∥∥∥∥∑
2

∥∥∥∥∥
Cα

k (Rd)

≤ C‖v‖L∞k (Rd)‖u‖Cα
k (Rd),

and this implies the result.

ii) If u andv are inHs
k(Rd), then we have
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‖Squ∆qv‖L2
k(Rd) ≤ ‖Squ‖L∞k (Rd)‖∆qv‖L2

k(Rd),

≤ C‖u‖L∞k (Rd)‖v‖Hs
k(Rd)cq2

−qs.

Thus Proposition 3.7 gives∥∥∥∥∥∑
1

∥∥∥∥∥
Hs

k(Rd)

≤ C‖u‖L∞k (Rd)‖v‖Hs
k(Rd).

Similarly, we prove that ∥∥∥∥∥∑
2

∥∥∥∥∥
Hs

k(Rd)

≤ C‖v‖L∞k (Rd)‖u‖Hs
k(Rd),

and this implies the result. �

Corollary 4.2. For s > d
2

+ γ,Hs
k(Rd) is an algebra.

4.2. Sobolev Embedding Theorem.Using the Littlewood-Paley decomposition, we have a

very simple proof of Sobolev embedding theorems:

Theorem 4.3.For anys > γ + d
2
, we have the continuous embedding

Hs
k(Rd) ↪→ C

s−γ− d
2

k (Rd).

Proof. Let u be inHs
k(Rd), u =

∑
p≥−1 ∆pu the Littlewood-Paley decomposition. Takeφ in

D(Rd) such thatφ(ξ) = 1 onC0, and

suppφ ⊂ C ′
0 =

{
ξ ∈ Rd,

1

3
≤ ‖ξ‖ ≤ 3

}
.

Settingφp(ξ) = φ(2−pξ), we obtain

FD(∆pu)(ξ) = FD(∆pu)(ξ)φ(2−pξ).

Hence

∆pu(x) =

∫
Rd

FD(∆pu)(ξ)φ(2−pξ)K(ix, ξ)ωk(ξ)dξ,

|∆pu(x)| ≤
∫

Rd

|FD(∆pu)(ξ)‖φ(2−pξ)|ωk(ξ)dξ.

The Cauchy-Schwartz inequality and Theorem 3.5 give that

‖∆pu‖L∞k (Rd) ≤
(∫

Rd

|FD(∆pu)(ξ)|2ωk(ξ)dξ

) 1
2
(∫

Rd

|φ(2−pξ)|2ωk(ξ)dξ

) 1
2

≤ C2p(γ+ d
2
)‖∆pu‖L2

k(Rd)

≤ C2−p(s−γ− d
2
)cp.

Then from Definition 3.4 we deduce thatu ∈ Cs−γ− d
2

k (Rd). �
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Theorem 4.4.For any0 < s < γ + d
2
, we have the continuous embedding

Hs
k(Rd) ↪→ Lp

k(R
d),

wherep = 2(2γ+d)
2γ+d−2s

.

Proof. Let f be inS(Rd), we have, due to Fubini’s theorem,

(4.1) ‖f‖p
Lp

k(Rd)
= p

∫ ∞

0

λp−1mk

{
|f | ≥ λ

}
dλ,

where

mk

{
|f | ≥ λ

}
=

∫
{x; |f(x)|≥λ}

ωk(x)dx.

ForA > 0, we setf = f1,A + f2,A with f1,A =
∑

2j<A ∆jf andf2,A =
∑

2j≥A ∆jf .

We have

‖f1,A‖L∞k (Rd) ≤
∑
2j<A

‖∆jf‖L∞k (Rd) ≤
∑
2j<A

‖FD(∆jf)‖L1
k(Rd).

Using the Cauchy-Schwartz inequality, the Parseval’s identity associated with the Dunkl opera-

tors and Theorem 3.5, we obtain

‖f1,A‖L∞k (Rd) ≤
∑
2j<A

2j(γ+ d
2
−s)cj‖f‖Hs

k(Rd) ≤ CAγ+ d
2
−s‖f‖Hs

k(Rd).

On the other hand for allλ > 0, we have

(4.2) mk

{
|f | ≥ λ

}
≤ mk

{
|f1,A| ≥

λ

2

}
+mk

{
|f2,A| ≥

λ

2

}
.

From (4.2) we infer that if we take

A = Aλ =

(
λ

4C‖f‖Hs
k(Rd)

) 1

γ+ d
2−s

,

then

‖f1,Aλ
‖L∞k (Rd) ≤

λ

4
.

Hence

mk

{
|f1,Aλ

| ≥ λ

2

}
= 0.

From (4.1) and (4.2) we deduce that

‖f‖p
Lp

k(Rd)
≤ p

∫ ∞

0

λp−1mk

{
2|f2,Aλ

| ≥ λ
}
dλ.

Moreover the Bienaymé-Tchebytchev inequality yields

mk

{
2|f2,Aλ

| ≥ λ
}
≤ 4

λ2
‖f2,Aλ

‖2
L2

k(Rd).

Thus we obtain

‖f‖p
Lp

k(Rd)
≤ p

∫ ∞

0

λp−3‖f2,Aλ
‖2

L2
k(Rd)dλ.
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On the other hand, by using the Cauchy-Schwartz inequality for allε > 0, we have

‖f2,Aλ
‖2

L2
k(Rd) =

∫
Rd

∣∣∣∣∣∣
∑

2j≥Aλ

∆jf(x)

∣∣∣∣∣∣
2

ωk(x)dx

≤

∫
Rd

∑
2j≥Aλ

22jε|∆jf(x)|2ωk(x)dx

 ∑
2j≥Aλ

2−2jε


≤ A−2ε

λ

∑
2j≥Aλ

22jε‖∆jf‖2
L2

k(Rd).

So by using the definition ofAλ and the Fubini theorem, we can write

‖f‖p
Lp

k(Rd)

≤ p

∫ ∞

0

λp−3A−2ε
λ

∑
2j≥Aλ

22jε‖∆jf‖2
L2

k(Rd)dλ

≤ C
∑
j≥−1

∫ 4C2j(γ+ d
2−s)‖f‖

Hs
k
(Rd)

0

λ
p−3− 2ε

γ+ d
2−sdλ

(
4C‖f‖Hs

k(Rd)

) 2ε

γ+ d
2−s 22jε‖∆jf‖2

L2
k(Rd)

≤ C‖f‖p−2
Hs

k(Rd)

∑
j≥−1

2j(p−2)(γ+ d
2
−s)‖∆jf‖2

L2
k(Rd)

≤ C‖f‖p−2
Hs

k(Rd)

∑
j≥−1

22js‖∆jf‖2
L2

k(Rd)

≤ C‖f‖p
Hs

k(Rd)
.

This implies the result. �

Definition 4.1. We define the spaceBMOk as the set of functionsu ∈ L1
loc,k(Rd) satisfying

sup
B

1

mesk(B)

∫
B

|u(x)− uB|ωk(x)dx <∞,

where

B = B(x0, R), uB =
1

mesk(B)

∫
B

u(x)ωk(x)dx

denote the average ofu onB andmesk(B) =

∫
B

ωk(x)dx.

Theorem 4.5.We have the continuous embedding

H
d
2
+γ

k (Rd) ↪→ BMOk.

Proof. For R > 0 small enough, letN be such that2N = [ 1
R
]. Let u be inH

d
2
+γ

k (Rd). Set

u = u(1) + u(2) with

u(1) =
N−1∑
p=−1

∆pu and u(2) =
∑
p≥N

∆pu.
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From the Cauchy-Schwartz inequality we have(
1

mesk(B)

∫
B

|u(x)− uB|ωk(x)dx

)2

≤ 1

mesk(B)

∫
B

|u(x)− uB|2ωk(x)dx.

It is easy to see that this implies(
1

mesk(B)

∫
B

|u(x)− uB|ωk(x)dx

)2

≤ 2

mesk(B)

[∫
B

∣∣∣u(1)(x)− u
(1)
B

∣∣∣2 ωk(x)dx+

∫
B

∣∣∣u(2)(x)− u
(2)
B

∣∣∣2 ωk(x)dx

]
.

Moreover, from the mean value theorem, we have

1

mesk(B)

∫
B

∣∣∣u(1)(x)− u
(1)
B

∣∣∣2 ωk(x)dx ≤
R2

mesk(B)

∫
B

∣∣Du(1)(x)
∣∣2 ωk(x)dx,

≤ R2‖Du(1)‖2
L∞k (Rd).

By (2.7) we deduce that

‖Du(1)‖L∞k (Rd) ≤
∫

Rd

‖ξ‖|FD(u(1))(ξ)|ωk(ξ)dξ.

By recalling thatsuppFD(∆pu) ⊂ Cp and|FD(∆pu)(ξ)| ≤ |FD(u)(ξ)|, we apply the Parseval

identity associated with the Dunkl operators and the Cauchy-Schwartz inequality. We deduce

that

1

mesk(B)

∫
B

|u(1)(x)− u
(1)
B |2ωk(x)dx ≤ R2

(
N−1∑
p=−1

∫
Cp

‖ξ‖ |FD(∆pu)(ξ)|ωk(ξ)dξ

)2

≤ R2

(∫
B(0,2N )

‖ξ‖2−2γ−dωk(ξ)dξ

)
‖u‖2

H
d
2 +γ

k (Rd)

≤ C22NR2‖u‖2

H
d
2 +γ

k (Rd)
.

For the second term, we have
1

mesk(B)

∫
B

|u(2)(x)− u
(2)
B |2ωk(x)dx ≤

2

mesk(B)

∫
B

|u(2)(x)|2ωk(x)dx

≤ CR−d−2γ

∫
‖ξ‖≥2N

|FD(u)(ξ)|2ωk(ξ)dξ

≤ C(2NR)−d−2γ‖u‖2

H
d
2 +γ

k (Rd)
.

Hence,

(4.3)

(
1

mesk(B)

∫
B

|u(x)− uB|ωk(x)dx

)2

≤ C‖u‖2

H
d
2 +γ

k (Rd)
.

We have proved (4.3) for smallR, sinceu ∈ H
d
2
+γ

k (Rd) ⊂ L2
k(Rd), (4.3) is evident forR > R0

with constantC = C(R0). This implies the continuous embedding

H
d
2
+γ

k (Rd) ↪→ BMOk.

�
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4.3. Gagliardo-Nirenberg Inequality. We will use the generalized Sobolev spaceW s,r
k (Rd)

associated with the Dunkl operators defined as

W s,r
k (Rd) =

{
u ∈ S ′(Rd) : (−4k)

s
2u ∈ Lr

k(Rd)
}
,

with

4ku =
d∑

j=1

T 2
j u.

The main result of this subsection is the following theorem.

Theorem 4.6.Letf be inW s,r
k (Rd)∩ Lq

k(Rd) with q, r ∈ [1,∞] ands ≥ 0. Thenf belongs to

W t,p
k (Rd), and we have∥∥∥(−4k)

t
2f
∥∥∥

Lp
k(Rd)

≤ C‖f‖θ
Lq

k(Rd)

∥∥(−4k)
s
2f
∥∥1−θ

Lr
k(Rd)

,

where1
p

= θ
q

+ 1−θ
r

, t = (1− θ)s andθ ∈]0, 1[.

Proof. First, we prove this theorem forq andr in ]1,∞]. Let f be inS(Rd). It is easy to see

that

(−4k)
t
2f =

∑
j≤A

(−4k)
t
2 ∆jf +

∑
j>A

(−4k)
t−s
2 ∆j

(
(−4k)

s
2f
)
,

whereA will be chosen later.

On the other hand, by a simple calculation, ifa is a homogenous function inC∞(R∗) of

degreem, we can write

(4.4) a
(
(−4k)

1
2

)
∆jf = 2jm+j(d+2γ)b(δ2j) ∗D

∑
|j−j′|≤1

∆j′f,

whereδ2j is defined byδ2jx = 2jx, x ∈ Rd andb is in S(Rd) such that

FD(b)(ξ) = ϕ(ξ)a(‖ξ‖).

We proceed as in [12, p. 21] to obtain

(4.5)
∣∣∣a((−4k)

1
2

)
∆jf(x)

∣∣∣ ≤ C2jmMkf(x),

whereMk(f) is a maximal function off associated with the Dunkl operators (see [13]).

Hence by applying (4.5) fora(r) = rt anda(r) = r
t−s
2 , we get∣∣∣(−4k)

t
2f(x)

∣∣∣ ≤ C

(∑
j≤A

2jtMkf(x) +
∑
j>A

2j(t−s)Mk((−4kf)
s
2 )(x)

)
≤ C2tAMkf(x) + C2(t−s)AMk

(
(−4k)

s
2f
)
(x).

We minimize overA to obtain∣∣∣(−4k)
t
2f(x)

∣∣∣ ≤ C
(
Mkf(x)

)1− t
s
(
Mk

(
(−4k)

s
2f
)
(x)
) t

s
.

By this inequality and the Hölder inequality, we have∥∥∥(−4k)
t
2f
∥∥∥

Lp
k(Rd)

≤ C‖Mkf‖θ
Lq

k(Rd)

∥∥Mk((−4k)
s
2f)
∥∥1−θ

Lr
k(Rd)

,
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with θ = 1− t
s
.

Now, we apply Theorem 6.1 of [13] to deduce the result ifq andr ∈]1,∞].

Now, we assumeq = r = 1. Let f be inS(Rd). We have∥∥∥(−4k)
t
2f
∥∥∥

L1
k(Rd)

≤

∥∥∥∥∥∑
j≤A

(−4k)
t
2 ∆jf

∥∥∥∥∥
L1

k(Rd)

+

∥∥∥∥∥∑
j>A

(−4k)
t−s
2 ∆j

(
(−4k)

s
2f
)∥∥∥∥∥

L1
k(Rd)

≤ C2(1−θ)sA‖f‖L1
k(Rd) + C2−θsA

∥∥(−4k)
s
2f
∥∥

L1
k(Rd)

.

By minimizing overA, we obtain the result. �

5. PARAPRODUCT ASSOCIATED WITH THE DUNKL OPERATORS

In this section, we are going to study how the product acts on Sobolev and Hölder spaces

associated with the Dunkl operators. This could be very useful in nonlinear partial differential-

difference equations. Of course, we shall use the Littlewood-Paley decomposition associated

with the Dunkl operators. Let us consider two temperate distributionsu andv. We write

u =
∑

p

∆pu and v =
∑

q

∆qv.

Formally, the product can be written as

uv =
∑
p,q

∆pu∆qv.

Now we introduce the paraproduct operator associated with the Dunkl operators.

Definition 5.1. We define the paraproduct operatorΠa : S ′(Rd) → S ′(Rd) by

Πau =
∑
q≥1

(Sq−2 a)∆qu,

whereu ∈ S ′(Rd); {∆qa} and{∆qu} are the Littlewood-Paley decompositions andSqa =∑
p≤q−1 ∆pa.

LetR indicate the following bilinear symmetric operator onS ′(Rd) defined by

R(u, v) =
∑

|p−q|≤1

∆pu∆qv, for all u, v ∈ S ′(Rd).

Obviously from Definition 5.1 it is clear that

uv = Πuv + Πvu+R(u, v).

The following theorems describe the action of the paraproduct and remainder on the Sobolov

and the Hölder spaces associated with the Dunkl operators.

Theorem 5.1. There exists a positive constantC such that the operatorΠ has the following

properties:

(1) ‖Π‖L(L∞k (Rd)×Cs
k(Rd),Cs

k(Rd)) ≤ Cs+1, for all s > 0.

(2) ‖Π‖L(L∞k (Rd)×Hs
k(Rd),Hs

k(Rd)) ≤ Cs+1, for all s > 0.
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(3) ‖Π‖L(Ct
k(Rd)×Hs

k(Rd),Hs+t
k (Rd)) ≤ Cs+t+1

−t
, for all s, t with s+ t > 0 andt < 0.

(4) ‖Π‖L(Ct
k(Rd)×Cs

k(Rd),Cs+t
k (Rd)) ≤ Cs+t+1

−t
, for all s, t with s+ t > 0 andt < 0.

(5) ‖Π‖
L(Hs

k(Rd)×Ht
k(Rd),H

s+t−γ− d
2

k (Rd))
≤ Cs+t−γ− d

2
+1, with s+ t > γ + d

2
ands < d

2
+ γ.

Proof. Let u andv be inS ′(Rd). We have

supp(FD(Sq−2u∆qv)) = supp(FD(∆qv) ∗D FD(Sq−2u)) ⊂ B(0, C2q).

1) If u in L∞k (Rd) andv in Cs
k(Rd), then we have

‖Sq−2u∆qv‖L∞k (Rd) ≤ ‖Sq−2u‖L∞k (Rd)‖∆qv‖L∞k (Rd)

≤ C‖u‖L∞k (Rd)‖v‖Cs
k(Rd)2

−qs.

Applying Proposition 3.10 ii), we obtain

‖Πuv‖Cs
k(Rd) ≤ C‖u‖L∞k (Rd)‖v‖Cs

k(Rd).

2) If u is inL∞k (Rd) andv is inHs
k(Rd), then we have

‖Sq−2u∆qv‖L2
k(Rd) ≤ ‖Sq−2u‖L∞k (Rd)‖∆qv‖L2

k(Rd)

≤ C‖u‖L∞k (Rd)‖v‖Hs
k(Rd)cq2

−qs.

Thus Proposition 3.7 gives

‖Πuv‖Hs
k(Rd) ≤ C‖u‖L∞k (Rd)‖v‖Hs

k(Rd),

this implies the result.

3) Letu be inCt
k(Rd) andv in Hs

k(Rd). We have

‖Sq−2u∆qv‖L2
k(Rd) ≤ ‖Sq−2u‖L∞k (Rd)‖∆qv‖L2

k(Rd).

Sincet < 0, we estimate‖Sq−2u‖L∞k (Rd) in a different way. In fact,Sq−2u =
∑

p≤q−3 ∆pu.

Sinceu ∈ Ct
k(Rd) andt < 0, we obtain

‖Sq−2u‖L∞k (Rd) ≤ ‖u‖Ct
k(Rd)

∑
p≤q−3

2−pt ≤ C

−t
2−qt‖u‖Ct

k(Rd).

Hence

‖Sq−2u∆qv‖L2
k(Rd) ≤

C

−t
2−q(t+s)cq‖u‖Ct

k(Rd)‖v‖Hs
k(Rd), cq ∈ l2.

Thus Proposition 3.7 gives the result.

The proof of 4) uses the same idea.

5) We have

‖Sq−2u‖L∞k (Rd) ≤ ‖FD(Sq−2u)‖L1
k(Rd)

≤
∫

Rd

|ψ(2−(q−2)ξ)|(1 + ‖ξ‖2)
−s
2 |FD(u)(ξ)|(1 + ‖ξ‖2)

s
2ωk(ξ)dξ.
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The Cauchy-Schwartz inequality implies that

‖Sq−2u‖L∞k (Rd) ≤
(∫

Rd

|ψ(2−(q−2)ξ)|2(1 + ‖ξ‖2)−sωk(ξ)dξ

) 1
2

‖u‖Hs
k(Rd),

≤ C2q( d
2
+γ)

(∫
B(0,1)

|ψ(t)|2(1 + 22(q−2)‖t‖2)−sωk(t)dt

) 1
2

‖u‖Hs
k(Rd).

If s ≥ 0,

‖Sq−2u‖L∞k (Rd) ≤ C2q( d
2
+γ−s)

(∫
B(0,1)

|ψ(t)|2‖t‖−2sωk(t)dt

) 1
2

≤ C2q( d
2
+γ−s).

If s ≤ 0,

‖Sq−2u‖L∞k (Rd) ≤ C2q( d
2
+γ−s)

(∫
B(0,1)

|ψ(t)|2(1 + ‖t‖2)−sωk(t)dt

) 1
2

≤ C2q( d
2
+γ−s).

By proceeding as in the previous cases we deduce the result. �

Theorem 5.2. There exists a positive constantC such that the operatorΠ has the following

properties:

(1) If a ∈ L∞k (Rd) is radial, then for anys in R, we have

‖Πa‖L(Cs
k(Rd),Cs

k(Rd)) ≤ C‖a‖L∞k (Rd), ‖Πa‖L(Hs
k(Rd),Hs

k(Rd)) ≤ C‖a‖L∞k (Rd).

(2) If a ∈ Ct
k(Rd) is radial with t < 0, then for alls, we have

‖Πa‖L(Hs
k(Rd),Hs+t

k (Rd)) ≤ C‖a‖Ct
k(Rd), ‖Πa‖L(Cs

k(Rd),Cs+t
k (Rd)) ≤ C‖a‖Ct

k(Rd).

(3) If a ∈ H t
k(Rd) is radial, then for alls, t with s < d

2
+ γ, we have

‖Πa‖
L(Hs

k(Rd),H
s+t−γ− d

2
k (Rd))

≤ C‖a‖Ht
k(Rd).

Proof. From the relation (2.19) and Definition 2.2 we deduce that there exists an annulusC̃0

such thatsuppFD(Sq−2a∆qu) ⊂ 2qC̃0. Thus we proceed as in the proof of Theorem 4.3 and

using Propositions 3.6 and 3.10 i), we obtain the result. �

Remark 5. In the caseW = Zd
2 the assumption thata is radial is not necessary.

Theorem 5.3. There exists a positive constantC such that the operatorR has the following

properties:

(1) ‖R‖L(Ct
k(Rd)×Hs

k(Rd),Hs+t
k (Rd)) ≤ Cs+t+1

s+t
, for all s, t with s+ t > 0.

(2) ‖R‖L(Ct
k(Rd)×Cs

k(Rd),Cs+t
k (Rd)) ≤ Cs+t+1

s+t
, for all s, t with s+ t > 0.

(3) ‖R‖
L(Ht

k(Rd)×Hs
k(Rd),H

s+t−γ− d
2

k (Rd))
≤ Cs+t+1

s+t−γ− d
2

, for all s, t with s+ t > γ + d
2
.
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Proof. By the definition of the remainder operator

R(u, v) =
∑

q

Rq with Rq =
1∑

i=−1

∆q−iu∆qv.

By the definition of∆q, the support of the Dunkl transform ofRq is included inB(0, C2q).

Then, to prove 1) it is sufficient to estimate‖Rq‖L2
k(Rd). In fact, we have

‖Rq‖L2
k(Rd) ≤ ‖∆qv‖L2

k(Rd)

1∑
i=−1

‖∆q−iu‖L∞k (Rd).

Using the facts thatu ∈ Ct
k(Rd) andv ∈ Hs

k(Rd), we obtain

‖Rq‖L2
k(Rd) ≤ 2−qscq‖v‖Hs

k(Rd)

1∑
i=−1

2−(q−i)t‖u‖Ct
k(Rd), cq ∈ l2

≤ Ccq2
−q(s+t)‖u‖Ct

k(Rd)‖v‖Hs
k(Rd).

Now we apply Proposition 3.7 to conclude the proof. The proof of the second case uses the

same idea. We want to prove 3). We haveR(u, v) =
∑

q Rq. We proceed as in 1), so

‖Rq‖L2
k(Rd) ≤ C‖FD(∆qv)‖L2

k(Rd)

1∑
i=−1

‖∆q−iu‖L∞k (Rd),

≤ C‖FD(∆qv)‖L2
k(Rd)

1∑
i=−1

‖FD(∆q−iu)‖L1
k(Rd).

Using the fact thatv ∈ Hs
k(Rd), we obtain

‖Rq‖L2
k(Rd) ≤ Ccq2

−qt‖v‖Ht
k(Rd)

1∑
i=−1

‖FD(∆q−iu)‖L1
k(Rd), cq ∈ l2.

On the other hand, by the Cauchy-Schwartz inequality we have

‖FD(∆q−iu)‖L1
k(Rd) ≤

∫
Rd

|ϕ(2−(q−i)ξ)|(1 + ‖ξ‖2)
−s
2 (1 + ‖ξ‖2)

s
2FD(u)(ξ)ωk(ξ)dξ

≤ ‖u‖Hs
k(Rd)

(∫
Rd

|ϕ(2−(q−i)ξ)|2(1 + ‖ξ‖2)−sωk(ξ)dξ

) 1
2

≤ C2q(γ+ d
2
)‖u‖Hs

k(Rd)

(∫
Rd

|ϕ(t)|2(1 + 22(q−i)‖t‖2)−sωk(t)dt

) 1
2

≤ C2q(γ+ d
2
−s).

Hence

‖Rq‖L2
k(Rd) ≤ C2q(γ+ d

2
−s−t)cq, cq ∈ l2.

Then we conclude the result by using Proposition 3.7. �
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