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ABSTRACT. We define the Littlewood-Paley decomposition associated with the Dunkl opera-
tors; from this decomposition we give the characterization of the Sobolev, Holder and Lebesgue
spaces associated with the Dunkl operators. We construct the paraproduct operators associated
with the Dunkl operators similar to those defined by J.M. Bony_In [1]. Using the Littlewood-
Paley decomposition we establish the Sobolev embedding, Gagliardo-Nirenberg inequality and
we present the paraproduct algorithm.
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1. INTRODUCTION

The theory of function spaces appears at first to be a disconnected subject, because of the
variety of spaces and the different considerations involved in their definitions. There are the
Lebesgue space’(R?), the Sobolev spaced*(R?), the Besov spaceB; (R?), the BMO
spaces (bounded mean oscillation) and others.

Nevertheless, several approaches lead to a unified viewpoint on these spaces, for exam-
ple, approximation theory or interpolation theory. One of the most successful approaches
is the Littlewood-Paley theory. This approach has been developed by the European school,
which reached a similar unification of function space theory by a different path. Motivated
by the methods of Hérmander in studying partial differential equations (see [6]), they used
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2 HATEM MEJJAOLI

a Fourier transform approach. Pick Schwartz functiorend y on R¢ satisfyingsupp ¥ C
B(0,2), suppé C {& € RY, 1 < ||¢]| < 2}, and the nondegeneracy conditiait¢)|, [¢(¢)| >
C > 0. Forj € Z, letg;(x) = 274¢(27x). In 1967 Peetré [10] proved that

(1.1) 1]

1
2
Hs(Rd) = [ * f||L2(Rd) + <Z 228j||¢j * f||%2(Rd)) .

j>1
Independently, Triebel [15] in 1973 and Lizorkin! [8] in 1972 introduc€y), (the Triebel-
Lizorkin spaces) defined originally fdr< p < oo and1 < ¢ < oo by the norm

Fy, = IX* fllomey + (Z(ZSH@ * f|)")

Jj=1

(1.2) /]

Lr(R4)

For the special casg= 1 ands = 0, Triebel [16] proved that
(1.3) LP(RY) ~ F),.

Thus by the Littlewood-Paley decomposition we characterize the functional spage$),
Sobolev spacef *(R?), Holder space&’(R¢) and others. Using the Littlewood-Paley decom-
position J.M. Bony inl[1], built the paraproduct operators which have been later successfully
employed in various settings.

The purpose of this paper is to generalize the Littlewood-Paley theory, to unify and extend
the paraproduct operators which allow the analysis of solutions to more general partial differ-
ential equations arising in applied mathematics and other fields. More precisely, we define the
Littlewood-Paley decomposition associated with the Dunkl operators. We introduce the new
spaces associated with the Dunkl operators, the Sobolev sp&¢&S), the Holder spaces
C:(R%) and theBMO,(R?) that generalizes the corresponding classical spaces. The Dunkl
operators are the differential-difference operators introduced by C.F. Durikl in [3] and which
played an important role in pure Mathematics and in Physics. For example they were a main
tool in the study of special functions with root systems (5ée [4]).

As applications of the Littlewood-Paley decomposition we establish results analogiou$ to (1.1)
and [1.B), we prove the Sobolev embedding theorems, and the Gagliardo-Nirenberg inequality.
Another tool of the Littlewood-Paley decomposition associated with the Dunkl operators is to
generalize the paraproduct operators defined by J.M. Bony. We prove results similar to [2].

The paper is organized as follows. In Secfipn 2 we recall the main results about the harmonic
analysis associated with the Dunkl operators. We study in Sgdtion 3 the Littlewood-Paley de-
composition associated with the Dunkl operators, we give the sufficient conditiopsmthat
u := Y u, belongs to Sobolev or Holder spaces associated with the Dunkl operators. We finish
this section by the Littlewood-Paley decomposition of the Lebesgue spd¢RS) associated
with the Dunkl operators. In Sectipn 4 we give some applications. More precisely we establish
the Sobolev embedding theorems and the Gagliardo-Nirenberg inequality. $éction 5 is devoted
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to defining the paraproduct operators associated with the Dunkl operators and to giving the
paraproduct algorithm.

2. THE EIGENFUNCTION OF THE DUNKL OPERATORS

In this section we collect some notations and results on Dunkl operators and the Dunkl kernel
(seel[3], 4] and[5]).

2.1. Reflection Groups, Root System and Multiplicity Functions We consideiR? with the
euclidean scalar product,-) and||z| = /{z,2). OnC? || - | denotes also the standard
Hermitian norm, while(z, w) = Y7, z;;.

Fora € R4\{0}, leto, be the reflection in the hyperplai&, C R¢ orthogonal tay, i.e.

{a, z)
(2.1) o) =20 -2 Tal?
A finite set R ¢ R?\{0} is called a root system iR "R - a = {a,—a} ando,R = R
for all « € R. For a given root systenk the reflectionsr,, a € R, generate a finite group
W C O(d), called the reflection group associated with All reflections in1¥ correspond
to suitable pairs of roots. For a givéhe R?¥\U,crH,, we fix the positive subsystei, =
{a € R : {a, ) > 0}, then for eachr € R eithera € R, or —a € R,. We will assume that
(a,a) =2foralla € R,

A functionk : R — C on a root systeng is called a multiplicity function if it is invariant
under the action of the associated reflection grolip If one regards: as a function on the
corresponding reflections, this means thas constant on the conjugacy classes of reflections
in W. For brevity, we introduce the index

(2.2) y=vk)= > ka)
QER+
Moreover, letw,, denote the weight function
(2.3) wi(@) = 1] a2 P4
acERy
which is invariant and homogeneous of degzeeWe introduce the Mehta-type constant
2|12
(2.4) Cp = / o3 wi(z)dx.
R4

2.2. Dunkl operators-Dunkl kernel and Dunkl intertwining operator.
Notations. We denote by

— C(R?) (resp. C.(R%)) the space of continuous functions &4 (resp. with compact
support).

— E(RY) the space of>°-functions onR?.

— S(R?) the space of’>-functions onR“ which are rapidly decreasing as their deriva-
tives.

— D(R?) the space of’>-functions onR? which are of compact support.
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We provide these spaces with the classical topology.
Consider also the following spaces

— &'(RY) the space of distributions d&? with compact support. It is the topological dual
of £(RY).
— §’(R?) the space of temperate distributionsi®h It is the topological dual of (R¢).
The Dunkl operator§};, j = 1,...,d, onR? associated with the finite reflection grotip
and multiplicity functionk are given by

— f(oa(2))

) ,  feC(RY).

@5 D)= f) Y Haje, LY

a€ER4

In the casé: = 0, theT};, j = 1,...,d, reduce to the corresponding partial derivatives. In this
paper, we will assume throughout that 0.
Fory € R?, the system

]j]u('ray) = yJU(ZE',y), j = 17 s 7d7
u(0,y) =1, forall y € R¢

admits a unique analytic solution @&¢¥, which will be denoted by< (x, 3) and called the Dunkl
kernel. This kernel has a unique holomorphic extensidtrta C¢. The Dunkl kernel possesses
the following properties.

Proposition 2.1. Letz, w € C?, andz, y € R%.
i)
(26) K(z,w)=K(w,z), K(2,00=1 and K(\z,w)= K(z, Aw), forall A € C.
i) Forall v € N, 2 € R?andz € C?, we have
(2.7) DY (2, 2)] < [|l2[|" exp(]|z]|[| Re 2])),
and for allz,y € R%:
(2.8) K (iz,y)| <1,

210z,
i) Forall z,y € R?andw € W we have

(2.9) K(—iz,y) = K(iz,y) and K(wz,wy)= K(z,y).
The Dunkl intertwining operatol}, is defined orC(R?) by

(2.10) Vif(z)= [ fly)du.(y), forallz e R
Rd

wheredy, is a probability measure given d&f, with support in the closed balb(0, ||||) of
center0 and radiug|z||.
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2.3. The Dunkl Transform. The results of this subsection are givenlin [7] and [18].
Notations. We denote by

— LF(R?) the space of measurable functionsRhsuch that

1

Iz = [ 1f@Pnalds )" <00, if1<p< o0,
1/ || e (ray = ess sup [f(z)| < oo,
z€R4
— H(CY) the space of entire functions @i, rapidly decreasing of exponential type.
— H(C?) the space of entire functions @if, slowly increasing of exponential type.

We provide these spaces with the classical topology.
The Dunkl transform of a functioff in D(R?) is given by
1
(2.11) Fo(f)ly) = c_/ f(2)K (—iy, v)w(z)dz, forally € R
k JRd

It satisfies the following properties:
i) For fin L}(R?) we have

212 ol < oIl e

i) For fin S(R?) we have
(2.13) vy eRY Fp(Tif)(y) = iy Fo(fly), j=1,....d

iii) Forall fin L}(R?) such thatFp(f) isin Li(R?), we have the inversion formula
(2.14) fly) = g Fp(f)(@)K (iz, y)wi(z) dz, a.e.

Theorem 2.2. The Dunkl transforn¥, is a topological isomorphism.
i) From S(R?) onto itself.
i) From D(RY) onto H(C?).

The inverse transforrf ;" is given by
(2.15) vy eRY Fp'(f)y) = Fo(f)(=y), [feSRY.

Theorem 2.3. The Dunkl transforn¥, is a topological isomorphism.

i) FromS’'(R?) onto itself.
i) From &' (RY) ontoH(C?).

Theorem 2.4.
i) Plancherel formula fotF. For all f in S(R¢) we have
(2.16) [ @R = [ 1Fo©Farl)dc

i) Plancherel theorem faf,. The Dunkl transfornf — Fp(f) can be uniquely extended
to an isometric isomorphism o (R).
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2.4. The Dunkl Convolution Operator.

Definition 2.1. Let y be inR?. The Dunkl translation operatgt — 7, f is defined onS(R%)
by
(2.17) Fp(r,f)(x) = K(iz,y) Fp(f)(z), forallz € R%

Example 2.1.Lett > 0, we have

7o (e WY (y) = e~ e+ (¢ (22 ), forall z € R

Remark 1. The operator,, y € R?, can also be defined dh(R?) by

(2.18) 7,/ (x) = (Vi) (Vi) [(Vi) () + ), forall z € R
(seel[18]).

At the moment an explicit formula for the Dunkl translation operators is known only in the
following two cases. (Seé[11] and [13]).
e 1¥ cased = 1 andW = Z,.
e 2" case For all f in £(R?) radial we have

219 7f@) =V [fo (VIPHTolP + 20 )| (@), foralle e Y,
with f, the function o0, oo given by
fx) = folllzl)).

Using the Dunkl translation operator, we define the Dunkl convolution product of functions
as follows (se€ [11] and [18]).

Definition 2.2. The Dunkl convolution product of andg in D(R?) is the functionf xp ¢
defined by

(2.20) £ g(x) = /R e f(~p)g(y)en(y)dy, forall € B

This convolution is commutative, associative and satisfies the following properties. (See
[13]).
Proposition 2.5.
i) For f andgin D(R?) (resp.S(R?)) the functionf *p g belongs taD(R?) (resp.S(R4))
and we have
Fo(f *p 9)(y) = Fo(f)(y)Folg)(y), forall y € R%.
i) Letl < p,q,r < oo, suchthat; + . —; = 1. If fisin L}(R’) andg is a radial

r

element of ¢ (R?), thenf xp g € LL(R?) and we have

(2.21) |f *p SJHL;(Rd) < ”fHLg(Rd) HQHLg(Rd)-
jii) LetWW = Z4. We have the same result for glle LF(R?) andg € L (R?).

J. Inequal. Pure and Appl. Matt9(4) (2008), Art. 95, 25 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

LITTLEWOOD-PALEY DECOMPOSITION 7

3. LITTLEWOOD -PALEY THEORY ASSOCIATED WITH DUNKL OPERATORS

We consider now a dyadic decomposition®sf.

3.1. Dyadic Decomposition. Forp > 0 be a natural integer, we set

(3.1) Cp={€ e RY 2771 <||¢]| < 2771} = 2°C,
and
(3.2) Cy=B(0,1)={¢ R [|¢]| < 1}.

ClearlyR? = |J,>_, C).
Remark 2. We remark that
(3.3) card {q; ¢, C, # @} <2
Now, let us define a dyadic partition of unity that we shall use throughout this paper.

Lemma 3.1. There exist positive functionsand+ in D(R%), radial with suppy ¢ C_;, and
suppy C Cy, such that for any € R¢ andn € N, we have

Y&+ p(27) =1

and

n

Y(E) + ) p(2778) = p(27"9).

p=0

Remark 3. Itis not hard to see that for afyc R¢
1 o0
: — < ? 2(27P¢€) < 2.
(3.4) 2_w(§)+p22090(2 <2

Definition 3.1. Let A € R. Fory in S(R%), we define the pseudo-differential-difference opera-
tor x(\T") by
Fo(x(\T)u) = x(A) Fp(u),  ueS'RY.

Definition 3.2. Foru in §’(R?), we define its Littlewood-Paley decomposition associated with
the Dunkl operators (or dyadic decompositiday,u}>° ;, asA_ju = ¢(T)u and forq > 0,
Aqu = (27T )u.

Now we go to see in which case we can have the identity

Id= )" A,

p=>-—1

This is described by the following proposition.

Proposition 3.2. For v in §'(R%), we haveu = >>>° | A,u, in the sense of’(R?).

p=—1
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Proof. For any f in S(R?), it is easy to see thakp(f) = >°°° | Fn(A,f) in the sense of
S(R?). Then for anyu in §’(R?), we have

(u, f) = (Fp(u), Fo(f))
= > (Fp(u), Fo(A )

= Z (Fp(Apu), Fo(f))
= <Z fD(APU)va<f)> = <Z Apu7f>'
The proof is finished. OJ

3.2. The Generalized Sobolev Spacedn this subsection we will give a characterization of
Sobolev spaces associated with the Dunkl operators by a Littlewood-Paley decomposition. First,
we recall the definition of these spaces (see [9]).

Definition 3.3. Let s be inR, we define the spack; (R¢) by
{ueS'RY): (1+ €2 Fp(u) € LY(RY)} .
We provide this space by the scalar product
35) (o hmney = [ L+ €12 Fla)(€) FololEen(6)ds.
and the norm

(3.6) I

%E(Rd) = (u, U>H,§(Rd)-

Another proposition will be useful. Lef,u = > Ayu.

p<q—1
Proposition 3.3. For all s in R and for all distributionsu in H; (R?), we have

lim S,u = u.

n—oo

Proof. For all¢ in R?, we have

Fp(Spu —u)(§) = (p(27") — 1)Fp(u)(§).
Hence
lim Fp(Syu — u)(€) = 0.

n—oo

On the other hand

(L + €111 Fp(Snu — w)(©)* < 201+ [I€]*)*1Fp (w) (I

Thus the result follows from the dominated convergence theorem. O
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The first application of the Littlewood-Paley decomposition associated with the Dunkl oper-
ators is the characterization of the Sobolev spaces associated with these operators through the
behavior ony of ||Agul|12ge). More precisely, we now define a norm equivalent to the norm
|- Il 75 (e) in terms of the dyadic decomposition.

Proposition 3.4. There exists a positive constaritsuch that for alls in R, we have

1 S S
—C\S|+1‘ ?“{z(Rd) < Z 2% HAquH%i(Rd) <C ‘HHU’ lzﬁlz(Rd)'
g=—1

Jul

Proof. Sincesupp Fp(Aqu) C Cq, from the definition of the nornf - |

positive constan’ such that we have

1
(3.7) REE

From (3.4) we deduce that

Lo
§HU|H,§(Rd) < /Rd [ "’ZSO

HE (R there exists a

2qs||A U||L2 (R4) < ||A U| HS(]Rd < C‘ ‘+12qS”A U||L2 (R4)-

(L +[1€1%)*1Fp () () Pwr (&) de

< 2||ulf} HE(RD)"
Hence
Sl gy < < D Al gay < 2lullfy s
g>—1
Thus from this and (3]7) we deduce the result. O

The following theorem is a consequence of Proposjtionh 3.4.

Theorem 3.5. Letu be inS’(RY) andu = > o>_1 Aqu its Littlewood-Paley decomposition.
The following are equivalent:
) ue Hi(R?).
i) 312274, U||L2 Ry < OO
i) [|Agul| L2 may < ¢,27%, with {c,} € I%.

Remark 4. Since foru in §'(R?) we haveA,u in §'(R?) andsupp Fp(A,u) C C,, from
Theorenj 2.8 i) we deduce that,u is in £(R?).

The following propositions will be very useful.

Proposition 3.6. Let C' be an annulus irR? and s in R. Let (u,),cn be a sequence of smooth
functions. If the sequencge,) ),y satisfies
supp Fp(u,) C 2*C'  and HUPHL%(]Rd) < Ce277 {c,} € 12

then we have

[NIES

u= Zup € Hi(RY) and |ul

p=>0

i rey < C(s) (Z 22ps||“p”%§(uw)>

p>0
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Proof. SinceC and(y are two annuli, there exists an integéf so that
Ip—ql > No = 2°Co[)2°C = @.
It is clear that
lp—aql > No = Fp(Agu,) = 0.
Then

Z Agu,.

Ip—q|<No

By the triangle inequality and definition &f,«, we deduce that

[Aull 2 may < Z [l L2 ey

lp—ql<No

Thus the Cauchy-Schwartz inequality implies that

Z 22q5||Aqu||ii(Rd) <C Z 92(a—p)s (Z 22p5||up||ii(Rd)> .

q=0 a/lp—q|<No p>0

From Theorerl 3|5 we deduce thafif, || .2 (ze) < C'c,27" thenu € Hjj(RY). O

Proposition 3.7. Let K > 0 ands > 0. Let(u,),en be a sequence of smooth functions. If the
sequenceu, ),y Satisfies

supp Fp(u,) C B(0, K2") and HUPHLi(Rd) < Ce27 {e} € 17,

then we have

u = Zup c H,i(Rd) and ||U||H ]Rd < C <Z 22p8 |Up||L2 ]Rd >

p=>0 q>0

N

Proof. Sincesupp Fp(u,) C B(0, K2P), there existsV; such that

Aqu = Z Aguyp.
p>q—N1
So, we get that

2| Aqul| L2 (ray < Z 29| upl| L2 (mo)
p=q—N1

Z Q(q_p)s2ps\|up||Lz(Rd)-

p>q—N1

Sinces > 0, the Cauchy-Schwartz inequality implies

2 2 22Mis 2 2
22 quAquHLi(Rd) < m ZQ psH“pHLg(Rd)-
q p

From Theorem 3]5 we deduce the result. 0
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Proposition 3.8. Lets > 0 and (u,),ey be a sequence of smooth functions. If the sequence
(up)pen Satisfies

u, € E(RY) and forall 4 € N, [T up || 12 (ray < Cc, 277 o) Ve 2,
then we have

u = Zup € Hi(RY) and |ul

p=>0

1
2

p=>0

Proof. By the assumption we first have= > u, € L?(R?). Takeu € N? with |u| = s > s >
0, andx, () = x(27¢) € D(RY) with supp x € B(0,2), x(€) = 1, €] < 1and0 < y < 1,
then
supp xp(1 — xp) C {€ € R 2P < ¢ < 2°+2}.
Set
Fp(up)(§) = xp(E) Fp(up)(€) + (1 = xp(€)) Fp(up)(€)
= Fp(u))(€) + Fp(ul)(€),

and we have
1l 72 ey = 1D (up) 172 )

— | [ 1Fo @R+ [ e raeds

#2 [ 1) O (61 = xl€)n(e)ds |
Sincel < x,(&)(1 — x,(§)) < 1, we deduce that
Hug)“ig(ﬂ@d) T Huy(f)}lii(ﬂ@d) = H“p”%i(u@d) < 27
Similarly, using Theorem 3.1 of [9], we obtain
s

Setul) =Y u), u® = >, ul?), thenu = u® + u®, and from Propositio.7 we deduce
thatu® belongs toH; (R%). Foru(® the definition ofu?” gives that
> P27 Fp(u)(©)

2
184 = [
R I p<qt1

wi(§)dE.
Thus by the Cauchy-Schwartz inequality we have

HAq(U@)) H%g(Rd)

(Z 2—2p<s—so>> ( [y 22p<s-80>|¢<2-qf>fD<u;2>><s>|2wk<s>ds>

p<q+1 p<g+1
1 — 2—2(¢+2)(s=50)

S 1 — 2—(3—50) 2_2‘130 Z 221’(5_50) HA‘] (U;Q))}

p<g+1

206—2p(s—so)
< ¢,2 .

Ra) T ||

2 2 2
<
HEO( HZO (Rd) — ||up| HZO (Rd)

IN

2
HO(RY)
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Moreover, since, > s > 0,
1 — 2—2(g+2)(s=50)
1 — 2 (s=50)
andC' is independent of. Now set

Cq = Z g?rleeo) 14 (“1(72)) ||2;0(Rd) ’

2—2qso < 02—2115’

p<q+1
then
S S—S, 2
A ”Aq(u@))”%imd) < N2 <3 ol |42 120 ey < 00
>—1 q>—1 P
Thus by Theorerp 3|5 we deduce th&t = >, A,(u®) belongs tolf(R?). O

Corollary 3.9. The spaced/;(R¢) do not depend on the choice of the functipand used
in the Definitior] 3.p.

3.3. The Generalized Hoélder Spaces.
Definition 3.4. For o in R, we define the Holder spacé?(R?) associated with the Dunkl
operators as the set ofc S'(R?) satisfying

||U||c;;(Rd) = pS;J_Pl 2pa||ApU||L;o(Rd) < 00,

whereu = 3 - | Ajuisits Littlewood-Paley decomposition.

In the following proposition we give sufficient conditions so that the séxies:, belongs to
the Holder spaces associated with the Dunkl operators.

Proposition 3.10.

i) LetC be an annulus iR and« € R. Let (up)pen be a sequence of smooth functions.
If the sequencéu, ),y satisfies

supp Fp(u,) C 2°C and ||upHLkOO(Rd) < C27P,
then we have

u = Zup € C;:(Rd) and Hu”c}?(Rd) < C(Oé) Slilo) 2paHupHLZO(Rd)'
p=0 b=

i) Let K > 0anda > 0. Let(u,),en be a sequence of smooth functions. If the sequence

(up)pen Satisfies
supp Fp(u,) C B(0, K2P) and ||up||L20(Rd) < 027P,
then we have

u= Zup c C¥(R?Y) and HUHC?(Rd) < C(a) Sli% 2Pa||up||L?(Rd).
p>

p=>0

Proof. The proof uses the same idea as for Proposifiorjs 3.6 ahd 3.7. O
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Proposition 3.11. The distribution defined by
= K(iz,2%), with e=(1,...,1),

p=>0

belongs taC?(R¢) and does not belong tH;°(R?).

Proposition 3.12. Lete €]0, 1] and f in C£(R?), then there exists a positive constaisuch

that
1l may
HfHLfX’ (RY) > _HfHC’O(]Rd log ( + o | -

1£llco ey
Proof. Sincef = szq A, f,
[ fll oo may < Z A fll Lo (may + Z 1A fll oo ey

p<N-1 p>N
with IV is a positive integer that will be chosen later. Sirfce C5(R?), using the definition of
generalized Holderien norms, we deduce that

92— (N-1)e
[fllzeeay < (N + D fllcoey + 2—||f’ Ce (Rd) -
We take
1 -
N — 14 |L1og, Mlezn ]
€ ||f||cg(Rd)
we obtain
[ flles ma)
| fll Lo may < _”f“CO(Rd I+log | v — | | -
11l comay
This implies the result. O

Now we give the characterization 6f (R?) spaces by using the dyadic decomposition.
If (f;);en is @ sequence off (RY)-functions, we set

1D ez = <Z|fy ) ,

JEN Li(Rd)
the norm inLf (R, I(N)).
Theorem 3.13(Littlewood-Paley decomposition dff (R%)). Let f be inS'(R?) and1 < p <
oo. Then the following assertions are equivalent
) f e iR, 1
i) Sof € LR(RY) and (32,0 1A f (@))€ LE(RY),
Moreover, the following norms are equivalent :

1

[fllzzgay  and  [|Sof||zr ey + <Z|Ajf($)|2>
JeN LP (R
»(RY)
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Proof. If fisin LZ(R?), then from Propositiop 3|4 we have

(Z ‘Ajf($)|2> < Hf||%g(Rd)-

Jen L3(RY)
Thus the mapping
Ayt f = (A5 f)jen,
is bounded from2 (R%) into L7 (R?, I?(N)).
On the other hand, from propertiespfve see that
(@5 (@)l < Clla]| 7, forz # 0,
10y, 35(x));lli < Clla| =420, fora #0, i=1,....d,
where
Bi() = 2L (0)(2').
We may then apply the theory of singular integrals to this mappintsee [14]).
Thus we deduce that

128 fllzraey < Corll fllzr ey, forl <p <oo.

The converse uses the same idea. Indeed we put
. 1
¢; = Z Szjﬂ-
1=—1
From Proposition 3|4 the mapping
Ay (fj)jen = > fi#p b5
JEN
is bounded from_2 (R%, />(N)) into L?(RY).
On the other hand, from propertiespfve see that
1(&5(2)); ]l < Cllel| 74V, fora #0,
1By, 05(@)jllie < Cllaf @), forz £0, i=1,....d.

We may then apply the theory of singular integrals to this mappin¢see [14]).
Thus we obtain

> OAf

jEN

< CprllAjfllrzy-

LD(RY)
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4. APPLICATIONS

4.1. Estimates of the Product of Two Functions.

Proposition 4.1.
i) Letu,v € C¥(R?) anda > 0 thenuv € C2(RY), and

HUUHCQ(Rd) <C [||U||Lkoo(Rd)||UHc,g(Rd) + HU”L?(Rd)”u”Cg‘(Rd)} .
i) Letu,v € H{(RY) N LE(RY) ands > 0 thenuv € Hi(R?), and

[[uv]

mry) < C [HUHL?(Rd)HU’

Hy(Rd) T ||U||L;°(Rd)||u\ H;(Rd)] :

Proof. Letu = > Ayuandv =} A, be their Littlewood-Paley decompositions. Then we
have

uv = ZApuA v

—Z Z Ayul\, U—I—ZZA ulA v

p<q-—1 p=>q
= Z Z ApulA v+ Z Z Apul v
q p<q-1 P q<p

= Z Sulgv + Z Sp 10U

- Z 2
We have
supp (Fp(S,ul,v)) = supp (Fp(Auv) *p Fp(Seu)).

Hence from Theorein 2.2 we deduce thatp (Fp(S,uldv)) C B(0,C29).
i) If v andv are inC¢(R9), then we have

||SqUAqU||Lg°(Rd) < ||Squ||Lg°(]Rd)HAqUHLgO(]Rd)v
< Cllull o ey |0l o (may 279
From Proposition 3.10 ii) we deduce

> < Cllull ey 10l o -

Llleg (rd)

Similarly we prove that

> < Clol| e ey 1l op may,
2 C?(Rd)

and this implies the result.
ii) If wandv are inH;(R?), then we have
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[Squlgul| 2 mey < [|Squll pge mayl| Aqul| 12 (re),

< Cllul gy 0]l g ey

Thus Propositiof 3]7 gives

and this implies the result. O

>

1

< CHUHL?(W)HM
H;(R9)

ng (Rd) .

Similarly, we prove that

2

2

< C|v]| pge may | u]
H (RY)

HE(R%),

Corollary 4.2. For s > ‘51 + 7, H(R?) is an algebra.

4.2. Sobolev Embedding Theorem.Using the Littlewood-Paley decomposition, we have a
very simple proof of Sobolev embedding theorems:

Theorem 4.3.Foranys > v + g, we have the continuous embedding
s_ny_d
Hy(RY) — Cp 2 (RY).

Proof. Let u be in H{(RY), u = >_p>_1Apu the Littlewood-Paley decomposition. Takein
D(R?) such that(¢) = 1 onCy, and

supp ¢ C Cp = {f € Rd,% < €]l < 3}.
Settingg, () = ¢(277¢), we obtain

Fo(Bpu)(§) = Fo(Apu)(§)¢(277¢).

Hence

Apu(r) = y Fp(Apu)(§)¢(277E) K (ix, §)w(€)dE,

Bpu@)| < [ 1Fp(Bu©ll6(2 7 onl) e

The Cauchy-Schwartz inequality and Theofem 3.5 give that

!\ApurlL;o<Rd>S< / \fD<Apu><§>r2wk<£>d£>2( / !¢<2P5>!2wk<£>d5>2
Rd R4
< C20 || Ayl ae

< 02_”(5_7_%)010.

Then from Definitio we deduce thatc C,j_”_% (RY). O

J. Inequal. Pure and Appl. Matt9(4) (2008), Art. 95, 25 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

LITTLEWOOD-PALEY DECOMPOSITION 17

Theorem 4.4.Forany0 < s < v+ %’, we have the continuous embedding
H(R) — Lj(RY),

2(2v+d)

wherep = 5 Td 35"

Proof. Let f be inS(R?), we have, due to Fubini’s theorem,

(@.) g = [ 2wl = Y

where

mk{|f| > )\} :/ wi(x)dx.
{z; |f(2) |2}

ForA > 0,wesetf = fia+ foaWith fia =30, s Ajfandfos =3 -, Aif.
We have

[ fr,all e (ray < Z 12 f Il Lo (may < Z [ Fp (A )| (ray-

21<A 21<A
Using the Cauchy-Schwartz inequality, the Parseval’s identity associated with the Dunkl opera-
tors and Theorein 3.5, we obtain

. d_g
Ifralpema < D 20T )| f]

d—s
sy < CATT270 £

Hz(Rd).
21<A
On the other hand for all > 0, we have
A A
4.2) {112 A} < {1l 2 5} {1l = 3}

From [4.2) we infer that if we take

1

A ’Y+%75
A=Ay = —2 :
’ 4O||f‘ H(R9)

[ f1,45 || Lo (may <

A
my {|f1,A)\| > 5}

From (4.1) and[(4]2) we deduce that

e <o 0 me{2lfan] > Apar

Moreover the Bienaymé-Tchebytchev inequality yields

4
mk{mfz,m‘ 2 )\} < EHfQ»A/\H%i(Rd)'

then

>

Hence
0.

Thus we obtain
[ A S TN A0S
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On the other hand, by using the Cauchy-Schwartz inequality far:alD, we have
2

1f2,43 172 (o :/ > Af(x)| wilx)da

21> A,

< / Z 22JE|A f ( )d:c Z 9—2je
20> A, 25> Ay

< AYE Z 22j€\|Ajf’|%§(Rd)'
2> Ay

So by using the definition oft, and the Fubini theorem, we can write

171, g
Sp/ NP TEASE Z 22j€||Ajf||%g(Rd)d)‘
0

25> A,

4CP TSI F ey
SCE:/ %Rﬁ’vﬂwm@mm
0

j>—1

< CHfHHS(Rd Z 2] P=2)( HA fHL2 (R4)

j=>—1

e > 2NN I ey

j>—-1

1 (R )"H’j*s 22]6||A fHL2 &’

< Cll £

< ClI£1;

This implies the result. O

Definition 4.1. We define the spacBM O, as the set of functions € L;,, , (R?) satisfying

sup —/ |u(z) — up|lwg(x)dr < oo,
B mesk
where
1
B= B(.ZU07 R), Uup = m/BUCE)W}C(I')dZE

denote the average afon B andmes;(B) = / wi(z)dx.
B

Theorem 4.5. We have the continuous embedding
d
H2(RY) < BMO.

d
Proof. For R > 0 small enough, lefV be such thag" = [£]. Letw be in H27(RY). Set
u = u® 4+« with

N-1
uM) = Z Ayu and u® = Z Apu.

p=-1 p>N
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From the Cauchy-Schwartz inequality we have

(s /. |u<x>—u3|wk<x>dx)2§m | 1u) = uaPr(oic
It is easy to see that this implies
(s /. \u<x>—u31wk<x>dx)2
g@ UB]um(m)—ug>]2wk(x)dx+/B]u<2>( —uB>) e )dx].

Moreover, from the mean value theorem, we have

R? 2

< RQHDU(I)”%;O(Rd)-
By (2.7) we deduce that

1DuD| e ey < /Rd €117 () (€) lwi () dé.

By recalling thasupp Fp(A,u) C C, and|Fp(A,u)(€)] < |Fp(u)(€)|, we apply the Parseval
identity associated with the Dunkl operators and the Cauchy-Schwartz inequality. We deduce

that
— T / [l (@) = ufy P (@ >dw<R?<Z / Il 10 (Apu) (&) (e >d£>

<R (/ 227 <>d§) Jul? .
B(0,2N) T (R)

< C2 R |lul®

d+’v

(RY)
For the second term, we have

L @ — e 2 @) P (1) de
meSk(B)/B| (2) — u2 Py ()d Smeskw)/; () Peon()d
< OR-" / P (0) (€) [P (€)
llgl|>2~
< CEYRy |,

2+7(R )

Hence,

1 2
. —_— — < 2, .
3 (s L)~ wnlesaide) <l

We have prove3) for smalt, sinceu € HEM(RC’) C L (RY), ) is evident folR > R,
with constantC' = C'(R,). This implies the continuous embedding

d
12" (RY — BMO.
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4.3. Gagliardo-Nirenberg Inequality. We will use the generalized Sobolev spagg” (R?)
associated with the Dunkl operators defined as

WM (RY) = {u e S'(RY : (—Ap)2u e L(RY},
with
d
Apu=Y Tiu.
=1
The main result of this subsection is the following theorem.

Theorem 4.6.Let f be inW,”"(R%) N LE(R?) with ¢,r € [1,o0] ands > 0. Thenf belongs to
WP (RY), and we have

H(_Ak)%f

wherel = ¢ 4 =2 ¢ — (1 — ¢)s andf €0, 1.

T

< Oy || (~O0)F

1-9
)

LP(R) Ly (R9) 7

Proof. First, we prove this theorem fgrandr in ]1,cc]. Let f be inS(R?). It is easy to see
that
(=002 =D (=AAf + 3 (=007 A5 (803 f)
j<A J>A
whereA will be chosen later.
On the other hand, by a simple calculationaifs a homogenous function i@ (R*) of
degreen, we can write
(4.4) a ((_Ak)%> Ajf — 2jm+j(d+2’7)b(62j) *p Z Aj/f,
li—j"I<1

whered,; is defined bysy;x = 27z, € R? andb is in S(R?) such that
Fp(b)(§) = (§)a(ll<])-

We proceed as in[12, p. 21] to obtain

(4.5) o ((=00)2) 23/ (@)] < 2 My f (@),

whereM,(f) is a maximal function off associated with the Dunkl operators (see [13]).
Hence by applyin5) far(r) = r* anda(r) = r'2", we get

((—Ak)%f(x)] <C (Z DMy f () + 2 M(( Akf)g)(x>>

J<A i>A

< C2AM,f(x) + C2U=)4 M, ((—Ak)%f) (@).

We minimize overA to obtain

o] < (us) (v (-01) )

By this inequality and the Hoélder inequality, we have

|=anis]| < CIMIG o [Ml(~20)51)

LD (RY)

J. Inequal. Pure and Appl. Matt9(4) (2008), Art. 95, 25 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

LITTLEWOOD-PALEY DECOMPOSITION 21

withg =1 — L.
Now, we apply Theorem 6.1 df [13] to deduce the resujtdindr €]1, oo].
Now, we assume = r = 1. Let f be inS(R¢). We have

(GRS (NS ) {CVREVNTY I W CTNS I N (CONSER)
LL(R) ; ;
J=A Ly >4 LL(RY)
< CQ(liH)SAHfHLi(]Rd) + 0279814 H<_Ak)%fHL}C(]Rd) .
By minimizing overA, we obtain the result. O

5. PARAPRODUCT ASSOCIATED WITH THE DUNKL OPERATORS

In this section, we are going to study how the product acts on Sobolev and Holder spaces
associated with the Dunkl operators. This could be very useful in nonlinear partial differential-
difference equations. Of course, we shall use the Littlewood-Paley decomposition associated
with the Dunkl operators. Let us consider two temperate distributicarsdv. We write

u:ZApu and U:ZAqU.
» q

Formally, the product can be written as

uv = Z Apyul .
y2u
Now we introduce the paraproduct operator associated with the Dunkl operators.

Definition 5.1. We define the paraproduct operatfy : S'(RY) — S'(R9) by
u = Z(Sq,g a)Aqu,

g1
whereu € §'(RY); {A,a} and {A,u} are the Littlewood-Paley decompositions afigh =
Zpgq—1 Aya.

Let R indicate the following bilinear symmetric operator S{R?) defined by

R(u,v)= Y  Apudp,  foralluve S (RY).
lp—q|<1
Obviously from Definitio 5.]L it is clear that

wv = I,v + I,u + R(u,v).

The following theorems describe the action of the paraproduct and remainder on the Sobolov
and the Hoélder spaces associated with the Dunkl operators.

Theorem 5.1. There exists a positive constafitsuch that the operatoll has the following
properties:

1) HHHL(L;"(Rd)xcg(Rd)pi(Rd)) < st forall s > 0.
(2) 1Tl £ (Lo (mety b3 (rety, 113 ety < C°F, forall s > 0.
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(3) 17T 2oy s ey sz oy < S5 forall s, ¢ with s + ¢ > 0 and# < 0.

4) ||H||£(Ci(Rd)on(Rd)jczﬂ(Rd)) < %’ZH forall s,t withs +t > 0 andt < 0.
5) |III
©) ],

< OsH5HL withs 4+t > v + dands < £ +17.

H;(Rd)xH]g(Rd),H;”’”’%(Rd))
Proof. Let u andv be inS’(R¢). We have

supp(Fp(Sy—2ul,v)) = supp(Fp(A,v) *p Fp(S,—ou)) C B(0,C27).
1) If win L$°(RY) andv in C§(R?), then we have

[Sq—2ul 0| e rey < || Sq—2ull Lge ey | Agv]| 3o (ma)

< Cllull e ey 10l o3 mey 27
Applying Propositiot 3.710 ii), we obtain

M|

Cp(re) < CH“HL;@(Rd)HU’ C;3 (Rd)-

2) If wis in L (RY) andw is in H; (R?), then we have

1802l agesy < 1Sy-2ule e | Agvl e

< C'||U||L;°(JR01)||U| H,j(Rd)Cq2_qS-
Thus Propositiof 3]7 gives

[TL,v]

H (RY) < C'||U||Lg<>(1Rd)||U| Hi (R

this implies the result.
3) Letu be inC! (R?) andv in H(RY). We have

||Sq—2“AqU||L§(Rd) < ||Sq—2“”Lgo(Rd)HAqUHLz(Rd)-

Sincet < 0, we estimaté|S;_ou| .= ra) in a different way. In factS,_ou = >° _ 5 Ayu.
Sinceu € C!(R?) andt < 0, we obtain

_ C . _
1Sg-2ull e ety < lullezmay D> 277 < -2 ullor mey-
p<q—3

Hence

C

S _QUA Vl| 2 (R4 S —2_q(t+s
q q 7 (R4) ¢

)Cq||u||c,§(Rd)||U| H (R4 cqg €12

Thus Propositiof 3]7 gives the result.
The proof of 4) uses the same idea.
5) We have
1Sg—2ull Lgeray < ([ FD(Sg-2u) |11 (ra)

< | PN+ el =

R4

Fp(u)(€)(1 + [I&]I*) 2wi()de.
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The Cauchy-Schwartz inequality implies that

I8-aullzmn < ( [ 19G2OPM+ 12 i) T

HE(R%),

%
< Cid ( / |w<t>|2<1+22<q-2>ut||2>-8wk<t>dt) I
B(0,1)

H (R
If s >0,
1
q(g+7—s) 24|25 ’
[Sq—2u| Lo (ray < €27 [ @) [ we(t)dt
B(0,1)
< (5 +7=5)
If s <0,
3
dyy—s —S
1Sg—2ul| e ey < C2927772) (/ @)L+ [1tl]*) wk(t)dt)
B(0,1)
< C21(5+7-5)
By proceeding as in the previous cases we deduce the result. O

Theorem 5.2. There exists a positive constafitsuch that the operatoll has the following
properties:

(1) If a € L°(RY) is radial, then for any in R, we have
1]l 2oz ay.c; ey < Cllal| Lo ray, ol £rrs ey, 2 ayy < Cllal| Lo ay-
(2) If a € CL(R?) is radial with ¢ < 0, then for alls, we have
Mall £ ers may, et may) < Cllalley gay, MLl £ (o3 ey cttmay < Cllallor @e)-
3) If a € H!(R?) is radial, then for alls, t with s < ¢ 4+, we have
k 2

”H“”z:(H,z(Rd),HZ”’”’%(Rd)) < Cllallywo.

Proof. From the relation[(2.19) and Definitign 2.2 we deduce that there exists an arfiulus
such thatupp Fp (S, aA,u) C 2¢C,. Thus we proceed as in the proof of Theo@ 4.3 and
using Propositions 3.6 and 3|10 i), we obtain the result. O

Remark 5. In the caséV = Z4 the assumption thatis radial is not necessary.

Theorem 5.3. There exists a positive constafitsuch that the operatoR has the following
properties:

s+t+1 .
(L) 1Rl g mayx g rety e+ rayy < C—, foralls,twiths+¢ > 0.
(2) 1Rl| e ety s ay o5ty < Sy forall s, ¢ with s + ¢ > 0.
3 |17l < &, forall s,twiths +t > 5 + 2.

L(HE (RE)x HE (REY, H 7~ 2(Rd)) = stt—y—%
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Proof. By the definition of the remainder operator

1
R(u,v) = ZRq with R, = Z A _iul .
q i=—1
By the definition ofA,, the support of the Dunkl transform @i, is included inB(0, C2?).
Then, to prove 1) it is sufficient to estima&, || .2 ). In fact, we have

1
1Rl 2 ey < 120l 2y D 1At e -

i=—1
Using the facts that € C{(R?) andv € H;(R?), we obtain

1
Hp(RY) Z 2_(q_i)t\|u|fc,g(Rd), Cq € I?

i=—1

< Ceg2 " ul oy ey 10|

HRq”Lﬁ(Rd) < 2_qSCqHU|

Hli (]Rd) .

Now we apply Propositiop 3.7 to conclude the proof. The proof of the second case uses the
same idea. We want to prove 3). We ha¥e:, v) = Zq R,. We proceed as in 1), so

1
1Bl 2 ey < CIIFD (A 2ma) D 1Ag-itull e ey,

i=—1

1
< CH}—D(AqU)HLi(Rd) Z ||fD<Aq—iu)||L}c(Rd)-

i=—1

Using the fact that € H;(R?), we obtain

1
1Ryl r2may < Cea2 vl may Y 1 Fp(Dgitt) |l p1may, g € 12

i=—1

On the other hand, by the Cauchy-Schwartz inequality we have
[7p(Ag-it)l|y ey < /R @O+ €)= (1 + [1€]1%) 2 Fp (w) (€)ewn(€) e

< lul

e ([ 1O+ 1) wnle)as )

2

< C’2q<7+%)\|u|

s ([ 0P+ 2070061) o)

< (21r+5-5)

Hence
||Rq”L§(Rd) < CQq(7+g_S_t)cq, Ccq € 2.

Then we conclude the result by using Proposifion 3.7. O
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