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Abstract: We study invariance in the class of weighted Lehmer means. Thus we look at
triples of weighted Lehmer means with the property that one is invariant with Close

respect to the other two.
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1. Means

The abstract definitions of means are usually given as:
Definition 1.1. A meanis a function)M : R3 — R, with the property
min(a, b) < M(a,b) < max(a,b), Va,b>0.
A mean) is calledsymmetricif
M(a,b) = M(b,a), Va,b>0.
In [12] the following definition was given:
Definition 1.2. The function)/ is called ageneralized meaiif it has the property
M(a,a) = a, Ya > 0.

A generalized mean is called ifi(] a pre-mean which seems more adequate.
Of course, each mean is reflexive, thus it is a generalized mean.
In what follows, we use the weighted Lehmer medhs, defined by

oXaP (=N
Con(a,b) = Aar=t 4+ (1= \) - bt

with X\ € [0, 1] fixed. Important special cases are the weighted arithmetic mean and
the weighted harmonic mean, given respectively by

A)\ - Cl;/\ and H)\ == Co;)\.

For A = 1/2 we get the symmetric means denoted(dy.A and. Note that the
geometric mean can also be obtained, but the weighted geometric mean cannot:

C1/2:Q but 61/2;)\7&9)\ for )\7&1/2
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For\A =0 and\ = 1 we have
Cpo = Il respectively C,; =1I;, VpeR,
wherell; andIl, are the first and the second projections, defined respectively by
I (a,b) = a, Ily(a,b) =0, Va,b>D0.

If X ¢ [0, 1] the functiongC,,, are generalized means only.
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2. Invariant Means

Given three mean®, ) and R , theircompound

P(Qa R) (a’ b) = P(Q(av b)’ R(CL, b))7
defines also a meaf(Q, R).

Ya,b > 0,

Definition 2.1. A meanP is called(Q, R)—invariant if it verifies
P(Q,R) = P.

Remarkl. Using the property of A, G) —invariance of the mean

/7r/2 d@
o Va2cos? + b2sin’ 6

Gauss showed that this mean gives the limit of the arithmetic-geometric double se-
guence. As was proved id]} this property is generally valid: the mea&hwhich is

(@, R)—invariant gives the limit of the double sequence of Gauss type defined with
the meansg) andR :

Ap4+1 = Q(ana bn)a

Moreover, the validity of this property for generalized means is provetd(if the
limit L exists andP(L, L) is defined).

-1

M(a,b) =

| X

b1 = R(an,b,), n>0.
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Remark2. In this paper, we are interested in theblem of invariance in a fam-

ily M of means. It consists of determining all the triples of me@hs), R) from

M such thatP is (@), R)—invariant. This problem was considered for the first time
for the class of quasi-arithmetic means by Sutdlifi| and many years later by J.
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Matkowski in [8]. It was called the problem of Matkowski-Suté and was completely
solved in f]. The invariance problem was also solved for the class of weighted
guasi-arithmetic means i®], for the class of Greek means ihJ] and for the class

of Gini-Beckenbach means i®][ In this paper we are interested in the problem

of invariance in the class of weighted Lehmer means. We use the method of se-
ries expansion of means, as it3[. The other papers mentioned before have used
functional equations methods.
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3. Series Expansion of Means

For the study of some problems related to a méann [7] the power series expan-
sions of the normalized functioM/ (1,1 — z) is used. For some means it is very
difficult, or even impossible to determine all the coefficients. In these cases, a recur-
rence relation for the coefficients is very useful. Such a formula is present8f in |
asEuler’s formula.

Theorem 3.1. If the functionf has the Taylor series

f(x) = Zan ",
n—0
p is a real number and
@ = ba-a”,
n—0

then we have the recurrence relation

n

> klp+1)—n]-ar by =0, n>0.

k=0
Using it in [3], the series expansion of the weighted Lehmer mean is given by:

Cp;)\(l, 1-— x)

1’3

2
FAL=N(p-1)[6)(p—1)"—6Ap(p—1)+p(p+1)] ‘%4+"'

=1-(1=-Nz+AA=N)(p-1Da" = A1 =N (p-1)2A(p—1) -]
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4. C,\—Complementary of Means

If the meanP is (Q, R)—invariant, the mearR is called complementary to @
with respect to P (or P—complementaryto (). If a given mearn) has a unique
P—complementary meaRl, we denote it by = Q.

Some obvious general examples are given in the following

Proposition 4.1. For every mean\/ we have
MM =M, TOM =11, M" =TII,.
If M is a symmetric mean we have also
I =11,.
We shall call these resultsivial casesof complementariness.

Denote theZ,,,—complementary of the meal’ by MC®Y, or by MC®) if \ =
1/2. Using Euler’s formula, we can establish the following.

Theorem 4.2.If the mean)/ has the series expansion
M(1,1—x)= 1+Zanx",
n=0

then the first terms of the series expansiod&t», for A # 0, 1, are

Mc(p?’\)(l, 1—2)

1=+ Ay A 2
_ Y :(:—(1_)\)2[(17—1)@1(a1+2(1—)\))+a2(1—)\)]-x

=1
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A
2(1—)\)3[
+ai(p—1) 2N (1 -3p)+ABp+2)+3p—4)+al(p—1)2A\p+p—2)
+das (p—1) (1 =N’ +4daras (p— 1) (1 = ) +2a3 (1 = N)?] -2+ -+

a(p—1)(2N°p =N (p+2)—4A(p—1) +3p—2)

Corollary 4.3. The first terms of the series expansiomlf;f“) are
Weighted Lehmer Means

C(p;\ lulia Costin and
Cr-(;f )(17 1- J]) Gheorghe Toader
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Contents
AL =)t 9rovs 2 2 2
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+r? (20— 4® = Np— p 4 2p%) Page 9 of 16
+p (2N 4+ 12X0°0 — 6 = 20% — 9N+ p® — Ap+TA —p— 1) o Back
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Using them we can prove the following main result.
journal of inequalities
Corollary 4.4. We have in pure and applied
Con(Crips Cuw) = Cpn mathematics
if we are in one of the following non-trivial cases: Sl LRRESERE
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i)

CI;A(CI;(QA—I)/Av Cu;l) = Cl;)\;

i) Con(Co;2a-1)/x, Cus1) = Copa;

iii) Co(Cripps C—r1—p) = Co;

iv) C1/2(Cripis Ciori1—) = Cuya;

v) Ci (Cr;wC?—r;l—u) = Cy;

i) Co;x (Coyar—1) /205 Cos1/2) = Con;

) Cix(Cry3a—1)/20, C1) = Cipn;

viii) Co,1/3(Cr0,Co) = Co.1/3;

Zx) C171/3(Cr;07C1) = C1;1/3;

95) 62,1/4(61;—1/2,61) = C2,1/4;

$Z) 071,1/4(00;71/2700) = 671,1/4;

i) Co;x(Co, Conj2—20)) = Cosx;

i) Cia(C1, Cinjz—2n)) = Cipx;

i) C_1,3/4(Co,Cos3/2) = C_1,3/4;

xv) C2;3/4(C1, 01;3/2) = Cz;s/4~
Proof. We consider the equivalent conditidﬁ%’*) = C,,, Which gives

C(p;) —
CorV (L1 —x) = Cup (1,1 — ).

Equating the coefficients of*, k = 1,2,...,5, we get the following table of solu-
tions with corresponding conclusions:
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C(p;A
Casel A\ | pu v p|r U Cr;(f ) = Cuw Case
1 [0 u 0 p|r| wu CE,(E) =1, Trivial
2 A1 0 | pl|r| w $»Y =11, | Trivial
3 |1] o0 1 p | r| w s® =11, Trivial
22—1 AN
4 )\ A 1 1 1 u AL)\_I =1 I) Weighted Lehmer Means
- lulia Costin and
3) A QA;1 1 0 0 U ng =1 ") Gheorghe Toader
6 1 1 1— 1 0 —r CH =C 1 III) vol. 9, iss. 2, art. 54, 2008
2 L e
7 03 o | 1=p| 5 [r|1=r Crgm =Ciri—p iv)
8 || pw [1—p| 1 |r|2-r C;,‘}# =Cori1—y V) llitelFage
9 || 3 Lol e s — ¢, Trivial Contents
10 (A[22] L oo Hitl = H vi) «“ =
_ A .
1w alas o] o1 At = A vii) < 4
12 [5| 0 : r| 0 s =y viii) Page 11 of 16
kI I AV R A S S U A ;M = A ix) Cio izl
14 % _% % 2 11 1 Ac_(f/;;/‘l) =A X) Full Screen
C(21/4 :
15 | L] - Lol-1fo] o HETY Y =M i) Close
1 A HO) — T
6 1A 5 |san| 0|0 0 |H Hops | X0 journal of inequalifies
17 [ x| 1 2(13) 1 /1] 1 AARN) = AMA . Xiii) in pure and applied
3 I 3 13D — 1 . mathematics
18 13| 2 2 —1]0 0 HECTIEM = Hajo | XIV) issn: 1443-575k
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Remark3. Equating the coefficients af', 22, ..., 2", we have a system of equa-
tions with six unknowns (the parameters of the means).nFer2, 3, 4, solving the
system, we get relations among the parameters such as:

A1 =) u_)\,m"—m*—l—pu—Q)\p—kp . Z
=D N 1—2\+ M\ ’ A1
where
Weighted Lehmer Means
2 2 2 2 2. 2 2 luli i d
Z20 (= 1) 4+ 2puZ (N — A+ — 1) + XNp — 2202 0%p — A2p* + 2\3p% — 2X\%p Gﬁei;f]??olr
+ 3)\2,u2p2 — )\MgpQ — )\3,l$p2 + Asup + /\,u3p + 4)\2,up + 4)\,up2 vol. 9, iss. 2, art. 54, 2008
— 5N up® — 2\pup — 2\’ + pPp — pp? = 0.
Forn = 5 we obtained the table of solutions given in the previous corollary. For Title Page
n = 6, however, the system could not even be solved using Maple. As a result, we Contents
are not certain that we have obtained all the solutions for the problem of invariance.
<« >

Remark4. The cases i)-ii), vi)-vii), Xii)-xiii) and xiv)-xv), involveC;., = A, and
Co;x = H,. There are, however, no similar cases @@y.,. Instead we have the < >
following results forG,:

gw m,, ' =g, g?,“ G, G¢iW =g

but these are not Lehmer means.

Remarkb. It is easy to see that not all of the generalized means that appear in the
above results are means. In such a case, the result given in Régaarlbe negative.
For example, in the case xv), if we consider
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anr1 = Ci(an, by), b1 = Ci3/2(an, by), n >0, in pure and applied
mathematics

for ag = 10 andby = 1, we geta, = ao andby = by, thus the sequences are s Tuuacree

divergent. Also, in the case xii), if we take= 4/5, the double sequence
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Ap4+1 = Co(am bn)7 bn+1 = Co;z(am bn)7 n =0,

has the limit zero for, = 10 andb, = 1, which is different fromC.4/5(10, 1). This
is becaus€,,4 /s is not defined in(0, 0) , thus the proof of the Invariance Principle in
[14] does not work.

Corollary 4.5. For means we have

Cp;,\ (Cr;;u Cu;l,> == Cp;)\ Weighted Lehmer Means
lulia Costin and
if we are in one of the following non-trivial cases: Gheorghe Toader
] vol. 9, iss. 2, art. 54, 2008
7') CI;A(Cl;(Q)\—l)/)\a Cu;l) = Cl;)\a A€ []—/27 1]7
Z’l) CO;)\(CO;(Q)\—I)/)\y Cu;l) = CO;)\v A€ [1/27 1]7 Title Page
i11) Co(Crops C—p—p) = Co; Contents
iU) Cl/?(cr;ua Cl—'r’;l—,u) = C1/2; « 4
< 4
v) Ci (Cr;m CQ*M*#) =Cy;
. Page 13 of 16
UZ) CO;A(CO;(S)\fl)/Q)\aCO;1/2) = Co;/\, A€ [1/37 1];
Go Back
vii) Cl;A(C1;(3A—1)/Q,\,C1) =Cip, A€ [1/3,1];
Full Screen
Vi) CO,I/S(CT;Oa Co) = Co:1/3; Close
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iz) 1’1/3( 0C) L1/3 journal of inequalities
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mathematics
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Remark6. Each of the above results allows us to define a double sequence of Gauss
type with known limit.

Corollary 4.6. For symmetric means, we have
C,(C,,C,) =C,

if and only if we are in the following non-trivial cases:

'L) CO(C’I‘7 C—'r‘) = CO)
i1) C1/2(Cr,Ciy) = Ciy2;
iii) Ci(Cr, Coy) = Cy.
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