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Abstract: We study invariance in the class of weighted Lehmer means. Thus we look at
triples of weighted Lehmer means with the property that one is invariant with
respect to the other two.
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1. Means

The abstract definitions of means are usually given as:

Definition 1.1. A meanis a functionM : R2
+ → R+, with the property

min(a, b) ≤ M(a, b) ≤ max(a, b), ∀a, b > 0.

A meanM is calledsymmetricif

M(a, b) = M(b, a), ∀a, b > 0.

In [12] the following definition was given:

Definition 1.2. The functionM is called ageneralized meanif it has the property

M(a, a) = a, ∀a > 0.

A generalized mean is called in [10] a pre-mean, which seems more adequate.
Of course, each mean is reflexive, thus it is a generalized mean.
In what follows, we use the weighted Lehmer meansCp;λ defined by

Cp;λ(a, b) =
λ · ap + (1− λ) · bp

λ · ap−1 + (1− λ) · bp−1
,

with λ ∈ [0, 1] fixed. Important special cases are the weighted arithmetic mean and
the weighted harmonic mean, given respectively by

Aλ = C1;λ and Hλ = C0;λ.

For λ = 1/2 we get the symmetric means denoted byCp,A andH. Note that the
geometric mean can also be obtained, but the weighted geometric mean cannot:

C1/2 = G but C1/2;λ 6= Gλ for λ 6= 1/2.
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Forλ = 0 andλ = 1 we have

Cp;0 = Π2 respectively Cp;1 = Π1, ∀p ∈ R,

whereΠ1 andΠ2 are the first and the second projections, defined respectively by

Π1(a, b) = a, Π2(a, b) = b, ∀a, b ≥ 0.

If λ /∈ [0, 1] the functionsCp;λ are generalized means only.
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2. Invariant Means

Given three meansP, Q andR , theircompound

P (Q,R)(a, b) = P (Q(a, b), R(a, b)), ∀a, b > 0,

defines also a meanP (Q, R).

Definition 2.1. A meanP is called(Q,R)−invariant if it verifies

P (Q,R) = P.

Remark1. Using the property of(A,G)−invariance of the mean

M(a, b) =
π

2
·

[∫ π/2

0

dθ√
a2 cos2 θ + b2 sin2 θ

]−1

,

Gauss showed that this mean gives the limit of the arithmetic-geometric double se-
quence. As was proved in [1], this property is generally valid: the meanP which is
(Q, R)−invariant gives the limit of the double sequence of Gauss type defined with
the meansQ andR :

an+1 = Q(an, bn), bn+1 = R(an, bn), n ≥ 0.

Moreover, the validity of this property for generalized means is proved in [14] (if the
limit L exists andP (L, L) is defined).

Remark2. In this paper, we are interested in theproblem of invariance in a fam-
ily M of means. It consists of determining all the triples of means(P, Q,R) from
M such thatP is (Q,R)−invariant. This problem was considered for the first time
for the class of quasi-arithmetic means by Sutô in [11] and many years later by J.
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Matkowski in [8]. It was called the problem of Matkowski-Sutô and was completely
solved in [4]. The invariance problem was also solved for the class of weighted
quasi-arithmetic means in [6], for the class of Greek means in [13] and for the class
of Gini-Beckenbach means in [9]. In this paper we are interested in the problem
of invariance in the class of weighted Lehmer means. We use the method of se-
ries expansion of means, as in [13]. The other papers mentioned before have used
functional equations methods.
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3. Series Expansion of Means

For the study of some problems related to a meanM, in [7] the power series expan-
sions of the normalized functionM(1, 1 − x) is used. For some means it is very
difficult, or even impossible to determine all the coefficients. In these cases, a recur-
rence relation for the coefficients is very useful. Such a formula is presented in [5]
asEuler’s formula .

Theorem 3.1. If the functionf has the Taylor series

f(x) =
∞∑

n−0

an · xn,

p is a real number and

[f(x)]p =
∞∑

n−0

bn · xn,

then we have the recurrence relation
n∑

k=0

[k(p + 1)− n] · ak · bn−k = 0, n ≥ 0.

Using it in [3], the series expansion of the weighted Lehmer mean is given by:

Cp;λ(1, 1− x)

= 1− (1− λ) x + λ (1− λ) (p− 1) x2 − λ (1− λ) (p− 1) [2λ (p− 1)− p]
x3

2

+ λ (1− λ) (p− 1)
[
6λ2 (p− 1)2 − 6λp (p− 1) + p (p + 1)

]
· x

4

6
+ · · · .
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4. Cp,λ−Complementary of Means

If the meanP is (Q,R)−invariant, the meanR is calledcomplementary to Q
with respect to P (or P−complementary to Q). If a given meanQ has a unique
P−complementary meanR, we denote it byR = QP .

Some obvious general examples are given in the following

Proposition 4.1. For every meanM we have

MM = M, ΠM
1 = Π2, MΠ2 = Π2.

If M is a symmetric mean we have also

ΠM
2 = Π1.

We shall call these resultstrivial casesof complementariness.

Denote theCp;λ−complementary of the meanM by MC(p;λ), or byMC(p) if λ =
1/2. Using Euler’s formula, we can establish the following.

Theorem 4.2. If the meanM has the series expansion

M(1, 1− x) = 1 +
∞∑

n=0

anx
n,

then the first terms of the series expansion ofMC(p;λ), for λ 6= 0, 1, are

MC(p;λ)(1, 1− x)

= 1− 1− λ + λa1

1− λ
x− λ

(1− λ)2 [(p− 1) a1 (a1 + 2 (1− λ)) + a2 (1− λ)] · x2
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− λ

2 (1− λ)3

[
a1 (p− 1)

(
2λ3p− λ2 (p + 2)− 4λ (p− 1) + 3p− 2

)
+ a2

1 (p− 1)
(
2λ2 (1− 3p) + λ (3p + 2) + 3p− 4

)
+ a3

1 (p− 1) (2λp + p− 2)

+ 4a2 (p− 1) (1− λ)2 + 4a1a2 (p− 1) (1− λ) +2a3 (1− λ)2] · x3 + · · · .

Corollary 4.3. The first terms of the series expansion ofCC(p;λ)
r;µ are

CC(p;λ)
r;µ (1, 1− x)

= 1− 1− 2λ + λµ

1− µ
x

+
λ (1− µ)

(1− λ)2

[
p (1− 2λ + µ) + µr (λ− 1)− 1 + 2λ− λµ

]
x2

+
λ (1− µ)

(1− λ)3

[
p2

(
2λ3 + 2λµ2 − 6λ2µ− λµ + 5λ2

+ µ2 + µ− 5λ + 1
)

+ 4pr
(
λµ2 + λµ− λ2µ −µ2

)
+ r2

(
2λµ− 4λµ2 − λ2µ− µ + 2µ2

)
+ p

(
2λ2µ2 + 12λ2µ− 6λµ2 − 2λ3 − 9λ2 + µ2 − λµ + 7λ− µ− 1

)
+ r

(
5λ2µ− 4λ2µ2 + 4λµ2 − 6λµ + µ

)
+ 2λ2µ2 + 4λ2 − 6λ2µ +2λµ− 2λ] x3 + · · · .

Using them we can prove the following main result.

Corollary 4.4. We have
Cp;λ(Cr;µ, Cu;ν) = Cp;λ

if we are in one of the following non-trivial cases:
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i) C1;λ(C1;(2λ−1)/λ, Cu;1) = C1;λ;

ii) C0;λ(C0;(2λ−1)/λ, Cu;1) = C0;λ;

iii) C0(Cr;µ, C−r;1−µ) = C0;

iv) C1/2(Cr;µ, C1−r;1−µ) = C1/2;

v) C1(Cr;µ, C2−r;1−µ) = C1;

vi) C0;λ(C0;(3λ−1)/2λ, C0;1/2) = C0;λ;

vii) C1;λ(C1;(3λ−1)/2λ, C1) = C1;λ;

viii) C0,1/3(Cr;0, C0) = C0;1/3;

ix) C1,1/3(Cr;0, C1) = C1;1/3;

x) C2,1/4(C1;−1/2, C1) = C2,1/4;

xi) C−1,1/4(C0;−1/2, C0) = C−1,1/4;

xii) C0;λ(C0, C0;λ/(2−2λ)) = C0;λ;

xiii) C1;λ(C1, C1;λ/(2−2λ)) = C1;λ;

xiv) C−1;3/4(C0, C0;3/2) = C−1;3/4;

xv) C2;3/4(C1, C1;3/2) = C2;3/4.

Proof. We consider the equivalent conditionCC(p;λ)
r;µ = Cu;ν which gives

CC(p;λ)
r;µ (1, 1− x) = Cu;ν(1, 1− x).

Equating the coefficients ofxk, k = 1, 2, . . . , 5, we get the following table of solu-
tions with corresponding conclusions:
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Case λ µ ν p r u CC(p;λ)
r;µ = Cu;ν Case

1 0 µ 0 p r u CΠ(2)
r;µ = Π2 Trivial

2 λ 1 0 p r u Π
C(p;λ)
1 = Π2 Trivial

3 1
2

0 1 p r u Π
C(p)
2 = Π1 Trivial

4 λ 2λ−1
λ

1 1 1 u AA(λ)
2λ−1

λ

= Π1 i)

5 λ 2λ−1
λ

1 0 0 u HH(λ)
2λ−1

λ

= Π1 ii)

6 1
2

µ 1− µ 0 r −r CHr;µ = C−r;1−µ iii)

7 1
2

µ 1− µ 1
2

r 1− r CGr;µ = C1−r;1−µ iv)

8 1
2

µ 1− µ 1 r 2− r CAr;µ = C2−r;1−µ v)

9 1
2

1
2

1
2

p p p CC(p)
p = Cp Trivial

10 λ 3λ−1
2λ

1
2

0 0 0 HH(λ)
3λ−1
2λ

= H vi)

11 λ 3λ−1
2λ

1
2

1 1 1 AA(λ)
3λ−1
2λ

= A vii)

12 1
3

0 1
2

0 r 0 Π
H(1/3)
2 = H viii)

13 1
3

0 1
2

1 r 1 Π
A(1/3)
2 = A ix)

14 1
4

−1
2

1
2

2 1 1 AC(2;1/4)
−1/2 = A x)

15 1
4

-1
2

1
2

−1 0 0 HC(2;1/4)
−1/2 = H xi)

16 λ 1
2

λ
2(1−λ)

0 0 0 HH(λ) = H λ
2(1−λ)

xii)

17 λ 1
2

λ
2(1−λ)

1 1 1 AA(λ) = A λ
2(1−λ)

xiii)

18 3
4

1
2

3
2

−1 0 0 HC(−1;3/4) = H3/2 xiv)

19 3
4

1
2

3
2

2 1 1 AC(2;3/4) = A3/2 xv)
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Remark3. Equating the coefficients ofx1, x2, ..., xn, we have a system ofn equa-
tions with six unknowns (the parameters of the means). Forn = 2, 3, 4, solving the
system, we get relations among the parameters such as:

ν =
λ (1− µ)

1− λ
, u =

λµr − µr + pµ− 2λp + p

1− 2λ + λµ
, r =

Z

λ− 1
,

where

Z2µ (µ− 1) + 2pµZ (λ− λµ + µ− 1) + λ2p− 2λ2µ2p− λ2p2 + 2λ3p2 − 2λ3p

+ 3λ2µ2p2 − λµ3p2 − λ3µp2 + λ3µp + λµ3p + 4λ2µp + 4λµp2

− 5λ2µp2 − 2λµp− 2λµ2p + µ2p− µp2 = 0.

For n = 5 we obtained the table of solutions given in the previous corollary. For
n = 6, however, the system could not even be solved using Maple. As a result, we
are not certain that we have obtained all the solutions for the problem of invariance.

Remark4. The cases i)-ii), vi)-vii), xii)-xiii) and xiv)-xv), involveC1;λ = Aλ and
C0;λ = Hλ. There are, however, no similar cases forC1/2;λ. Instead we have the
following results forGλ:

GG(λ)
2λ−1

λ

= Π1, Π
G(1/3)
2 = G, GG(λ)

3λ−1
2λ

= G, GG(λ) = G λ
2(1−λ)

,

but these are not Lehmer means.

Remark5. It is easy to see that not all of the generalized means that appear in the
above results are means. In such a case, the result given in Remark1 can be negative.
For example, in the case xv), if we consider

an+1 = C1(an, bn), bn+1 = C1;3/2(an, bn), n ≥ 0,

for a0 = 10 and b0 = 1, we geta2 = a0 and b2 = b0, thus the sequences are
divergent. Also, in the case xii), if we takeλ = 4/5, the double sequence
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an+1 = C0(an, bn), bn+1 = C0;2(an, bn), n ≥ 0,

has the limit zero fora0 = 10 andb0 = 1, which is different fromC0;4/5(10, 1). This
is becauseC0;4/5 is not defined in(0, 0) , thus the proof of the Invariance Principle in
[14] does not work.

Corollary 4.5. For means we have

Cp;λ(Cr;µ, Cu;ν) = Cp;λ

if we are in one of the following non-trivial cases:

i) C1;λ(C1;(2λ−1)/λ, Cu;1) = C1;λ, λ ∈ [1/2, 1];

ii) C0;λ(C0;(2λ−1)/λ, Cu;1) = C0;λ, λ ∈ [1/2, 1];

iii) C0(Cr;µ, C−r;1−µ) = C0;

iv) C1/2(Cr;µ, C1−r;1−µ) = C1/2;

v) C1(Cr;µ, C2−r;1−µ) = C1;

vi) C0;λ(C0;(3λ−1)/2λ, C0;1/2) = C0;λ, λ ∈ [1/3, 1];

vii) C1;λ(C1;(3λ−1)/2λ, C1) = C1;λ, λ ∈ [1/3, 1];

viii) C0,1/3(Cr;0, C0) = C0;1/3;

ix) C1,1/3(Cr;0, C1) = C1;1/3;

x) C0;λ(C0, C0;λ/(2−2λ)) = C0;λ, λ ∈ [0, 2/3];

xi) C1;λ(C1, C1;λ/(2−2λ)) = C1;λ, λ ∈ [0, 2/3].
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Remark6. Each of the above results allows us to define a double sequence of Gauss
type with known limit.

Corollary 4.6. For symmetric means, we have

Cp(Cr, Cu) = Cp

if and only if we are in the following non-trivial cases:

i) C0(Cr, C−r) = C0;

ii) C1/2(Cr, C1−r) = C1/2;

iii) C1(Cr, C2−r) = C1.
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