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ABSTRACT. In the study of dynamic equations on time scales we deal with certain dynamic
inequalities which provide explicit bounds on the unknown functions and their derivatives. Most
of the inequalities presented are of comparison or Gronwall type and, more specifically, of Pach-
patte type.
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1. INTRODUCTION

In this paper we present a number of dynamic inequalities that are essentially based on Gron-
wall's inequality. Most of these inequalities are also known as being of Pachpatte type. For
a summary of related continuous inequalities, the monogtraph [4] by Pachpatte is an authori-
tative source. For the corresponding discrete inequalities, we refer the interested reader to the
excellent monograph [5] by Pachpatte.

Our dynamic inequalities unify and extend the (linear) inequalities presented in the first chap-
ters of [4]5]. The setup of this paper is as follows: In Segtion 2 we give some preliminary results
with respect to the calculus on time scales, which can also be found in the books by Bohner and
Peterson[2,/3]. Some basic dynamic inequalities are given as established in the paper by Agar-
wal, Bohner, and Petersan [1]. The remaining sections deal with our dynamic inequalities. Note
that they contain differential and difference inequalities as special cases, and they also contain
all other dynamic inequalities, such as, for exampldifference inequalities, as special cases.
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2. CALcULUS ON TIME SCALES

A time scal€T is an arbitrary nonempty closed subset of the real numRei/e define the
forward jump operatow on T by

o(t):=inf{seT: s>t} €T forall teT.

In this definition we putr()) = sup T, where() is the empty set. 1&(¢t) > ¢, then we say

that ¢ is right-scattered If o(t) = ¢t andt < sup T, then we say that is right-dense The
backward jump operator and left-scattered and left-dense points are defined in a similar way.
Thegraininessy : T — [0, 00) is defined byu(t) := o(t) — t. The sefl* is derived fronT as
follows: If T has a left-scattered maximum, thenT” = T — {m}; otherwise,T" = T. For

f: T — R andt € T*, we definef~(t) to be the number (provided it exists) such that given
anye > 0, there is a neighorhoad of ¢ with

[f(e(t) = f(s)] = fADlo(t) —s]| <elo(t) —s| forall seU.

We call f2(t) the delta derivativeof f at¢, and 2 is the usual derivativg’ if T = R and the
usual forward differencé\ f (defined byAf(¢t) = f(t + 1) — f(¥)) if T = Z.

Theorem 2.1. Assumef, g : T — R and lett € T*. Then we have the following:
(i) If fis differentiable at, thenf is continuous at.

(i) If fis continuous at andt is right-scattered, therf is differentiable at with

Ay flo@) = Ft)
PO=""un
(i) If f is differentiable at andt is right-dense, then
20 — tim O =),

s—t t—s

(iv) If f is differentiable at, then
o) = f(t) + u)f2(t), where f°:=foo.

(v) If f andg are differentiable at, then so isf g with
(f9)2(t) = f2(0)g(t) + f(£)g> ().

We say thatf : T — R is rd-continuousprovided f is continuous at each right-dense point
of T and has a finite left-sided limit at each left-dense poinTTofThe set of rd-continuous
functions will be denoted in this paper 16y,, and the set of functions that are differentiable
and whose derivative is rd-continuous is denotedtyy A function F' : T — R is called an
antiderivativeof f : T — R providedF2(¢) = f(t) holds for allt € T*. In this case we define
the integral off by

/tf(T)AT =F(t)—F(s) for s,teT.

We say thapp : T — R is regressiveprovided1 + u(t)p(t) # 0 for all t € T. We denote
by R the set of all regressive and rd-continuous functions. We define the set of all positively
regressive functions bRt = {p € R : 1 + u(t)p(t) > Oforallt € T}. If p,q € R, then we

define
q

1+ pg
If p: T — Ris rd-continuous and regressive, then éxponential functiom, (-, ) is for each
fixedt, € T the unique solution of the initial value problem

22 =p(t)z, x(ty)=1 on T.

pEg=p+q+ppg, ©¢=-— , and peqg=p®(5q).
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We use the following four theorems which are proved in Bohner and Petérson [2].

Theorem 2.2.1f p,q € R, then
(i) ey(t,t) =1andey(t,s) = 1;

(i) ep(a(t),s) = (1+ u(t)p(t))ep(t, );

(iii) epés) = ecp(t, 8) = ey(s,1);

(V) 205 = epeq(t, 5);
(V) e,(t, s)ey(t,s) = epaq(t, s);

(vi) if p € RT, thene,(t,ty) > 0 forall ¢ € T.

Example 2.1. In order to allow for a comparison with the continuous Pachpatte inequalities
given in [4], we note that, i = R, the exponential function is given by

ep(tj 3) = efstp(’f')d‘l" 6a(t, s) — ea(t—s)7 ea(t, 0) — eat

for s,t € R, wherea € R is a constant angd : R — R is a continuous function. To compare
with the discrete Pachpatte inequalities giver_in [5], we also give the exponential function for
T =7Zas

t—1

ep(tv 3) = H[l +p(7—)]7 ea(ta 8) = (1 + a)t_sv €a(t,0) = (1 + a)t

T=s

for s,t € Z with s < ¢, wherea # —1 is a constant angd : Z — R is a sequence satisfying
p(t) # —1for all t € Z. Further examples of exponential functions can be foundlin [2, Section
2.3].

Theorem 2.3.1f p € R anda, b, c € T, then
b
[ p0ete. o)t =eea) - e

Theorem 2.4.1f a,b,c € T and f € C,q such thatf(¢) > 0 forall « <t < b, then

/a " HOAE> 0.

Theorem 2.5. Lett, € T and assumé : T x T — R is continuous att, t), wheret € T*"
with ¢ > t,. Also assume thak(t, -) is rd-continuous ority, o(t)]. Suppose that for each> 0
there exists a neighborhodd of ¢, independent of € [¢y, o(t)], such that

|k(o(t), 7) — k(s,7) — K2, 7)(o(t) — 5)| <elo(t) —s| forall seU,

wherek® denotes the derivative éfwith respect to the first variable. Then

o(t) = /tk(t,T)AT implies gA(t):/tkA(t,T)AT—i—k(a(t),t).

to to
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The next four results are proved by Agarwal, Bohner and Peterson [1]. For convenience of
notation we let throughout

toeT, To=[ty,00)NT, and T, = (—o0,te]NT.
Also, for a functionb € C.q we write
b>0 if b(t)>0forallteT.
Theorem 2.6(Comparison TheoremSuppose:, b € C,q anda € R*. Then
u®(t) < a(t)u(t) +b(t) forall te T,
implies )
u(t) < ulto)eaq(t, to) +/ eq(t,o(r))b(r)Ar forall teT,.

to
Theorem 2.7(Gronwall’s Inequality) Suppose:, a,b € C,q andb > 0. Then
t
u(t) < alt) +/ b(t)u(t)Ar forall teT,

to
implies

u(t) < a(t) + /ta(T)b(T)eb(t,a(T))AT forall teT,.

to

Remark 2.8. In the next section we show that Gronwall’s inequality can be stated in different
forms (see Theorem 3.1, Theoreém|3.6, Thedrem|3.10, and Théorem 3.12).

The next two results follow from Theorgm .7 with= 0 anda = u,, respectively.
Corollary 2.9. Suppose:, b € C,q andb > 0. Then
t
u(t) < / u(tT)b(T)Ar forall ¢e€T,

to
implies
u(t) <0 forall teT,.
Corollary 2.10. Suppose:, b € C,q, up € R, andb > 0. Then
t
u(t) < wug +/ b(T)u(t)Ar forall teT,

to
implies
U(t) < UOeb(t,to) forall te To.

The continuous version[4, Th. 1.2.2] of Corollary 3.10 was first proved by Bellman, while
the corresponding discrete version [5, Th. 1.2.2] is due to Sugiyama.
The remaining results in this section will be needed later on in this paper.

Corollary 2.11. If p € R* andp(t) < ¢(t) forall t € T, then
ep(t,to) < eyt tg) forall teT,.
Proof. Letu(t) = e,(t,to). Then
ul(t) = p(t)ult) < q(t)u(?).
Now note thay; € R+, so using Theoref 2.6 with= ¢ andb = 0, we obtain
ep(t,to) = ul(t) < ulto)eq(t, to) = eq(t, to)
forallt € T,. O
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Remark 2.12. The following statements hold:
(i) If p > 0, thene,(t,ty) > eo(t,to) = 1 by Corollary|2.1] and Theorem 2.2. Therefore
eep(t,t()) S 1.
(ii) If p >0, thene,(-, ) is nondecreasing sineg (t,t,) = p(t)e,(t, o) > 0.
3. DYNAMIC INEQUALITIES

Note that wherp = 1 andq = 0 in Theoreni 3.1 below, then we obtain Theorem 2.7. For
T = R, seel[4, Th. 1.3.4]. Fof' = Z, we refer tol[5, Th. 1.3.1 and Th. 1.2.3]. The proof of
Theorenj 3.]L below is similar to the proof of Theorem 2.7 and hence is omitted.

Theorem 3.1. Suppose:, a, b, p,q € C,q andb, p > 0. Then

u(t) < alt) + p(t) / t[bmum +q(r)Ar forall teT,

to
implies

u(t) < a(t) + p(t) /t[a(T)b(T) +q(7)]ewy(t,o(7))AT  forall t e Ty.

to

The next result follows from Theorem 8.1 with= ¢ = 0.
Corollary 3.2. Suppose:, b,p € C,q andb,p > 0. Then
t
u(t) §p(t)/ uw(T)b(T)AT forall te T,

to
implies
u(t) <0 forall teT,.
Remark 3.3. The following statements hold:

(i) If p=1in Corollary[3.2, then we get Corollajy 2.9.
(ii) If ¢ =0in Theorenj 3.]l and is nondecreasing ofi, then

u(t) < a(t) + p(t) /t b(T)u(r)Ar forall teT,

to
implies

u(t) < alt) [1 + p(t) /ttb(T)ebp(t, U(T))AT] forall ¢ e T,.

For the case¥ = R andT = Z, seel[4, Th. 1.3.3] and][5, Th. 1.2.4], respectively.

The next result follows from Theorem 8.1. While the continuous version [4, Th. 1.5.1] of
Theorenj 3.4 below is due to Gamidoy, its discrete version [5, Th. 1.3.2] has been established
by Pachpatte.

Theorem 3.4. Suppose, a, b;, p; € C,q andu, b;, p := max;<;<, p; > 0for1 <i <n. Then
n t
u(t) < a(t) + sz(t)/ bi(T)u(t)Ar forall t¢e T,
i=1 to
implies withb := 3" | b,

u(t) < a(t) + p(t) /t a(T)b(1)ewy(t,o(T))Ar  forall ¢ e T,.

to
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The comparison theorem motivates us to consider the following result whose proof is similar
to that of Theorerh 216.

Theorem 3.5(Comparison Theorem)etu,b € C,q anda € R*. Then
ut(t) < —a(t)u(t) + b(t) forall te T,

implies
t
u(t) <u(tyg)esa(t, to) —I—/ b(T)eso(t, 7)AT forall ¢ e Ty,
to
and
ut(t) < —a(t)u(t) +b(t) forall teT,
implies

t
w(t) > ulto)eoa(t, to) + / b(r)ean(t, VAT forall teT:.

to

Proof. We calculate
[ueq (-, to)]A (t) = u® (t)eq(t, to) + u’ (t)a(t)eq(t, to)

forall t € T, so that

u(t)eq(t, to) — ulto)eq(to, to) < / eq(7,t0)b(T)AT

to
for all t € Ty, and hence the first claim follows. For the second claim, note that the latter
inequality is reversed if € T, . O

For the continuous and discrete versions of the following three theorems, we refer the reader
to[4, Th.1.3.4,Th.1.3.3,and Th. 1.3.5] and [5, Th. 1.2.5, Th. 1.2.6, and Th. 1.2.8], respectively.

Theorem 3.6. Suppose:, b, p,q € C.q andb,p > 0. Then
t) < aft) +90) [ D) Han]Ar foral e Ty
implies t
o) < alt)+9(0) [ B0+ ol e .70 Torall e Ty

Proof. Definez(t) := — [\ [b(T)u?(7) + ()] A7. Then for allt € Ty
u?(t) + q(t)

22 (t) = b(t)
< b(t) [a”(t) — p7(£)27 ()] + q(t)
= —b(t)p” ()27 (t) + b(t)a’ (t) + q(t).
Sinceb, p > 0, we havehp® € R, and we may apply Theorgm 8.5 to obtain

z(t) = z(to)es(pr)(t: o) + / eap)(t, ) [b(T)a” (T) + ()] AT

to

T /t 0 eewpe) (8, 7) [b(T)a’ (1) + q(7)] AT
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forallt € T, , and therefore
u(t) < al(t) — p(t)z(t)
to
oft) 4 5(6) [ eor(t.7) B(r)a" (1) + 4(r)] A7
t
forallt € T, . O
Theorem 3.7. Suppose, b € C.q, b > 0, anda € C!;. Then

u(t) < alt) + /t b(t)u(t)Ar forall teT,

to

implies
t
u(t) < a(tg)ep(t, to) +/ a®(T)ey(t,o(r))AT  forall teT,.
to
Proof. Define z(t) := a(t) + ft 7)A7. Then we obtaine®(t) < a®(t) + b(t)z(t).
Applying Theoreny 26 completes the proof. O

Theorem 3.8. Suppose, u, b, p € C,q andb,p > 0. Then

t
u(t) > o(s) —p(t)/ b(r)¢? (t)Ar forall s,teT, s<t
implies
u(t) > o(s)ecpep(t,s) forall s teT, s<t.
Proof. Fix t, € T. Then

to
o(t) < u(ty) —I—p(to)/ b(t)¢? (t)Ar  forall teT,.
By Theorenj 3.6, we find

P(t) < u(to) + p(to u(to)es(p(io) (t, T)AT

to
) [ v
t
to
= u(ty) + u(to)/ b(7)p(to)evpeeo) (T, ) AT
t
= u(to) + u(to) [ebp(to)(to, t) — 1}
= u(tﬂ)ebp(to) (t07 t)
forallt € T, and thus
u(to) > o(t)ecwp) (to,t) forall ¢e Ty,
Sincet, € T was arbitrary, the claim follows. O
Remark 3.9. The following statements hold:
(i) The continuous version of Theorém [3.8 is due to Gollwitzer.
(i) WhenT = R,
Coip (t,s) = e PO 1 o0,
and wheril = Z,

t—1

eaom (t:s) = [ [T +p(H)b(r)] .

T=s
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(i) If p=1in Theorenj 38, then we obtair(t) > ¢(s)ecy(t, s).

The following Volterra type inequality reduces to Theolen 2.7 # p = 1 andq = 0. For
T = R, it is due to Norbury and Stuart and can be found.in [4, Th. 1.4.3].TFer Z, see|[5,
Th. 1.3.4 and Th. 1.3.3].

Theorem 3.10. Supposeu, a,b,p,q € C,q andw,b,p,q > 0. Letk(t,s) be defined as in
Theorenj 2]5 such thato(t),t) > 0 andk?(t,s) > 0 for s,t € T with s < t. Then

u(t) < a(t) + p(t) /tt k(t,7) [b(m)u(r) + q(7)] AT forall teT,

implies
u(t) < a(t) + p(t) /t b(t)ea(t,o(t))Ar forall ¢eT,,
where ) .
a(t) = k(o(t), t)b(t)p(t) + /to k2 (t, T)b(T)p(T) AT
and

b(t) = k(o (t),t) [a(t)b(t) + q(t)] + / k2 (,7) la(r)b(7) + g(7)] AT

to

Proof. Definez(t) := [ k(t,7) [b(7)u(r) + q(7)] Ar. Then for allt € T,

to

22(t)

): 1) [b( )U(t)+Q(t)]+/ k2 (t,7) [p(r)ulr) + q(7)] Ar

to

IN

k(o(t),t) [b(t
{k(a(t),t)b(t)p(t) +/t k’A(t,T)b(T)p<T>AT} z(t)
+

k(a(t),t) [a(t)b(t) + q(t)] +/t K2 (t,7) [a(m)b(T) + q(7)] AT
= a(t)z(t) + b(t).

In view of a € R, we may apply Theorefn 2.6 to obtain
t

2(t) < z(to)ea(t, to) +/ ea(t,o(T))b(T)AT :/ ea(t,o(T))b(T)AT

to to

forall t € Ty. Sinceu(t) < a(t) + p(t)z(t) holds for allt € Ty, the claim follows. O
Corollary 3.11. In addition to the assumptions of Theorem 8.10 with b = 1 and¢ = 0,
suppose that is nondecreasing. Then
t
u(t) < alt) +/ kE(t,T)u(r)Ar forall teT,

to

implies
u(t) < a(t)es(t,to) forall e Ty,

where

a(t) = k(o(t),t) +/ k2 (t, T)AT.

to
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Proof. By Theorenj 3.10 with

b(t) = k(o(t),t)a(t) +/ E2(t, T)a(T) AT

to

k(o(t),t) + /t kA (t, T)AT} a(t)

to

VAN
—N

we obtain for allt € T,

u(t) < alt) + /t: b(r)ea(t, o (1)) AT
< a(t) {1 + /t: a(7)ealt, a(T))AT}

= a(t) {1+ ealt,to) — ea(t, t)}
= a(t)ea(t, to),
where we have also used Theoriemd 2.2 and Thebrem 2.3. O
The following theorem with: = 1 reduces to Theorem 3.6.

Theorem 3.12. Supposeu, a,b,p,q € C,q andu,b,p,q > 0. Letk(t,s) be defined as in
Theoren) 25 such thato(t),t) > 0 forall t € Ty andk®(t,s) < 0for s,t € Ty with s > ¢.
Then

u(t) < a(t) + p(t) /tto k(t,7)[b(T)u’(T) + q(7)] AT forall teT,

implies
u(t) < a(t) + p(t) /to b(T)eca(t,7)Ar forall teTy,
where t o
alt) = Ko HOR((0) = [ Kb (AT
and

b(t) = k(o (7),t) [b(t)a” () + q(t)] - /t ) k2(8,7) [b(7)a” (1) + q()] Ar.
Proof. Definez(t) := — [ k(t,7) [b(7)u” (1) + ()] A7. Then for allt € Ty \ {to}
22(t) = k(o (t),t) [b(t)u” () + q(t)] — /t ) kK2(t ) [b(r)u (1) + (1)] AT
< {0,000~ [t 1A |0

+k(a(t),8) [b(t)a” (1) + q(t)] — /t CKA (T b(r)a (7) + a(r)] Ar

= —a(t)27(t) + b(t).
In view of @ € R+, we may apply Theorefn 3.5 to obtain for alt T,

() > =(to)ecn(t, to) — /t ot P)B(T)AT = — /t alt, T)B(r) AT

Sinceu(t) < a(t) — p(t)z(t) for all t € Ty, the claim follows. O
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Corollary 3.13. In addition to the assumptions of Theorem 8.12 with b = 1 andg = 0,
suppose that is nondecreasing. Then

to
u(t) < alt) +/ k(t,7)u’(r)Ar forall teT,
t
implies
u(t) < a(t)ez(to,t) forall te Ty,
where

a(t) = k(o(t), 1) — /t R T) AT

Proof. The proof is similar to the proof of Corollafy 3]11, this time using Thedrem|3.12 instead
of Theoren) 3.10. Note also that this time we hage < a(t)a’(t). O

The continuous versions of our next two results are essentially due to Greene and can be
found in [4, Th. 1.6.2 and Th. 1.6.1]. Their discrete versions [5, Th. 1.3.8 and Th. 1.3.7] are
proved by Pachpatte. Note that for the discrete versions, “normal” exponential functions are
used, while we employ time scales exponential functions below.

Theorem 3.14.Suppose, v, f, g, p,q,b; € C,qg andu, v, f,p,q,b; > 0,7 € {1,2,3,4}. Then

u(t) < f(t) + p(t) [/ by (T)u(T)AT +/ eq(T, to)bQ(T)U(T)AT:| forall teT,

and
v(t) < g(t) + p(t) [/t eoq(T, to)bs(T)u(T)AT —|—/t b4(T>U(T)AT:| forall teT,
imply
u(t) < e, (t,to)Q(t) and wv(t) <Q(t) for te T,
where .
Q(t) = f({t) +g(t) +p(t)/t [f(7) + g(T)] b(T)ewp(t, o (7)) AT
with

b(t) = max {by(t) + bs(t), ba(t) + ba(t)}.
Proof. We definew(t) = eqy(t, to)u(t) + v(t). By Remark 2.12 we obtain for alle T,
w(t) < eqq(t, to) f(t) + g(t)

+900) [ {lecalttha(r) + oyl to)ba()] u(r)

to

+ [eaq(t, T)ba(T) 4 ba(T)] U(T)} AT
< egy(t, to) f(t) +9(t)

+000) [ {ecalrt0) ba(r) + b u(r) + ba(r) + b)) ()} Ar

to

< ecalt 1)) 490+ p(0) [ D)7

to

< 10 +9(0) 4000 [ B(ru(r)dr

to
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Now b, p > 0 so that Theorern 3.1 yields for alic T,

wlt) < £0)-+90)+p(0) [ 1) + gt o(r)AT = Q1)

Hence
u(t) = eq(t, to)w(t) — eq(t, to)v(t) < ey(t, to)Q(t)
and
v(t) = w(t) — esqy(t, to)u(t) < Q)
forallt € T,. O

Corollary 3.15. In addition to the assumptions of Theorem 3.14 vith = ¢, ¢(t) = ¢, and
p(t) = 1, suppose;, c; € R. Then
t
u(t) < e+ / [b1(T)u(T) 4 e4(T, to)bo(T)v(T)] AT forall te T,
to

and .
v(t) <o+ / leaq(T,t0)bs(T)u(T) + by(T)v(T)] AT forall teT,

to
Imply withe = 1+ ¢
u(t) < cepaq(t,to) and wv(t) < cey(t,ty) forall t e T,.

Proof. In this case we find, using Theor¢m|2.2 and Thedrefn 2.3, that

t
Qt)=c+ / cb(T)ey(t, o(T))AT = cep(t, to).
to
Henceu(t) < e,(t,to)ces(t, to) = cepaq(t,to) anduo(t) < cey(t,to) for all t € Ty by Theorem
3.14. O
4. FURTHER DYNAMIC INEQUALITIES

Our first few results are, even for the ca8es- R andT = Z, more general than any result
given in [4,5].

Theorem 4.1. Suppose:, a, b, ¢, d, p,w € C.q such thatu, a, b, c,p,w > 0. Then

u(t) < w(t) + p(t)/ {[a(T) + b(7)]u(T) + b(T)p(7) /T[c(s)u(s) + d(s)]As} AT

to to
forall t € Ty implies

ult) < w(t) + p(t) / (a(r) + b(r)]

o) 40) [ yasanalroeDllat b+t d()as ) Ar

to
forall t € T,.

Proof. Define

and
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and therefore

rA(t) = 28 c t)z(t)] + d(t)
< la(t) + b(t)][w Hr(t)] + c()]w(t) + p(t)rt)] + d(t)
[(a + b+ )p|(t)r(t) + [(a+ b+ c)w + d|(t).

By Theorenj 2.6 we fin

r(t) < / carpion(t, o ()@ +b + yw + d(1)Ar

to

sincer(ty) = 0. Using this inz2(¢) < [a(t) +b(t)][w(t) +p(t)r(t)] and integrating the resulting
inequality completes the proof. O

In certain cases it will be possible to further evaluate the integral occurring in Th¢orem 4.1.
To this end we present the following useful auxiliary result, which is an extension of Theorem

2.3.
Theorem 4.2. Supposef : T — R is differentiable. Ifp € R anda, b, c € T, then

b
/ fO)p(t)ep(c, a(t)) At = ey(c,a)f(a) — ey(c, b) f(b) +/ ep(c, (1) F2(1)At.
Proof. We use Theorein 2.2 and integration by parts:

[ eeopsoat= [ ecyot.apmsmar
b 1
:/a Weep(ﬂc)p(t)f(t)ﬁt
. / (©9) ()enn(t, ) ()AL
:—/ egp(t,c)f(t)At
. {e@p@, OF0) = eep(as1(0) = [ ecplot) C)fA(t)At}

b
—cle.a)f(@) - e 00+ [ eleo®)fOar
which completes the proof. O
Using Theorem 4]2, we now present the following result.

Theorem 4.3. Suppose:, a, b, c,d,p,w € Cq such thatu, a, b, c,p,w > 0. Furthermore as-
sume thatv is differentiable and that is nonincreasing. Then

ult) < wlt) + 000 [ {[am £ blutr) + () [ Tetsyuts) + d(s)]As} Ar
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forall t € Ty implies

u(t) < w(®) +p(t) [ fa(r) +4(r)

X {e(a+b+0)p(7', to)w(to) + /tT p(atbtc) (T 0(5))[wA(s) +p(7)d(s)]As} AT
forall t € T,.

Proof. Using Theorem 4]2 and the fact thais nonincreasing, we employ Theorém|4.1 to find

ult) < w(t) +p(t) / (a(r) + b(r)}(r) A,

where 0
2(t) = w(t) + p(t) / etaivrop(to(T)[(a+ b+ cJw + d)(7)Ar

to

< w(t) + p(t)/ e(a+b+c)p(t7 U(T))d(T)AT

to

T / tasrop(t, o(7) @+ b+ O)(T)p(ryw(r) Ar

to

= 5(t) [ elarmonlt.o(TATIAT + elusprp(ts o)t

to
t
+ [ caronltotr)u (a7
to
and this completes the proof. O

Corollary 4.4. Under the same assumptions of Theofrem 4.3 we can conclude

U(t> < €(a+b+c)79<t7 t(])’w(to)

" / {0+ 1) +00)] [ csnean(ro(6)(6) + pr)i(s)as | ar

to
forall t € T,.

Proof. The estimate
t

(1) / a(7) + B(7)|e(assrap(ms L) AT < / [a(r) + b(r) + ()P eqasprarp( to) AT

to to

completes the proof as the latter integral may be evaluated directly. O

The following two results (foflf = R andT = Z, seel[4, Th. 1.7.2 (iv) and Th. 1.7.4] and [5,
Th. 1.4.4 and Th. 1.4.2], respectively) are immediate consequences of THeorem 4.1.

Corollary 4.5. Suppose, b, ¢, p, w € C.q such thatu, b, ¢, p,w > 0. Then

ult) < w) +5(0) [ 060) {utr) +510) [ lsputs)ns) ar

to to

forall t € T, implies

u(t) < w(t) +p(t)/ b(T) {w(T) + p(7) /T epvre) (T,0(8)) (b + c)(s)w(s)As} AT

to to
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forall t € T,.
Proof. Puta = d = 0 in Theorenj 4.]1. O

Corollary 4.6. If we suppose in addition to the assumptions of Corolfary 4.5 ghiatnonin-
creasing andv is nondecreasing, then

u(t) < w(t) [1 + p(t) /t b(T)e(btepp(T, tO)AT] forall ¢eT,.

to

Proof. We have
t

pu>/"qum@¢dfnw@»w4—@@vAff;w@>/“qumuﬁwr»pmo@+—@@»Ar

to to
and the latter integral can be directly evaluated using Theprem 2.3, hence yielding the result.
OJ

Remark 4.7. The right-hand side of the inequality in Corolldry 4.6 can be further estimated
and then evaluated by Theorém|2.3 so that the statement of Cofollary 4.6 can be replaced by

U(t) < w(t)e(b+c)p(t, t[)) forall ¢ To.

In the following theorem we state some easy consequences of Theofem 4[3. See [4, Th. 1.7.2]
for T = R and [5, Th. 1.4.6] fofl = Z.

Theorem 4.8. Supposeu,a,b,c,d,q € C,q andu,a,b,c,q > 0. Letug be a nonnegative
constant. Then

0 u(t) < ug + / t b(7) {um +q(r) + / ' c(s)u(s)As] A7, teT,

to to

implies
t
u(t) < g +/ Q(r)Ar forall teT,,
to

where

Q(t) = b(t) {erb-‘rc(tatO) +/ b<T>Q<T>€b+c(tv U(T))AT +p(t)} ;

to

(ii) u(t) < up + / t b(7) {u(f) + / " le(s)uls) + d(s)] As} AT, teT,

to to
implies

u(t) < wug+ /t b(T) [uoeb+c(7', to) + /T epre(T, 0(3))d(5)As} A7 forall te Ty;

to to

(i) w(t) <wg+ /ta(s)u(s)As + /t b(s) [u(s) + /S C(T)U(T)AT:| As, teT,

to to to
implies
u(t) < upeqrpie(t,to) forall ¢ e Ty.
Proof. In each case we use Theorpm|4.3, for (i) with

t
w=d=0, p=1 and w(®) =+ [ ora(r)dr

to
for (i) with
a=0, p=1 and w = uy,
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and for (iii) with
d=0, p=1, and w = uy.
In (i) and (ii), the claim follows directly, while the calculation

u(t) < g {1 + / la(r) + () ewenenlr, mm}

to

< g {1 + /t[a(T) + b(7) + e(7)]earpre(T, tO)AT}

to
= u06a+b+c(t7 tO)

completes the proof of statement (iii). O

For further reference we state the following corollary, whose continuous and discrete versions
can be found in[4, Th. 1.7.1] and/[5, Th. 1.4.1], respectively.

Corollary 4.9. Suppose:, b, c € C.q andu,b,c > 0. Letuy be a nonnegative constant. Then

u(t) < up+ /tb(T) {u(T) + /T c(s)u(s)AS] Ar forall teT,

to to
implies

¢
u(t) < ug {1 +/ b(T)epre(T, tO)AT} forall teT,.

to
Proof. This follows from Theorerp 4|8 (i) witlh = 0 or from Theoren 4]8 (iii) withu = 0. O
Remark 4.10. As in Remark 4.J7, we can replace the conclusion in Coroflary 4.9 by
u(t) < wpepse(t,to) forall ¢ e Ty.
ForT = Z in the following result, we refer to [5, Th. 1.4.3].

Theorem 4.11. Supposeu, a,b,c € C.q, a > 0, andu,b,c > 0. Letuy be a nonnegative
constant. Then

u(t) < alt) {uo + /t: b(7) [U(T) + /T c(s)u(s)As] AT} forall teT,

to
implies

t
() u(t) < upa(t) {1 +/ b(T)epte(T, to)AT} forall teT,
to
if 0 < a(t) <1 holds for allt € T, and
t
(i) u(t) < a(t)ug {1 —I—/ a(T)b(T)eq(bre) (T, to)AT} forall teT,
to

if a(t) > 1 holds for allt € T.

Proof. Sincea(t) > 0, we have

u(t) t T
—= <wug+ [ b(7) |u(T)+ [ c(s)u(s)As| Ar.
a(t) to to

First we assume thaéit< a(¢) < 1 holds for allt € T. Then

% =t /t:b(T) {% + /t OT C(s)%m} AT
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We apply Corollary 4)9 to obtain

u(t) '
—= <wug 1+ | b(7)epse(T,to) AT forall t¢e T,
CL(t) to
so that (i) follows. Next we assume thgt) > 1 holds for allt € T. Then
u(t)

< /t:b(f) u(r) + / ' c(s)u(s)As} Ar

to

_UOJF/t:b( ) ZE:; (T )+/Tc(8)% ( )AS} At
<UO+/t:b(T) % ) +a(r )/ c(S)%a(S)As} A7
e [(bnr) [2D 4 [t Bt

We again apply Corolla@.Q to obtain
u(t) '
m <ug 1+ [ a(m)b(T)eapre) (T, to) AT forall teT,
to
so that (ii) follows. Hence the proof is complete. O

Remark 4.12. If ¢ = 0 in the above theorem witla > 0 andu, € R, then we can use Theorem
[3.1, Theorem 2|3, and Theorém|2.2 to conclude

u(t) < wupa(t)ew(t,to) forall ¢ e To.

This improves|[5, Th. 1.2.7] (Ma’s inequality) for the cdBe-= Z, where under the assumptions
a > 0 anduy > 0 a similar result as in Theorem 4]11 is shown.

Remark 4.13. If a = 1 in Theorenj 4.11, then we get Corollary 2.10.

In[4, Th. 1.7.5] forT = R and in [5, Th. 1.4.8] fofl = Z, a andb are assumed to be positive
to get the result which we give next.

Theorem 4.14.Suppose, a, b, c,p € C,q andu,a,b,c,p > 0. Letuy be a nonnegative con-
stant. Then

) uwsM+[M@M@g[dmmm{A&te%
implies 0 0

u(t) < {UQ + /ta(s)p(s)As} eqwc(t, tg) forall te Ty,

to
where

(i) u®s%+/l@p@+/%m<[dmmmﬁAﬂAatem

implies

ut) < {u0+ / ta(T)p(T)AT}eag(t,to) forall teT,,
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where

()= [ ) ([ etar) ar

Proof. We only prove (i) here since the proof of (ii) can be completed by following the same
ideas as in the proof of (i) given below with suitable changes. First we define

2(t) == uy + /ta(s) {p(s) + / C(T)U(T)AT] As.

to to

Thenz(ty) = ug, u(t) < z(t), and

22(t) = alt) {p(t) + /t c(T)u(T)AT} > 0.

to
This implies that is nondecreasing. Therefore

22(t) < a(t)p(t) + a(t)/ c(T)z(T)AT < a(t)p(t) + a(t)C(t)z(t).

to

By Theorenj 2.6 we obtain

(1) < 2(to)eac(t, to) + / eac(t, (7)) alr)p(r) AT,

to

Sinceu(t) < z(t), we get

u(t) < wpeqc(t, to) +/ eqc(t,o(r))a(T)p(T)AT.

to

By Theorenj 2.2 and Remalrk 2]12 we get the desired result. O

Our next result slightly differs from the corresponding resultsTTo= R as given in([4,
Th. 1.7.3] and fofl = Z as given in([5, Th. 1.4.7].

Theorem 4.15. Suppose, b,c,q € C,q andu,b,c,q > 0. Letuy be a nonnegative constant.
Then

u(t) < wup+ /tt b(s) {u(s) + /ts c(7) {u(r) + /th(’y)u(fy)Afy} AT} As, teT
implies O O 0

u(t) < wpeg(t,tyg) forall t¢eTy,
where .

olt) =)+t {1+ [ alr)a}.

Proof. We define

) = o + /t: b(s){u(s)—I— / o) {U(TH / Tq(v)u(v)A'y} AT} As

to to
and

0=+ [ o) 20+ [Tasa]

to to
We observe that is nondecreasing and use Theofenj 2.6 to get the desired result. [

The final result in this section is more general than Thedrern 3.8. TFer R, see [4,
Th. 1.7.6]. ForT = Z, seel[5, Th. 1.4.5].
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Theorem 4.16.Suppose, u, p,b,c € C,q and¢, u, b, c,p > 0. Then

u(t) > 6(s) — p(t) /:b(r) {¢a(r)+/g

implies

t
c(fy)qﬁ”(fy)Ay] At forall steT, s<t
(1)

u(t) > {¢(s) +/ 6(7)¢U(7)A7} €S (p(t)btc) (t,s) forall s,teT, s<t.

Proof. By assumption we have

o) < u(t) +2l0) [ e e

t

C('y)¢"(7)Av} Ar.
(7)

Define

Define

r(s) = 22(s) — ¢(5)27(s) < = [p(t)b(s) + ¢(s)] 77 ().
By Theorenj 3.5 we obtain

T(S) > r(t)ee(p(t)bJrc)(Sa t) = _u(t)e@(p(t)bJrC)(S?t)v
and therefore

2(s) + / )2 (A > —ult)eopupio(s ).

Sincez(s) < —¢(s), we get

t
—¢(s) — / ()97 (VAY = —u(t)ecppro (s, 1).
This gives the desired result. O

Remark 4.17. The following statements hold:
(i) If ¢ =0in Theoren 4.16, then we obtain Theorem 3.8.

(ii) In [4] B,

utt) 2 60) {14500 [ esltsotrar

is given as a result of Theorgm 4116 instead. With only minor alterations of our proof
presented above, the corresponding claim can be verified, too.
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5. INEQUALITIES INVOLVING DELTA DERIVATIVES

In this section we establish some inequalities involving functions and their delta derivatives.
We give the estimates on the delta derivative of functions and consequently on the functions
themselves. Continuous and discrete versions (all due to Pachpatte) of the four theorems pre-
sented in this section may be foundlin [4, Th. 1.8.1, Th. 1.8.2, and Th. 1.8.3]/and [5, Th. 1.5.1,
Th. 1.5.2, Th. 1.5.3, and Th. 1.5.4], respectively.

Theorem 5.1. Suppose:, u™, a, b, c € C,q andu, u®,a, b, c > 0. Then

(i) u?(t) < a(t) + b(t) /t c(s) [u(s) +u®(s)] As  forall te T,

to

implies, provided thak(¢) > 1 holds for allt € T,

u®(t) < a(t) + b(t) /t c(s) [a(s) +b(s)b(s)] As forall ¢ e Ty,

to

where
t

a(t) :u(to)—i-a(t)—l—/ a(s)As and  b(t) :/ c(s)epe+1)(t, o(s))a(s)As;

to to

(i) u®(t) < a(t) + b(t) {u(t) + /t c(s) [u(s) + u(s)] As} forall teT,

to
implies

u®(t) < a(t) + b(t) {u(to)eb+c+bc(t, to) +/ bt crve(t,o(T))a(T)e(T) + 1]AT}

to
forall t € T,.
Proof. In order to prove (i) we defing(t) := j;i c(s) [u(s) + u?(s)] As. Then we have
u(t) < a(t) + b(t)z(t).

Integrating both sides of this inequality fraijto ¢ provides

u(t) < wu(ty) + / [a(s) + b(s)z(s)]As.

to

This implies that

22(t) < cft) {d(t) + b(t) lz(t) + /t b(s)z(s)As} } :
Now we define-(t) := z(t) + ftz b(s)z(s)As to obtain
r2(t) < b(t) [e(t) + 1 r(t) + c(t)a(t).

By Theoren 2.6, we get

r(t) < / epe+1)(t, o(7))e(T)a(T)AT = b(t)

to

sincer(ty) = z(to) = 0. This implies that
Z2(t) < eft) [alt) + b()b(1)] -
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Upon integrating both sides of the latter inequality, we arrive at

2(t) < /t e(T) [d(T) + b(T)l_)(T)} AT.

Sinceu® < a + bz holds we get the desired result. The proof of (ii) is shorter than the first

part: First we define(t )+ fto s) [u(s) + u®(s)] As. Then one can get easily that
ZA(t) < [b(t) + c(t) + c(t)b(t)] z(t) + a(t) [c(t) + 1].
Applying Theoren 2J6 and® < a + bz completes the proof. O

Theorem 5.2. Suppose:, u>, a, b, ¢, p € Cyq andu, u®, a, b, c,p > 0. Then
0 ) < a(t)ult) + b(t) {p(t) Fu(t) + / t c(s)u(s)As} forall e T,
implies "’
u(t) < u(to)eq(t, to) + /t eq(t,o(r))b(7) [p(T) +a(r)]Ar  forall t e Ty,
to

where :
a(t) = ulto)eappre(t, fo) + / aric(t, o (r))b(r)p(r)AT:

(i) u®(t) < a(t)u(t) + b(t) {p(t) +u(t) + /t c(s)uA(s)As} forall teT,
implies 0

u(t) < ulty)eq(t, to) —i—/ eq(t,o(r)) [p(T) +

to

b(r)] b(r)Ar forall te Ty,

where

b(t) = ulto)eqsexwrn(t1o) + / Clvsoen (0 (r) L+ e(r)(rp(r) Ar

to

Proof. To prove (i) we define(t )+ j; . Then we obtain

u(s)As
2(t) > u(t), z<t0>=u<to>, and u%)s alt)=(t) + b(t) [p(t) + =(2)] .
This implies that
zA(t) [a(t) + b(t) + c(t)] 2(t) + b(t)p(t).

By Theoren] 2.6:(t) < a(t). Henceu®(t) < a(t)u(t) + b(t) [p(t) + a(t)]. Applying again
Theoren-i gives us the deswed result. Finally, in order to prove (i), we define- u(t) +

Ji e(s)u(s)As and apply Theore@ 6 twice. O

For T = Z, our result of the second part of the following theorem is different than!in [5,
Th. 1.5.3].

Theorem 5.3. Suppose, u>, a,b € C.q andu, u™,a,b > 0. Then

u®(t) < ulty) + /t: a(s) {u(s) + u®(s) + /t: b(T)UA(T)AT} As

forall t € Ty implies

t
UA(t) < U(to) |:1 + 2/ G(T)€1+a+b(7', to)AT:| for all te TO;
to
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u (t) < ulty) + /t:a(s) {u(s) + uP(s) + /t:b(r) [u(7) +u?(7)] Ar} As

forall t € T, implies
t
u(t) < ulty) {261+a(t,t0) + / b(T) [1 + 2e91 a10(T, t0)
to

+/tT b(s)eatarn(T, a(s))As] e11a(t, J(T))AT} :
Proof. To prove (i), we define
z(t) == u(to) +/t a(s) [u(s) +u®(s)] As +/t a(s) [/ts b(T)uA(T)ATl As
in order to get
22 (t) < alt) [u(to) + 2(t) —l—/t 2(s)As +/t b(T)Z(T)AT:| .
Next define

r(t) == u(to) + 2(t) —l—/t z(s)As —l—/t b(T)z(T)AT

to obtain
r2(t) < [a(t) + b(t) + 1] r(t).
We apply Theorerp 2|6 twice to get the desired result. To prove (ii), we define

2(t) = ul(ty) + /t: a(s) [u(s) + u(s)] As + /t: a(s) { /t b(r)[u(r) + u%)mf} As

to get

22(t) < aft) {u(to) + /tt 2(s)As + z(t) + /tt b(T) {u(to) + /tT z(s)As + 2(7)} AT} :
Defining O O O

provides
r2(t) < [a(t) + 1] r(t) + b(t) {u(to) + /t r(s)As + r(t)} :
By Theorenm 5.2 (i), we obtain

Ht) < ulto) {2el+a<t,to> T / 1valt, o(7))b(r)

X {1 4 Qearars(Tito) + /t Carpia(T, a(s))b(s)As] AT} .

Sinceu®(t) < z(t) < r(t), the proof is complete. O

We note that the inequalities in our final result provide estimategrit) and consequently,
after solving, estimates an(t).
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Theorem 5.4. Suppose:, u™, >, a, b, ¢ € Cq andu, u®, u>>,a,b,c > 0. Then
() w2 (t) < a(t) 4 b(t) /t c(s) [u(s) +u®(s)] As forall t¢e T,
to
implies
W20 < aft) +0(0) [ pr)en(t or)ar

to

where

() = e(t) {u(to) (=t + Du(tg) + / t [am + / ' a<s)A51 AT}

to to

q(t) = c(t) /t: {b(T) + /tOT b(s)As} AT;

(i)  u™(t) < alt) +b(t) {uA(t) + /tt c(s) [u(s) +u?(s)] As} forall teT,

and

implies

utB(t) < a(t) + b(t) {uA(to)eq(t,to) + / p(T)e,(t, a(T))AT} ,

to

where

o(®) :a(t)+c(t){u(to)+(t—t0+1)uA(t0)+ / t {a(TH / Ta(s)As] AT}

to to

and

a(t) = b(t) + c(t) / t [b(T) + / ' b(s)As] Ar.

to to

Proof. In order to prove (i), we define(t) := ftz c(7) [u(r) + w(7)] Ar and obtain

ut(t) < u(to) +/t [a(T) 4+ b(7)2(T)] AT < u(to) +/t a(T)AT + z(t)/t b(T)AT,

where we have used the fact thas nondecreasing. This implies that

u(t) < u(to) +u(to)(t — to) / / S)ASAT + z(t / / s)ASAT

and therefore®(t) < p(t) + q(t)z(t). Then by Theoreth 2|6 we get

A0 < [ eftoprar

to

sincez(ty) = 0. Applying the inequalityuAA < a + bz completes the proof. To prove (ii), we
definez(t) := u?(t) + ft s) [u(s) + u®(s)] As. Now, by following the same arguments as
in the proof of (i) glven above we get the required inequality. O
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