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ABSTRACT. In this paper, we introduce the concepts of extended well-posedness for quasi-
variational inequalities and establish some characterizations. We show that the extended well-
posedness is equivalent to the existence and uniqueness of solutions under suitable conditions.
In addition, the corresponding concepts of extended well-posedness in the generalized sense are
introduced and investigated for quasivariational inequalities having more than one solution.
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1. INTRODUCTION

The importance of well-posedness is widely recognized in the theory of variational prob-
lems. Motivated by the study of numerical production optimization sequences, Tykhonov
[18] introduced the concept of well-posedness for a minimization problem, which is known
as Tykhonov well-posedness. Due to its importance in optimization problems, various con-
cepts of well-posedness have been introduced and studied for minimization problems (see
[18,[1,5) 16, 19, 20]) in past decades. The concept of well-posedness has also been generalized
to several related variational problems: saddle point problems [2], Nash equilibrium problems
[11,[17,/15], inclusion problems][4] [7} 9], and fixed point problems [4]) 7, 9]. A more general
formulation for the above variational problems is the variational inequalities problems, which
leads to the study of the well-posedness of variational inequalities. In [14], Lucchetti and Pa-
trone obtained a notion of well-posedness for a variational inequality. Lignola and Morgan [13]
introduced the extended well-posedness for a family of variational inequalities and investigated
its links with the extended well-posedness of corresponding minimization problems. Lignola
[8] further introduced the notion of well-posedness for quasivariational inequalities. Recently,
Lalitha and Mehtal [10] presented a class of variational inequalities defined by bifunctions. In
[3], Fang and Hu extended the notion of well-posedness of variational inequalities defined by
bifunctions.
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Inspired and motivated by above research works, in this paper, we study the well-posedness
of quasivariational inequalities (in short, QVI) defined by bifunctions. We introduce the notion
of extended well-posedness for QVI, and establish some of its characterizations. Under suit-
able conditions, we prove that the extended well-posedness is equivalent to the existence and
uniqueness of solutions to QVI. With an additional compactness assumption, we also derive the
equivalence between the extended well-posedness in the generalized sense and the existence of
solutions to QVI.

2. PRELIMINARIES

Throughout this paper, I€t be a reflexive real Banach space d&ide a nonempty closed
convex subset of’, unless otherwise specified. L6t: K — 2" be a set-valued mapping,
andh : K x E — R be a bifunction, wher& = R U {+oc}. The quasivariational inequality
problem consists in finding a point € K, such that
(QVI) up € S(ug) and h(ug,ug —v) <0, Yove S(up).

Note thaf QV] includes as a special case the quasivariational inequality. In this paper, we
consider the parametric form [of QVI which is formulated as follows:

(QVI), up € S(up) and h(p,up, up—v) <0, Yov € S(up),

whereh : P x K x E — R andP is a Banach space. Now we recall some concepts and results.
Let (X, 1), (Y, o) be topological spaces. The closure and interior of a nonempty eétX are
respectively denoted by@land intG.

Definition 2.1 ([8]). A set-valued mapping : (X, 7) — 2(*) is called:

(i) closed-valued if the sdt(x) is nonempty and-closed, for every: € X;
(i) (1,0)-closed if the grapltzr = {(x,y) : y € F(x)} is closed inr x o;
(iii) (7, 0)-lower semicontinuous if for every-open subsel” of Y, the inverse image of the
setV, F-Y(V)={z € X : F(z)NV # ()} is ar-open subset ok ;
(iv) (7,0)-subcontinuous ot C FE (F is a reflexive real Banach space) if for every net
{z,} T-converging inH, every net{y,}, such thaty, € F(z,), has as-convergent
subset.

Definition 2.2 ([8]). The Painleve-Kuratouski limits of sequeng#,,}, H,, C Y are defined
by:

limiann:{yGY:HynGHn,HGJ\C with limyn:y},
and
limsupHn:{yGY:anT+oo,nk€N,E|ynkGan,k‘EN, with liinynk:y}.

Definition 2.3 ([3]). A bifunction f : K x £ — Ris said to be:

(i) monotone iff(z,y — z) + f(y,x —y) < 0,Vz,y € K
(i) strongly monotone if there exists a constant 0 such that

(iii) pseudomonotone if forany,y € K, f(z,y —x) > 0= f(y,x —y) <0;
(iv) hemicontinuous if for every,y € K andt € [0, 1], the functiont — f(z + t(y —
x),y — x) is continuous af*.

In the sequel we introduce some notions of extended well-posedness for, (QVI)
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Definition 2.4. Letp € P, {p,} € P, with p, — p. A sequencgu,, } is an approximation for
(QVI), corresponding tdp,, } if:
(i) u, € K,Vn € N;
(i) there exists a sequenge,} | 0 such thatl(u,, S(u,)) < e, (i.e. u, € B(S(un,en)),
andh(pn, un, u, —v) < &,, Yo € S(u,), Yn € N, whereB(S(u),e) = {y € E :
d(S(u),y) < e}

Remark 1. When the set-valued mappirjis constant, say(u) = K for everyu € K, the
parametric form of (QVI) is a parametric form of a variational inequality. In this case, the class
of approximating sequences coincides with the class definédlin [13].

Definition 2.5.

(i) (QVI), is said to be extended well-posed if for everye P, (QVI), has a unique
solutionw,, and every approximating sequence for (QWtprresponding t@, — p
converges ta,,.

(i) (QVI), is said to be extended well-posed in the generalized sense if for pvery,
(QVI), has a nonempty solution sE{p), and every approximating sequence for (QVI)
corresponding t@,, — p has a subsequence which converges to some poifif9f

Lemma 2.1 ([13]). Let K be a nonempty, closed, compact and convex subsgt tfe set-
valued mapping is convex-valued and closed-valued. If the bifuncfiols hemicontinuous
and pseudomonotone, the following problems are equivalent:

(i) findup € K, suchthat wuy e S(ug) and h(ug,up —v) <0, Vv e S(u);

(i) findug € K, suchthat wug € S(uy) and h(v,ug—v) <0, Vo€ S(ug).

Lemma 2.2([12]). Let{H, } be a sequence of nonempty subsets of the speatech that:

(i) H, is convex for every € N,
(i) Hy C liminf, H,;
(iii) there existsn € N such thatint N>, H,, # 0.
Then, for everyy, € int Hy, there exists a positive real numb&such thatB(ug, ) C H,,
Vn > m.

If £ is a finite dimensional space, the assumption (iii) can be replacad B, +# (.

3. CHARACTERIZATIONS OF EXTENDED WELL -POSEDNESS

In this section, we investigate some characterizations of extended well-posedness for quasi-
variational inequalities. For (QVJ) the set of approximating solutions is defined by

T(0,¢e) = U {fue K: we B(S(u),e) and h(p,u,u—v)<e, YveS(u)},
peB(p,5)

whereB(p, §) denotes the closed ball with radidignd centered at

Theorem 3.1. Let the following assumptions hold:

(i) the set-valued mapping is nonempty-valued and convex-valugdw)-closed,(s, s)-
lower semicontinuous, and, w)-subcontinuous o ;
(i) for every converging sequenge,, }, there existsn € N, such thatint N,,>,,S, # 0
(S, is a sequence of mappings);
(iii) for everyp € P, h(p, -,-) is monotone and hemicontinuous;
(iv) for every(p,u) € P x K, h(p,u,-) is convex;
(v) foreveryu € K, h(-,u,-) is lower semicontinuous;
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Then, the (QVI)is extended well-posed if and only if for every P, the solution sef’'(p)
is nonempty and
(3.1) diamT'(d,e) - 0 as (d,e) — (0,0),
wherediam means the diameter of a set.

Proof. Suppose that (QV] is extended well-posed. Then it has a unique solutignlf for
somep € P,diamT'(§,¢) /4 0as(d,e) — (0,0), there exist a positive numbgrand sequences
5, > 0 converging to O¢,, > 0 decreasing to 0, and,,, z, € K, with w,, € T(0,,¢&,), 2z, €
T (6, ,) such that

|lwn — 2| > 1, Vn e N.

Sincew,, € T (0p,€x), 2, € T'(0p, €,) fOr eachn € N, there existy,,, p, € B,.(p, d,,), such that

h(pna Wn, Wp, — U) S En,
and

h(]jna Znsy Rn — U) S Eny
whereYv € S(up). This implies tha{w, }, {z,} are both approximating sequences for (QVI)
corresponding tdp,, } and{p, } respectively. Since (QV})is extended well-posed, they have
to converge to the unique solutiap. This gives a contradiction. Thus conditign (3.1) holds.

Conversely, assume that for everye P, T'(p) is nonempty and conditiofi (3.1) holds. Let
pn — p € P and{u,} C K be an approximating sequence for (QVtprresponding tdp, }.
There existg,, > 0 decreasing to 0, such that
d(tn, S(un)) < €n,

and

h(pm Up,, Up — U) S €n,
whereVv € S(u,), Vn € N. This yieldsu,, € T(0,,<,) with 6,, = ||p, — p||. It follows from

condition 3.1) thaf{w, } is a Cauchy sequence and strongly converges to a pgiat K. To
prove thatu, solves (QVI), we shall first show that

d(ug, S(ug)) < liminf d(uy,, S(u,)) < lime, = 0.

Assume that the left inequality does not hold. Then, there exists a positive nurabein that
lim inf d(u,, S(u,)) < a < d(ug, S(uop)).

This means that there exists an increasing sequémgeand a sequencgz,}, z, € S(uy,),
such that

Hunk - an” <a, Vk e N.
Since the set-valued mappirgis (s,w)-subcontinuous an¢s, w)-closed, the sequende; }
has a subsequence, still denoted:pyweakly converging to a point, € S(u). Then, one gets

a < d(ug, S(ug)) < JJlug — 20| < limninf |tn, — 2kl < a,

which gives a contradiction. Saey € clS(uy) = S(up). Then consider a point € S(u,) and
observe that, since the set-valued mapging (s, s)-lower semicontinuous, one ha$u,) C
liminf S(u,). Also, observe that condition (ii), applied to the sequenge- v, foralln € N,
implies thatint S(ug) # 0; from Lemmd 2., it follows that, if: € int S(u), thenv € S(u,)
for n sufficiently large. Condition (iv) and (v) give that

h(p,v,up —v) = lim h(p, v, u, —v) < liminf A(p, u,, u, —v) < liminfe, = 0.
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If v € S(up) — int S(uo), let {v,} be a sequence to, whose points belong to a segment
contained innt S(ug). Sincev,, € int S(uy), forn € N, one has

h(p’ Un, Up — Un) S O’
and in light of the hemicontinuity of the bifunctian
h(p,v,up —v) < 0.

Then, the result follows from Lemnja 2.1. Now it remains to prove that (Qké&s a unique
solution. If (QVI), has two distinct solutions,, u,, it is easily seen that;, u, € 7'(4, <) for all
0, > 0. It follows that

0 < |lug — uz|| < diamT(d,e) — 0,
and we obtain a contradiction o (B.1). O

Theorem 3.2. Let the following assumptions hold:
(i) the set-valued mapping§ is nonempty-valued and convex-valugdw)-closed,(s, s)-
lower semicontinuous, and, w)-subcontinuous o ;

(i) for every converging sequengg, there existsn € N, such thaint N,,>,,,S,, # 0;

(iii)y for everyp € P, h(p, -,-) is monotone and hemicontinuous;

(iv) forevery(p,u) € P x K, h(p,u,-) is convex;
(v) for everyu € K, h(-,u,-) is lower semicontinuous;

Then, the (QV])is extended well-posed if and only if for everg P, T'(d,¢) # 0, Vo, e > 0,

(3.2) diamT'(0,e) - 0 as (d,e) — (0,0).

Proof. The necessity has been proved in Thedrem 3.1. To prove the sufficiency, assume that for
everyp € P,T(5,¢) # 0,Vd,e > 0
diamT'(d,e) — 0 as (d,¢) — (0,0).

Letp, — p € P and{u,} be an approximating sequence for (Q\V¢tprresponding tdp,}.
Then there exists, > 0 decreasing t0 such that

d(tn, S(upn)) < en,
and
h(pm Up,y Up, — U) S En,

wherev € S(u,), Vn € N. This yieldsu,, € T(d,,¢e,) with §,, = ||p, — p||. The rest of the
proof follows on using similar arguments to those for Thedrer 3.1. O

We now present the following theorem in which assumption (ii) is dropped, while the conti-
nuity assumption on the bifunctidnis strengthened.

Corollary 3.3. Let the following assumptions hold:
(i) the set-valued mapping§ is nonempty-valued and convex-valugdw)-closed,(s, s)-
lower semicontinuous, and, w)-subcontinuous o ;
(i) foreveryp € P, h(p,-,-) is monotone ands, w)-continuous;
(iii) forevery(p,u) € P x K, h(p,u,-) is convex;
(iv) foreveryu € K, h(-,u,-) is lower semicontinuous;
Then, the (QV))is extended well-posed if and only if for everg P, T'(0,¢) # (), Vo, e > 0

(3.3) diam(d,e) - 0 as (d,e) — (0,0).
Proof. The conclusion follows by similar arguments to those for Thedrein 3.1. O
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The following example is an application of characterizations of extended well-posedness.

Example 3.1.Let E = R, K = [0,+00), h(p,u,v) = u* — v?, and consider the set-valued
function S defined byS(u) = [0, §]. Itis easily seen thdl'(p) = {0}, andT'(é,¢) = [0, /e).

It follows thatdiam 7'(d,e) — 0, as(d,e) — (0,0). By Theorenj 31, the (QV})is extended
well-posed.

4. CHARACTERIZATIONS OF EXTENDED WELL -POSEDNESS IN THE GENERALIZED
SENSE

The aim of this section is to investigate some characterizations of extended well-posedness
in the generalized sense for (QY.I)irst, we recall two useful definitions.

Definition 4.1 ([6]). Let H be a nonempty subset of a metric spade d). The measure of
noncompactness of the setH is defined by

p(H) =inf{e >0: H CU | H;, diam H; <e,i=1,...,n}.

Definition 4.2 ([6]). The Hausdorff distance between two nonempty bounded subisatsl K
of a metric spacéX,d) is

H(H, K) = max {sup d(u, K), sup d(H, w)} .

ueH weK
Theorem 4.1. Let the following assumptions hold:

(i) the set-valued mapping is nonempty-valued and convex-valugdw)-closed,(s, s)-
lower semicontinuous, and, w)-subcontinuous o ;
(i) for every converging sequengg, there existsn € N , such thaint N,,>,,,S,, # 0;
(iii) for everyp € P, h(p,-,-) is monotone and hemicontinuous;
(iv) forevery(p,u) € P x K, h(p,u,-) is convex;
(v) for everyu € K, h(-,u,-) is lower semicontinuous;

Then, the (QVI) is extended well-posed in the generalized sense if and only if for every
p € P, the solution sef'(p) is nonempty compact and

(4.1) H(T(d,¢),T(p)) —0 as (d,e) — (0,0).

Proof. Assume that (QVI) is extended well-posed in the generalized sense. THey), # ()

for all p € P. To show thafl’(p) is compact, le{u,, } be a sequence for (QVl) Since (QVI), is
extended well-posed in a generalized sefsg} has a subsequence converging to some point
of T'(p). Thus,T'(p) is compact. Now, we prove that(7'(d,¢),T(p)) — 0, H(T'(6,¢),T(p)) =
SUP,er(s,e) A(u, T(p)) — 0. Suppose by contradiction th&t(7'(d, ), T'(p)) # 0, as(d,e) —
(0,0). Then there exists > 0 converging ta0, €, > 0 decreasing td, andu, € K with

Uy, € T(0,,€,)) Such that

(4.2) u, # T(p) + B(0, 7).

Sinceu,, € T'(6,,€n), {u,} is an approximating sequence for (Q)I)As (QVI), is extended
well-posed in the generalized sense, there exists a subseaftengeof {u, } converging to
some point of/'(p). This contradictd (4]2) and so conditign (4.1) holds.

For the converse, assume th&ip) is nonempty compact for all € P and condition[(4]1)
holds. Letp, — p € P and{u,} be an approximating sequence for (Q\tprresponding to
{pn}. Then there exists, > 0 decreasing t0 such that

h(pnaunaun - U) S En,
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wherev € S(u,), Yn € N. This yieldsu,, € T(6,,¢,) with 6, = ||p, — p||. From condition
(4.1), there exists a sequenge, } in T'(p) such thatd(u,,, T'(p)) < H(T(6,¢),T(p)) — 0

|twn, — vn|| = d(up, T(P)) — 0, Vn € N.

SinceT(p) is compact, there exists a subsequeficg } of {v,} converging tov € T(p).
Hence the corresponding subsequeficg } of {u, } converges t@. Thus (QVI), is extended
well-posed in the generalized sense. O

The follow theorem presents the characterization of extended well-posedness in the general-
ized sense by considering the measure of noncompactness of the approximating solution sets.

Theorem 4.2. Let the following assumptions hold:

(i) the set-valued mapping§ is nonempty-valued and convex-valugdw)-closed,(s, s)-
lower semicontinuous, and, w)-subcontinuous o ;
(ii) foreveryp € P, h(p,-,-)is (s,w)-continuous;
(iii) forevery(p,u) € P x K, h(p,u, -) iS convex;
(iv) foreveryu € K, h(-,u,-) is lower semicontinuous;
Then, the (QVI) is extended well-posed in the generalized sense if and only if for every
pEePp,

(4.3) T(6,e) #0, Voe>0, and u(T(d,e)—0 as (d¢e) — (0,0).

Proof. Assume that (QVI) is extended well-posed in the generalized sense. ThHer), # ()
andT'(p) C T(d,e) # 0, forallp € P, §,e > 0, andT(p) is compact. Observe that for every
0, € > 0, we have

H(T(d,¢),T(p)) :max{ sup d(u,T(p)), sup d(T(é,s),v)} = sup d(u,T(p)).

u€T(0,e) veT(p) u€T(d,e)

In order to prove that(7(d,¢)) — 0, considers,, > 0 converging to O, and,, > 0 decreasing

to 0 such that
w(T'(0,2), T(p)) < H(T(5,¢), T(p)) + u(T(p))-

Since, by the assumptions, the $&p) is compactu(7'(p)) = 0. So we need only to prove that
lim H(T'(6,¢),T(p)) = sup d(u,T(p)) — 0.
n UET (6n,en)

By Theorenj 4.1, we have the desired result.

For the converse, we start by proving thgb, <) is closed ford, e > 0. Lettingz,, € T(4,¢)
for n € N, the sequencéz, } converges ta,. Reasoning as in Theorgm B.1, one first proves
thatd(zo, S(z9)) < e. Since the set-valued mappigs (s, s)-lower semicontinuous, for every
w € S(zp) there exists a sequen¢e,, } converging taw such thatw,, € S(z,) forn € N; and
for p, € B(p,d), one getdi(p,, zn, 2, — w,) < €. Without loss of generalization we suppose
thatp, — p € B(p,d). In light of the assumption (iii), we have

h(p, 20, 20 — w) < €.
This yieldsz, € T'(,¢), and sdl'(4, ¢) is nonempty and closed. Observe now that
T<p) = m(5>O,€>0,1q’(6a 6)7

since the set-valued mappirfgis closed-valued. Then, singg7(§,e)) — 0, the theorem
on p. 412 in[[6] can be applied and one concludes that th&(ggtis nonempty, compact, and
H(T(d,¢),T(p)) — 0as(d,e) — (0,0). The rest of the proof follows from the same arguments
in Theoreni 4.11. O
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5. CONDITIONS FOR EXTENDED WELL -POSEDNESS

The following theorem shows that under suitable conditions, the extended well-posedness of
(QV1), is equivalent to the existence and uniqueness of solutions.

Theorem 5.1.Let E = R" and K be a nonempty, compact, and convex subséi.ofet the
following assumptions hold:

() the set-valued mapping is nonempty-valued and convex-valued, closed, lower semi-
continuous ong;
(i) foreveryp € P, h(p,-,-) is monotone and hemicontinuous;
(iii) for everyp € Pandx € K, h(p,x,-) is positively homogeneous and sublinear, and
h(p,x,0) = 0;
(iv) for everyu € K, h(-,u,-) is continuous.
Then, the (QV))is extended well-posed if and only if for every P, (QVI), has a unique
solution.

Proof. The necessity holds trivially. For the sufficiency, assume {4t /), has a unique
solutionw, for all p € P. If (QVI), is not extended well-posed, there exist some P,

p, — p, and an approximating sequenge, } for (QVI), corresponding tdp,} such that
U, 7 ugy. Sett, = m andz, = ug+t,(u, —up). We assert thafu,, } is bounded. Indeed,

if {u,,} is not bounded, then without loss of generality we supposelthat — +oo, 2, € K
andz, — z # ug. By using the conditions (iii) and (iv), we have

h(pn,v,z —v)

< h(pp, v,z — 2z, Dy Uy Zp — U
Py U, Ug — V) + h(pp, v, 2 — ug)

+ tnh(pna v, Up — UO)

)+ h
Sh(pnavaz_zn)+h
= h{pn, v,z = z) +

)+ h

( )

(Pn )

(pn7 U, Uy — U)
S h(pna U,z — Zn (pna U, Uy — U) + tnh(pna U, Up — U) + tnh(pn7 v,V — Uo),

Yo € S(up).

Since{u,} is an approximating sequence for (Qytprresponding t¢p,, }, we can finds,, > 0
decreasing t0, such that.(p,,, u,, u, —v) <e,, Vv € S(up). Inlight of the assumption (ii),
we geth(p,, v, u, —v) < e&,, Vv € S(ug). From the assumptions (ii) and (iv),

h(p,v,z —v) = lim h(p,, v, 2, — v)
S hm{h(pTH v,2 — ZTL) + h(pna U, Uy — U) + tngn + h(pna U,V — UO)}
= h(p,v,up —v) <0, Yove S(up).

From Lemmg 21z is a solution of (QVI). This is a contradiction to the uniqueness of
the solution. Thugw,} is bounded. Since the séf is compact, the sequende, } has a
subsequencéu,, } which converges to a poinf, € K, which is a fixed point forS, and
h(p,v,20 —v) <0, Yo € S(ug). Then, applying Lemmp 2%, solves (QVI). So it co-
incides withuy. The uniqueness of the solution also implies that the whole sequenge
converges tay,. Therefore, (QVI) is extended well-posed. O

For extended well-posedness in the generalized sense, we have the following results.

Theorem 5.2. Let the following assumptions hold:

() the setK is bounded,;
(i) the set-valued mapping is nonempty-valued and convex-valued,w)-closed,(w, s)-
lower semicontinuous oR;
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(iii) for everyp € P, h(p, -,-) is monotone ands, s)-continuous;

(iv) for every(p,u) € P x K, h(p,u,-) is convex;

(v) foreveryu € K, h(-,u,-) is lower semicontinuous;
Then, the (QV])is extended well-posed in the generalized sense with respect to weak conver-
gence.

Proof. Letp, — p € P and{u, } be an approximating sequence correspondingtgd, that is
d(tp, S(up)) <en, and h(py, up,u, —v) <e&,, Yve& S(u,), Vné€N,

wheres,, > 0 decreases t0. Since the sek’ is bounded, the sequenfe, } has a subsequence,
still denoted by{u,}, which weakly converges to a point € K. As in Theorenj 3]1, one
proves that

d(ug, S(up)) < liminf d(u,, S(u,)) <lime, = 0.

Indeed, if the left inequality does not hold, there exists a positive numbech that
lim inf d(u,, S(u,)) < a < d(ug, S(uop)).

Consequently, there exist an increasing sequemgé and a sequencéz;}, z, € S(uy,,),
VEk € N, such thatju;, — z;|| < a. Since the sek’ is bounded, and the set-valued mappthig
(w,w)-closed, the sequende; } has a subsequence, still denoted{by}, weakly converging
to a pointzy € S(up). Then, one gets

a < d(ug, S(ug)) < [Jug — 20| < lin}linf [ tn, — 20, || < @,

which gives a contradiction. S@, € clS(ug) = S(up) anduy is a fixed point for the set
mappingS. To complete the proof, let € S(uy) and{v,} be a sequence converging o
such that,, € S(u,), Vn € N. By using the assumption (iii), we hav&p, ug, ug — v) < 0.
This yieldsu, as a solution of (QV}), and so (QVI) is extended well-posed in the generalized
sense. U

Theorem 5.3.Let ¥ = R™ and K be bounded. Let the following assumptions hold:

() the set-valued mappin§ is nonempty-valued and convex-valued, closed, lower semi-
continuous ornK’;
(i) foreveryp € P, h(p,-,-) is monotone and hemicontinuous;
(iii) forevery(p,u) € P x K, h(p,u, -) is convex;
(iv) for everyu € K, h(-,u,-) is continuous;
If for eachp € P, there exists some> 0 such thatl'(¢, €) is nonempty and bounded, then the
(QV1), is extended well-posed in the generalized sense.

Proof. Letp, — p € P and{u,} be an approximating sequence for (QVtprresponding to
{pn}. Then there exists, > 0 with £, — 0 such that

h(pn, U, up —v) < &,,Vv € S(uy,), Vn € N.

Lete > 0 such thatl'(, ¢) is nonempty bounded, then there exisgssuch thatu,, € T'(c,¢)
for all n > ny, and so{u, } is bounded. There exists a subsequefige } of {u,} such that
U, — g, ask — oo. Using the same arguments as for Theofem &, Bolves (QVI). Then
(QV1), is extended well-posed in the generalized sense. O

Corollary 5.4. Let ¥ = R™ and K be bounded. Let the following assumptions hold:

() the set-valued mappin§ is nonempty-valued and convex-valued, closed, lower semi-
continuous ong;
(if) for everyp € P, h(p, -,-) is monotone and hemicontinuous;
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(iii) forevery(p,u) € P x K, h(p,u, -) is convex;

(iv) for everyu € K, h(-,u,-) is continuous

then the (QVI) is extended well-posed in the generalized sense. In additidipif, -) is
strictly monotone for alp € P, then the (QVI) is extended well-posed.
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