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ABSTRACT. In this paper, we introduce the concepts of extended well-posedness for quasi-
variational inequalities and establish some characterizations. We show that the extended well-
posedness is equivalent to the existence and uniqueness of solutions under suitable conditions.
In addition, the corresponding concepts of extended well-posedness in the generalized sense are
introduced and investigated for quasivariational inequalities having more than one solution.
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1. I NTRODUCTION

The importance of well-posedness is widely recognized in the theory of variational prob-
lems. Motivated by the study of numerical production optimization sequences, Tykhonov
[18] introduced the concept of well-posedness for a minimization problem, which is known
as Tykhonov well-posedness. Due to its importance in optimization problems, various con-
cepts of well-posedness have been introduced and studied for minimization problems (see
[18, 1, 5, 16, 19, 20]) in past decades. The concept of well-posedness has also been generalized
to several related variational problems: saddle point problems [2], Nash equilibrium problems
[11, 17, 15], inclusion problems [4, 7, 9], and fixed point problems [4, 7, 9]. A more general
formulation for the above variational problems is the variational inequalities problems, which
leads to the study of the well-posedness of variational inequalities. In [14], Lucchetti and Pa-
trone obtained a notion of well-posedness for a variational inequality. Lignola and Morgan [13]
introduced the extended well-posedness for a family of variational inequalities and investigated
its links with the extended well-posedness of corresponding minimization problems. Lignola
[8] further introduced the notion of well-posedness for quasivariational inequalities. Recently,
Lalitha and Mehta [10] presented a class of variational inequalities defined by bifunctions. In
[3], Fang and Hu extended the notion of well-posedness of variational inequalities defined by
bifunctions.
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Inspired and motivated by above research works, in this paper, we study the well-posedness
of quasivariational inequalities (in short, QVI) defined by bifunctions. We introduce the notion
of extended well-posedness for QVI, and establish some of its characterizations. Under suit-
able conditions, we prove that the extended well-posedness is equivalent to the existence and
uniqueness of solutions to QVI. With an additional compactness assumption, we also derive the
equivalence between the extended well-posedness in the generalized sense and the existence of
solutions to QVI.

2. PRELIMINARIES

Throughout this paper, letE be a reflexive real Banach space andK be a nonempty closed
convex subset ofE, unless otherwise specified. LetS : K → 2K be a set-valued mapping,
andh : K × E → R̄ be a bifunction, wherēR = R ∪ {+∞}. The quasivariational inequality
problem consists in finding a pointu0 ∈ K, such that

(QVI) u0 ∈ S(u0) and h(u0, u0 − v) ≤ 0, ∀v ∈ S(u0).

Note that QVI includes as a special case the quasivariational inequality. In this paper, we
consider the parametric form of QVI which is formulated as follows:

(QVI)p u0 ∈ S(u0) and h(p, u0, u0−v) ≤ 0, ∀v ∈ S(u0),

whereh : P ×K×E → R̄ andP is a Banach space. Now we recall some concepts and results.
Let (X, τ), (Y, σ) be topological spaces. The closure and interior of a nonempty setG of X are
respectively denoted by clG and intG.

Definition 2.1 ([8]). A set-valued mappingF : (X, τ) → 2(Y,σ) is called:

(i) closed-valued if the setF (x) is nonempty andσ-closed, for everyx ∈ X;
(ii) (τ, σ)-closed if the graphGF = {(x, y) : y ∈ F (x)} is closed inτ × σ;

(iii) (τ, σ)-lower semicontinuous if for everyσ-open subsetV of Y , the inverse image of the
setV , F−1(V ) = {x ∈ X : F (x) ∩ V 6= ∅} is aτ -open subset ofX;

(iv) (τ, σ)-subcontinuous onH ⊆ E (E is a reflexive real Banach space) if for every net
{xa} τ -converging inH, every net{ya}, such thatya ∈ F (xa), has aσ-convergent
subset.

Definition 2.2 ([8]). The Painleve-Kuratouski limits of sequence{Hn}, Hn ⊆ Y are defined
by:

lim inf
n

Hn =
{

y ∈ Y : ∃yn ∈ Hn, n ∈ N, with lim
n

yn = y
}

,

and

lim sup
n

Hn =
{

y ∈ Y : ∃nk ↑ +∞, nk ∈ N,∃ynk
∈ Hnk

, k ∈ N, with lim
k

ynk
= y

}
.

Definition 2.3 ([3]). A bifunctionf : K × E → R is said to be:

(i) monotone iff(x, y − x) + f(y, x− y) ≤ 0, ∀x, y ∈ K;
(ii) strongly monotone if there exists a constantt > 0 such that

f(x, y − x) + f(y, x− y) + t‖x− y‖2 ≤ 0, ∀x, y ∈ K;

(iii) pseudomonotone if for anyx, y ∈ K, f(x, y − x) ≥ 0 ⇒ f(y, x− y) ≤ 0;
(iv) hemicontinuous if for everyx, y ∈ K and t ∈ [0, 1], the functiont 7→ f(x + t(y −

x), y − x) is continuous at0+.

In the sequel we introduce some notions of extended well-posedness for (QVI)p.
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EXTENDED WELL-POSEDNESS FORQUASIVARIATIONAL INEQUALITIES 3

Definition 2.4. Let p ∈ P , {pn} ∈ P , with pn → p. A sequence{un} is an approximation for
(QVI)p corresponding to{pn} if:

(i) un ∈ K, ∀n ∈ N ;
(ii) there exists a sequence{εn} ↓ 0 such thatd(un, S(un)) ≤ εn (i.e. un ∈ B(S(un, εn)),

andh(pn, un, un − v) ≤ εn, ∀v ∈ S(un), ∀n ∈ N , whereB(S(u), ε) = {y ∈ E :
d(S(u), y) ≤ ε}.

Remark 1. When the set-valued mappingS is constant, sayS(u) = K for everyu ∈ K, the
parametric form of (QVI)p is a parametric form of a variational inequality. In this case, the class
of approximating sequences coincides with the class defined in [13].

Definition 2.5.
(i) (QVI)p is said to be extended well-posed if for everyp ∈ P , (QVI)p has a unique

solutionup and every approximating sequence for (QVI)p corresponding topn → p
converges toup.

(ii) (QVI)p is said to be extended well-posed in the generalized sense if for everyp ∈ P ,
(QVI)p has a nonempty solution setT (p), and every approximating sequence for (QVI)p

corresponding topn → p has a subsequence which converges to some point ofT (p).

Lemma 2.1 ([13]). Let K be a nonempty, closed, compact and convex subset ofE, the set-
valued mappingS is convex-valued and closed-valued. If the bifunctionh is hemicontinuous
and pseudomonotone, the following problems are equivalent:

(i) findu0 ∈ K, such that u0 ∈ S(u0) and h(u0, u0 − v) ≤ 0, ∀v ∈ S(u0);
(ii) findu0 ∈ K, such that u0 ∈ S(u0) and h(v, u0 − v) ≤ 0, ∀v ∈ S(u0).

Lemma 2.2([12]). Let{Hn} be a sequence of nonempty subsets of the spaceE such that:

(i) Hn is convex for everyn ∈ N ;
(ii) H0 ⊆ lim infn Hn;

(iii) there existsm ∈ N such thatint∩n≥mHn 6= ∅.
Then, for everyu0 ∈ int H0, there exists a positive real numberδ such thatB(u0, δ) ⊆ Hn,

∀n ≥ m.

If E is a finite dimensional space, the assumption (iii) can be replaced byint H0 6= ∅.

3. CHARACTERIZATIONS OF EXTENDED WELL -POSEDNESS

In this section, we investigate some characterizations of extended well-posedness for quasi-
variational inequalities. For (QVI)p, the set of approximating solutions is defined by

T (δ, ε) =
⋃

ṕ∈B(p,δ)

{u ∈ K : u ∈ B(S(u), ε) and h(ṕ, u, u− v) ≤ ε, ∀v ∈ S(u)},

whereB(p, δ) denotes the closed ball with radiusδ and centered atp.

Theorem 3.1.Let the following assumptions hold:

(i) the set-valued mappingS is nonempty-valued and convex-valued,(s, ω)-closed,(s, s)-
lower semicontinuous, and(s, ω)-subcontinuous onK;

(ii) for every converging sequence{un}, there existsm ∈ N , such thatint∩n≥mSn 6= ∅
(Sn is a sequence of mappings);

(iii) for everyp ∈ P , h(p, ·, ·) is monotone and hemicontinuous;
(iv) for every(p, u) ∈ P ×K, h(p, u, ·) is convex;
(v) for everyu ∈ K, h(·, u, ·) is lower semicontinuous;
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Then, the (QVI)p is extended well-posed if and only if for everyp ∈ P , the solution setT (p)
is nonempty and

(3.1) diam T (δ, ε) → 0 as (δ, ε) → (0, 0),

wherediam means the diameter of a set.

Proof. Suppose that (QVI)P is extended well-posed. Then it has a unique solutionu0. If for
somep ∈ P , diam T (δ, ε) 6→ 0 as(δ, ε) → (0, 0), there exist a positive numberl, and sequences
δn > 0 converging to 0,εn > 0 decreasing to 0, andwn, zn ∈ K, with wn ∈ T (δn, εn), zn ∈
T (δn, εn) such that

‖wn − zn‖ > l, ∀n ∈ N.

Sincewn ∈ T (δn, εn), zn ∈ T (δn, εn) for eachn ∈ N , there existspn, ṕn ∈ Bn(p, δn), such that

h(pn, wn, wn − v) ≤ εn,

and
h(ṕn, zn, zn − v) ≤ εn,

where∀v ∈ S(u0). This implies that{wn}, {zn} are both approximating sequences for (QVI)p

corresponding to{pn} and{ṕn} respectively. Since (QVI)p is extended well-posed, they have
to converge to the unique solutionu0. This gives a contradiction. Thus condition (3.1) holds.

Conversely, assume that for everyp ∈ P , T (p) is nonempty and condition (3.1) holds. Let
pn → p ∈ P and{un} ⊂ K be an approximating sequence for (QVI)p corresponding to{pn}.
There existsεn > 0 decreasing to 0, such that

d(un, S(un)) ≤ εn,

and
h(pn, un, un − v) ≤ εn,

where∀v ∈ S(un), ∀n ∈ N . This yieldsun ∈ T (δn, εn) with δn = ‖pn − p‖. It follows from
condition (3.1) that{un} is a Cauchy sequence and strongly converges to a pointu0 ∈ K. To
prove thatu0 solves (QVI)p, we shall first show that

d(u0, S(u0)) ≤ lim inf
n

d(un, S(un)) ≤ lim εn = 0.

Assume that the left inequality does not hold. Then, there exists a positive numbera such that

lim inf
n

d(un, S(un)) < a < d(u0, S(u0)).

This means that there exists an increasing sequence{nk} and a sequence{zk}, zk ∈ S(unk
),

such that
‖unk

− znk
‖ < a, ∀k ∈ N.

Since the set-valued mappingS is (s, ω)-subcontinuous and(s, ω)-closed, the sequence{zk}
has a subsequence, still denoted byzk, weakly converging to a pointz0 ∈ S(u0). Then, one gets

a < d(u0, S(u0)) ≤ ‖u0 − z0‖ ≤ lim inf
n

‖unk
− zk‖ ≤ a,

which gives a contradiction. So,u0 ∈ clS(u0) = S(u0). Then consider a pointv ∈ S(u0) and
observe that, since the set-valued mappingS is (s, s)-lower semicontinuous, one hasS(u0) ⊆
lim inf S(un). Also, observe that condition (ii), applied to the sequencewn = u0, for all n ∈ N ,
implies thatint S(u0) 6= ∅; from Lemma 2.2, it follows that, ifv ∈ int S(u0), thenv ∈ S(un)
for n sufficiently large. Condition (iv) and (v) give that

h(p, v, u0 − v) = lim
n

h(p, v, un − v) ≤ lim inf
n

h(p, un, un − v) ≤ lim inf
n

εn = 0.
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If v ∈ S(u0) − int S(u0), let {vn} be a sequence tov, whose points belong to a segment
contained inint S(u0). Sincevn ∈ int S(u0), for n ∈ N , one has

h(p, vn, u0 − vn) ≤ 0,

and in light of the hemicontinuity of the bifunctionh,

h(p, v, u0 − v) ≤ 0.

Then, the result follows from Lemma 2.1. Now it remains to prove that (QVI)p has a unique
solution. If (QVI)p has two distinct solutionsu1, u2, it is easily seen thatu1, u2 ∈ T (δ, ε) for all
δ, ε > 0. It follows that

0 < ‖u1 − u2‖ ≤ diam T (δ, ε) → 0,

and we obtain a contradiction to (3.1). �

Theorem 3.2.Let the following assumptions hold:
(i) the set-valued mappingS is nonempty-valued and convex-valued,(s, ω)-closed,(s, s)-

lower semicontinuous, and(s, ω)-subcontinuous onK;
(ii) for every converging sequenceun, there existsm ∈ N , such thatint∩n≥mSn 6= ∅;

(iii) for everyp ∈ P , h(p, ·, ·) is monotone and hemicontinuous;
(iv) for every(p, u) ∈ P ×K, h(p, u, ·) is convex;
(v) for everyu ∈ K, h(·, u, ·) is lower semicontinuous;

Then, the (QVI)p is extended well-posed if and only if for everyp ∈ P , T (δ, ε) 6= ∅, ∀δ, ε > 0,

(3.2) diam T (δ, ε) → 0 as (δ, ε) → (0, 0).

Proof. The necessity has been proved in Theorem 3.1. To prove the sufficiency, assume that for
everyp ∈ P , T (δ, ε) 6= ∅, ∀δ, ε > 0

diam T (δ, ε) → 0 as (δ, ε) → (0, 0).

Let pn → p ∈ P and{un} be an approximating sequence for (QVI)p corresponding to{pn}.
Then there existsεn > 0 decreasing to0 such that

d(un, S(un)) ≤ εn,

and
h(pn, un, un − v) ≤ εn,

wherev ∈ S(un), ∀n ∈ N . This yieldsun ∈ T (δn, εn) with δn = ‖pn − p‖. The rest of the
proof follows on using similar arguments to those for Theorem 3.1. �

We now present the following theorem in which assumption (ii) is dropped, while the conti-
nuity assumption on the bifunctionh is strengthened.

Corollary 3.3. Let the following assumptions hold:
(i) the set-valued mappingS is nonempty-valued and convex-valued,(s, ω)-closed,(s, s)-

lower semicontinuous, and(s, ω)-subcontinuous onK;
(ii) for everyp ∈ P , h(p, ·, ·) is monotone and(s, ω)-continuous;

(iii) for every(p, u) ∈ P ×K, h(p, u, ·) is convex;
(iv) for everyu ∈ K, h(·, u, ·) is lower semicontinuous;
Then, the (QVI)p is extended well-posed if and only if for everyp ∈ P , T (δ, ε) 6= ∅, ∀δ, ε > 0

(3.3) diam(δ, ε) → 0 as (δ, ε) → (0, 0).

Proof. The conclusion follows by similar arguments to those for Theorem 3.1. �
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The following example is an application of characterizations of extended well-posedness.

Example 3.1. Let E = R, K = [0, +∞), h(p, u, v) = u2 − v2, and consider the set-valued
functionS defined byS(u) = [0, u

2
]. It is easily seen thatT (p) = {0}, andT (δ, ε) = [0,

√
ε).

It follows thatdiam T (δ, ε) → 0, as(δ, ε) → (0, 0). By Theorem 3.1, the (QVI)p is extended
well-posed.

4. CHARACTERIZATIONS OF EXTENDED WELL -POSEDNESS IN THE GENERALIZED

SENSE

The aim of this section is to investigate some characterizations of extended well-posedness
in the generalized sense for (QVI)p. First, we recall two useful definitions.

Definition 4.1 ([6]). Let H be a nonempty subset of a metric space(X, d). The measure of
noncompactnessµ of the setH is defined by

µ(H) = inf{ε > 0 : H ⊆ ∪n
i=1Hi, diam Hi < ε, i = 1, . . . , n}.

Definition 4.2 ([6]). The Hausdorff distance between two nonempty bounded subsetsH andK
of a metric space(X, d) is

H(H, K) = max

{
sup
u∈H

d(u, K), sup
w∈K

d(H, w)

}
.

Theorem 4.1.Let the following assumptions hold:

(i) the set-valued mappingS is nonempty-valued and convex-valued,(s, ω)-closed,(s, s)-
lower semicontinuous, and(s, ω)-subcontinuous onK;

(ii) for every converging sequenceun, there existsm ∈ N , such thatint∩n≥mSn 6= ∅;
(iii) for everyp ∈ P , h(p, ·, ·) is monotone and hemicontinuous;
(iv) for every(p, u) ∈ P ×K, h(p, u, ·) is convex;
(v) for everyu ∈ K, h(·, u, ·) is lower semicontinuous;

Then, the (QVI)p is extended well-posed in the generalized sense if and only if for every
p ∈ P , the solution setT (p) is nonempty compact and

(4.1) H(T (δ, ε), T (p)) → 0 as (δ, ε) → (0, 0).

Proof. Assume that (QVI)p is extended well-posed in the generalized sense. Then,T (p) 6= ∅
for all p ∈ P . To show thatT (p) is compact, let{un} be a sequence for (QVI)p. Since (QVI)p is
extended well-posed in a generalized sense,{un} has a subsequence converging to some point
of T (p). Thus,T (p) is compact. Now, we prove thatH(T (δ, ε), T (p)) → 0, H(T (δ, ε), T (p)) =
supu∈T (δ,ε) d(u, T (p)) → 0. Suppose by contradiction thatH(T (δ, ε), T (p)) 6→ 0, as(δ, ε) →
(0, 0). Then there existsτ > 0 converging to0, εn > 0 decreasing to0, andun ∈ K with
un ∈ T (δn, εn)) such that

(4.2) un 6= T (p) + B(0, τ).

Sinceun ∈ T (δn, εn), {un} is an approximating sequence for (QVI)p. As (QVI)p is extended
well-posed in the generalized sense, there exists a subsequence{unk

} of {un} converging to
some point ofT (p). This contradicts (4.2) and so condition (4.1) holds.

For the converse, assume thatT (p) is nonempty compact for allp ∈ P and condition (4.1)
holds. Letpn → p ∈ P and{un} be an approximating sequence for (QVI)p corresponding to
{pn}. Then there existsεn > 0 decreasing to0 such that

h(pn, un, un − v) ≤ εn,
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wherev ∈ S(un), ∀n ∈ N . This yieldsun ∈ T (δn, εn) with δn = ‖pn − p‖. From condition
(4.1), there exists a sequence{vn} in T (p) such thatd(un, T (p)) ≤ H(T (δ, ε), T (p)) → 0

‖un − vn‖ = d(un, T (P )) → 0, ∀n ∈ N.

SinceT (p) is compact, there exists a subsequence{vnk
} of {vn} converging tov ∈ T (p).

Hence the corresponding subsequence{unk
} of {un} converges tov. Thus (QVI)p is extended

well-posed in the generalized sense. �

The follow theorem presents the characterization of extended well-posedness in the general-
ized sense by considering the measure of noncompactness of the approximating solution sets.

Theorem 4.2.Let the following assumptions hold:

(i) the set-valued mappingS is nonempty-valued and convex-valued,(s, ω)-closed,(s, s)-
lower semicontinuous, and(s, ω)-subcontinuous onK;

(ii) for everyp ∈ P , h(p, ·, ·) is (s, ω)-continuous;
(iii) for every(p, u) ∈ P ×K, h(p, u, ·) is convex;
(iv) for everyu ∈ K, h(·, u, ·) is lower semicontinuous;

Then, the (QVI)p is extended well-posed in the generalized sense if and only if for every
p ∈ P ,

(4.3) T (δ, ε) 6= ∅, ∀δ, ε > 0, and µ(T (δ, ε)) → 0 as (δ, ε) → (0, 0).

Proof. Assume that (QVI)p is extended well-posed in the generalized sense. Then,T (p) 6= ∅
andT (p) ⊂ T (δ, ε) 6= ∅, for all p ∈ P , δ, ε > 0, andT (p) is compact. Observe that for every
δ, ε > 0, we have

H(T (δ, ε), T (p)) = max

{
sup

u∈T (δ,ε)

d(u, T (p)), sup
v∈T (p)

d(T (δ, ε), v)

}
= sup

u∈T (δ,ε)

d(u, T (p)).

In order to prove thatµ(T (δ, ε)) → 0, considerδn > 0 converging to 0, andεn > 0 decreasing
to 0 such that

µ(T (δ, ε), T (p)) ≤ H(T (δ, ε), T (p)) + µ(T (p)).

Since, by the assumptions, the setT (p) is compact,µ(T (p)) = 0. So we need only to prove that

lim
n

H(T (δ, ε), T (p)) = sup
u∈T (δn,εn)

d(u, T (p)) → 0.

By Theorem 4.1, we have the desired result.
For the converse, we start by proving thatT (δ, ε) is closed forδ, ε > 0. Lettingzn ∈ T (δ, ε)

for n ∈ N , the sequence{zn} converges toz0. Reasoning as in Theorem 3.1, one first proves
thatd(z0, S(z0)) ≤ ε. Since the set-valued mappingS is (s, s)-lower semicontinuous, for every
w ∈ S(z0) there exists a sequence{wn} converging tow such thatwn ∈ S(zn) for n ∈ N ; and
for pn ∈ B(p, δ), one getsh(pn, zn, zn − wn) ≤ ε. Without loss of generalization we suppose
thatpn → ṕ ∈ B(p, δ). In light of the assumption (iii), we have

h(ṕ, z0, z0 − w) ≤ ε.

This yieldsz0 ∈ T (δ, ε), and soT (δ, ε) is nonempty and closed. Observe now that

T (p) = ∩δ>0,ε>0T (δ, ε),

since the set-valued mappingS is closed-valued. Then, sinceµ(T (δ, ε)) → 0, the theorem
on p. 412 in [6] can be applied and one concludes that the setT (p) is nonempty, compact, and
H(T (δ, ε), T (p)) → 0 as(δ, ε) → (0, 0). The rest of the proof follows from the same arguments
in Theorem 4.1. �
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5. CONDITIONS FOR EXTENDED WELL -POSEDNESS

The following theorem shows that under suitable conditions, the extended well-posedness of
(QVI)p is equivalent to the existence and uniqueness of solutions.

Theorem 5.1. Let E = Rn andK be a nonempty, compact, and convex subset ofE. Let the
following assumptions hold:

(i) the set-valued mappingS is nonempty-valued and convex-valued, closed, lower semi-
continuous onK;

(ii) for everyp ∈ P , h(p, ·, ·) is monotone and hemicontinuous;
(iii) for everyp ∈ P and x ∈ K, h(p, x, ·) is positively homogeneous and sublinear, and

h(p, x, 0) = 0;
(iv) for everyu ∈ K, h(·, u, ·) is continuous.
Then, the (QVI)p is extended well-posed if and only if for everyp ∈ P , (QVI)p has a unique

solution.

Proof. The necessity holds trivially. For the sufficiency, assume that(QV I)p has a unique
solutionu0 for all p ∈ P . If (QVI) p is not extended well-posed, there exist somep ∈ P ,
pn → p, and an approximating sequence{un} for (QVI)p corresponding to{pn} such that
un 6→ u0. Settn = 1

‖un−u0‖ andzn = u0 + tn(un−u0). We assert that{un} is bounded. Indeed,
if {un} is not bounded, then without loss of generality we suppose that‖un‖ → +∞, zn ∈ K
andzn → z 6= u0. By using the conditions (iii) and (iv), we have

h(pn, v, z − v)

≤ h(pn, v, z − zn) + h(pn, v, zn − v)

≤ h(pn, v, z − zn) + h(pn, v, u0 − v) + h(pn, v, zn − u0)

= h(pn, v, z − zn) + h(pn, v, u0 − v) + tnh(pn, v, un − u0)

≤ h(pn, v, z − zn) + h(pn, v, u0 − v) + tnh(pn, v, un − v) + tnh(pn, v, v − u0),

∀v ∈ S(u0).

Since{un} is an approximating sequence for (QVI)p corresponding to{pn}, we can findεn > 0
decreasing to0, such thath(pn, un, un− v) ≤ εn, ∀v ∈ S(u0). In light of the assumption (ii),
we geth(pn, v, un − v) ≤ εn, ∀v ∈ S(u0). From the assumptions (ii) and (iv),

h(p, v, z − v) = lim
n

h(pn, v, zn − v)

≤ lim
n
{h(pn, v, z − zn) + h(pn, v, u0 − v) + tnεn + h(pn, v, v − u0)}

= h(p, v, u0 − v) ≤ 0, ∀v ∈ S(u0).

From Lemma 2.1,z is a solution of (QVI)p. This is a contradiction to the uniqueness of
the solution. Thus{un} is bounded. Since the setK is compact, the sequence{un} has a
subsequence{unk

} which converges to a pointz0 ∈ K, which is a fixed point forS, and
h(p, v, z0 − v) ≤ 0, ∀v ∈ S(u0). Then, applying Lemma 2.1,z0 solves (QVI)p. So it co-
incides withu0. The uniqueness of the solution also implies that the whole sequence{un}
converges tou0. Therefore, (QVI)p is extended well-posed. �

For extended well-posedness in the generalized sense, we have the following results.

Theorem 5.2.Let the following assumptions hold:
(i) the setK is bounded;

(ii) the set-valued mappingS is nonempty-valued and convex-valued,(ω, ω)-closed,(ω, s)-
lower semicontinuous onK;
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(iii) for everyp ∈ P , h(p, ·, ·) is monotone and(s, s)-continuous;
(iv) for every(p, u) ∈ P ×K, h(p, u, ·) is convex;
(v) for everyu ∈ K, h(·, u, ·) is lower semicontinuous;

Then, the (QVI)p is extended well-posed in the generalized sense with respect to weak conver-
gence.

Proof. Let pn → p ∈ P and{un} be an approximating sequence corresponding to{pn}, that is

d(un, S(un)) ≤ εn, and h(pn, un, un − v) ≤ εn, ∀v ∈ S(un), ∀n ∈ N,

whereεn > 0 decreases to0. Since the setK is bounded, the sequence{un} has a subsequence,
still denoted by{un}, which weakly converges to a pointu0 ∈ K. As in Theorem 3.1, one
proves that

d(u0, S(u0)) ≤ lim inf
n

d(un, S(un)) ≤ lim
n

εn = 0.

Indeed, if the left inequality does not hold, there exists a positive numbera such that

lim inf
n

d(un, S(un)) < a < d(u0, S(u0)).

Consequently, there exist an increasing sequence{nk} and a sequence{zk}, zk ∈ S(unk
),

∀k ∈ N , such that‖uk − zk‖ < a. Since the setK is bounded, and the set-valued mappingS is
(ω, ω)-closed, the sequence{zk} has a subsequence, still denoted by{zk}, weakly converging
to a pointz0 ∈ S(u0). Then, one gets

a < d(u0, S(u0)) ≤ ‖u0 − z0‖ ≤ lim inf
n

‖unk
− znk

‖ ≤ a,

which gives a contradiction. Sou0 ∈ clS(u0) = S(u0) andu0 is a fixed point for the set
mappingS. To complete the proof, letv ∈ S(u0) and{vn} be a sequence converging tov
such thatvn ∈ S(un), ∀n ∈ N . By using the assumption (iii), we haveh(p, u0, u0 − v) ≤ 0.
This yieldsu0 as a solution of (QVI)p, and so (QVI)p is extended well-posed in the generalized
sense. �

Theorem 5.3.LetE = Rn andK be bounded. Let the following assumptions hold:

(i) the set-valued mappingS is nonempty-valued and convex-valued, closed, lower semi-
continuous onK;

(ii) for everyp ∈ P , h(p, ·, ·) is monotone and hemicontinuous;
(iii) for every(p, u) ∈ P ×K, h(p, u, ·) is convex;
(iv) for everyu ∈ K, h(·, u, ·) is continuous;

If for eachp ∈ P , there exists someε > 0 such thatT (ε, ε) is nonempty and bounded, then the
(QVI)p is extended well-posed in the generalized sense.

Proof. Let pn → p ∈ P and{un} be an approximating sequence for (QVI)p corresponding to
{pn}. Then there existsεn > 0 with εn → 0 such that

h(pn, un, un − v) ≤ εn,∀v ∈ S(un), ∀n ∈ N.

Let ε > 0 such thatT (ε, ε) is nonempty bounded, then there existsn0 such thatun ∈ T (ε, ε)
for all n > n0, and so{un} is bounded. There exists a subsequence{unk

} of {un} such that
unk

→ u0, ask → ∞. Using the same arguments as for Theorem 5.1,u0 solves (QVI)p. Then
(QVI)p is extended well-posed in the generalized sense. �

Corollary 5.4. LetE = Rn andK be bounded. Let the following assumptions hold:

(i) the set-valued mappingS is nonempty-valued and convex-valued, closed, lower semi-
continuous onK;

(ii) for everyp ∈ P , h(p, ·, ·) is monotone and hemicontinuous;
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(iii) for every(p, u) ∈ P ×K, h(p, u, ·) is convex;
(iv) for everyu ∈ K, h(·, u, ·) is continuous;
then the (QVI)p is extended well-posed in the generalized sense. In addition, ifh(p, ·, ·) is

strictly monotone for allp ∈ P , then the (QVI)p is extended well-posed.

REFERENCES

[1] E. BEDNARCZUK AND J.P. PENOT, Metrically well-set minimization problems,Appl. Math.
Optim., 26(3) (1992), 273–285.

[2] E. CAVAZZUTI AND J. MORGAN, Well-posed saddle point problems,Optim. Theory Algorithms,
Marcel Dekker, New York, NY, 1983.

[3] Y.P. FANG AND R. HU, Parametric well-posedness for variational inequalities defined by bifunc-
tion, Comput. Math. Appl., 53 (2007), 1306–1316.

[4] Y.P. FANG, N.J. HUANGAND J.C. YAO, Well-posedness of mixed variational inequalities, and
inclusion problems and fixed point problems,Glob. Optim., 41 (2008), 117–133.

[5] X.X. HUANG, Extended and strongly extended well-posedness of set-valued optimization prob-
lems,Math. Methods. Oper. Res., 53 (2001), 101–116.

[6] K. KURATOWSKI, Topology, Academic Press, New York, NY, 1968.

[7] C. S. LALITHA AND M. MEHTA, Vector variational inequalities with cone-pseudomotone bifunc-
tions,Optimization., 54(3) (2005), 327–338.

[8] B. LEMAIRE, Well-posedness, conditioning, and regularization of minimization, inclusion, and
fixed point problems,Pliska Studia Mathematica Bulgaria, 12 (1998), 71–84.

[9] B. LEMAIRE, A.S.C. OULDAND J.P. REVALSKI, Well-posedness by perturbations of variational
problems,Optim. Theory Appl., 115(2002), 345–368.

[10] M.B. LIGNOLA, Well-posedness andL-well-posedness for quasivariational inequalities,Optim.
Theory Appl., 128(1) (2006), 119–138.

[11] M.B. LIGNOLA AND J. MORGAN, Approximating solutions andα-well-posedness for variational
inequalities and Nash equilibria,Decision and Control in Management Science, Kluwer Academic
Publishers, Dordrecht, (2002), 367–378.

[12] M.B. LIGNOLA AND J. MORGAN, Semicontinuity and episemicontinuity: equivalence and ap-
plications,Bollettino dell’Unione Matematica Italiana, 8B(1) (1994), 1–6.

[13] M.B. LIGNOLA AND J. MORGAN, Well-posedness for optimization problems with constraints
defined by variational inequalities having a unique solution,Glob. Optim., 16(1) (2000), 57–67.

[14] R. LUCCHETTI AND F. PATRONE, A characterization of Tikhonov well-posedness for minimun
problems, with applications to variational inequalities,Numer. Funct. Anal. Optim., 3(4) (1981),
461–476.

[15] M. MARGIOCCO, F. PATRONEAND L. PUSILLO, A new approach to Tikhonov well-posedness
for Nash equilibria,Optimization., 40(4) (1997), 385–400.

[16] E. MIGLIERINA AND E. MOLHO, Well-posedness and convexity in vector optimization,Math.
Methods Oper. Res., 58 (2003), 375–385.

[17] J. MORGAN, Approximating and well-posedness in multicriteria games,Ann. Oper. Res., 137
(2005), 257–268.

[18] A.N. TYKHONOV, On the stability of functional optimization problem,Comput. Math. Math.
Phys., 6 (1966), 631–634.

[19] T. ZOLEZZI, Well-posedness criteria in optimization with application to the variations,Nonlinear
Anal. TMA., 25 (1995), 437–453.

[20] T. ZOLEZZI, Extended well-posedness of optimization problems,Optim. Theory Appl., 91 (1996),
257–266.

J. Inequal. Pure and Appl. Math., 10(4) (2009), Art. 107, 10 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/

	1. Introduction
	2. Preliminaries
	3. Characterizations of Extended Well-Posedness
	4. Characterizations of Extended Well-posedness in the Generalized Sense
	5. Conditions for Extended Well-posedness
	References

