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ABSTRACT. An additional theorem is proved pertaining to the equiconvergence of numerical
series.
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1. INTRODUCTION
In the papers [2]/[3] and [4] we have studied the relations of the following sums:
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where0 < p < ¢, A := {\,} andc := {¢, } are sequences of nonnegative numbers; {v,,}
is a subsequence of natural numbers, and-= {x,,} is a certain nondecreasing sequence of
positive numbers.

In [2] we verified thatS; < oo if and only if there exists @ satisfying the condition§; < oo
andsS; < oo. Similarly S5 < oo if and only if S; < co andS; < oc.

In [3] we showed thab, < o if and only if there exists @ such thatS; < oo andS; < co.

242-08


mailto:leindler@math.u-szeged.hu
http://www.ams.org/msc/

2 L. LEINDLER

Recently, in[[4], we proved that if

o 1/q n
My = A7(11) Cﬁfq’ where Cn = (Z CZ) and Agll) = Z >\k7
k=n k=1

then the sums, S, andS; are already equiconvergent.
Furthermore if

n 1/q %)
fn = AP CP=1 where C, := (Z cZ) and AP =) "\,
k=1 k=n
then the sums’;, S; andS; are equiconvergent.

Comparing the results proved i [4] and that/cf [2] anld [3], we can observe that in the former
one the explicit sequencégs,, } are determined, herewith they state more than the outcomes of
[2] and [3], where only the existence of a sequefieg} is proved.

Furthermore, in[4] the equiconvergence of these concrete sums are guaranteed, too.

However the equiconvergence In [4] is proved only in connection with the sigrasd Ss,
but not forS,. This is a gap or shortcoming at these investigations.

The aim of this note is closing this gap. Unfortunately we cannot give a complete solution,
namely our result to be verified requires an additional assumption on the sequelncpar-
ticular, A should be quasi geometrically increasing, that is, we assume that there exist a natural
numberN andK > 1 such that\,, y > 2\, and),, < K\, hold for alln.

Then we can give an explicit sequencsuch that the sums,, S, andS; are already equicon-
vergent. We also show that without some additional requiremeAttba equiconvergence does
not hold. See the last part. Thus the following open problem can be raieat is the weakest
additional assumption on sequent&hich ensures the equiconvergence of these 8ums

2. RESULT

Theorem 2.1.1f 0 < p < q, ¢ := {¢,} is a sequence of nonnegative numbers= {v,,} is a
subsequence of natural numbers, and= { )\, } is a quasi geometrically increasing sequence,
and forv,, <n < v,11

B
0 q
,un::)\m<ZcZ> , m=0,1,...,

k=vm

then the sums;, S, and S} are equiconvergent.

3. LEMMA

In order to verify our theorem, first we shall prove a lemma regarding the equiconvergence
of two special series.

Lemma3.1.Let0 < a < 1, a := {a,} be a sequence of nonnegative numbers; {v,,} be a
subsequence of natural numbers, and- {x,,} be a quasi geometrically increasing sequence.
Furthermore let4;, := > °  a,, and forv,, <n < vy, let

L = /{mAlo,‘;l, m=20,1,....

Then

(3.1) o1 = Zan by, < 0O

n=1
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holds if and only if

(3.2) 0y:= Y km AY < 00.

m=1

Proof of Lemma 3]1Before starting the proofs we note that the following inequality
(3.3) > ki < K ki,
n=1

holds for all m, subsequent to the fact thatis a quasi geometrically increasing sequence
(see e.g.[]1, Lemma 1]). Here and later Bndenotes a constant that is independent of the
parameters.

Furthermore we verify a useful inequality.df< a < b, 0 < a < 1 and

b* — a®

(3.4) —

=ag,

then

£ > a9 = &,
namely ifa = 0 then¢ = &,. Hence we get that
(3.5 at <prt

Now we show thaf (3]1) implie§ (3.2). Sineg, \ 0, thus, by [(3.B),
Z Fom Asm - Z Fom Z (Asn o A§n+1)
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(3.6) <KS k(A% — A2 ).
n=1

Using the relationg (3}4) and (3.5) we obtain that

Unt1—1 Vpt1—1
AD —AS = ( > ak> aft < ( > ak) Ast,

k=v, k=v,
This and|(3.p) yield that
00 00 Vnt1—1 0o Vnt1—1
S Em AL KDY kAT DY ar=K Y Y anme
m=1 n=1 k=vn, n=1 k=vp,
Herewith the implication (311} (3.2) is proved.
The proof of [3.R)= (3.1) is very easy. Namely
0 o0 Vm41—1
Z Qnp, by = Z Z A, by,
n=vq m=1 n=vm
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that is, [3.2)= (3.1) is verified.
Thus the proof is complete. O
4. PROOF OF THEOREM [2.1

We shall use the result of Lemr@.l with= §, a, = ¢ andk,, = \,. Then4, =
Y ore, i and fory, <n < vy

P—gq

k=vm

Theno, = 5, thus by Lemma 3]1$; < oo implies thatr, < oo, that is,

00 Vm+1—1 q 00 0o
(4.2) S4:ZAm<i cg> gZAm<ch> =03,
m=1 m=1

N=Vpm, N=Vm,
Moreover, by[(4.]L),
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Sj[:z;)\n (ZCZ) :Z:l)\n (Zci) = 09,
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Qs

thusS; < oo implies that bothS; < co andS§ < oo hold.
Conversely, ifSy < oo, then it suffices to show that, = S; < oo also holds.
Applying the inequality

(Zak>a§2a‘g, 0<a<l, a,>0,

and 3.3), we obtain that

This, (4.2) and, by Lemnja 3.1, the implication < co = ¢; = S; < oo complete the proof
of Theoreni 2.11.

Proof of the necessity of some additional assumption.oeetp =1, ¢ =2, A, = logn, v, =

n and
m=3 if n=2m

= otherwise.
Then
= log 2™
S4 = 2_:2 m3 < o0,
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butS; < coandS; < oo cannot be fulfilled simultaneously. Namely, then with a nondecreasing
sequencsd ., } the conditions
Sl = Zm76,u2m < o0
m=1

and

oo 1 2
DL S
yield a trivial contradiction. O
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