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ABSTRACT. In this paper we consider the classes of starlike functions, starlike functions of
orderq, convex functions, convex functions of ordeand the classes of the univalent functions
denoted bySH (), SP andSP («a, 5). On these classes we study the convexity andrder
convexity for a general integral operator.
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1. INTRODUCTION

LetU = {z € C,|z| < 1} be the unit disc of the complex plane and denoteb{l/), the
class of the holomorphic functions ih Consider

A={feHWU),f(z)=z2+a" +azz*+---, zeU}

the class of analytic functions iti andS = {f € A : f is univalent inU}. We denote by5*
the class of starlike functions that are defined as holomorphic functions in the unit disc with the
propertiesf (0) = f'(0) — 1 = 0 and

2f' (%)
Re > 0, zeU.
f(z)
A function f € A is a starlike function by the order, 0 < o < 1 if f satisfies the inequality
2f' (2)
Re > zeU.
f(z)
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We denote this class by* («). Also, we denote by« the class of convex functions that are
defined as holomorphic functions in the unit disc with the propeftigs = ' (0) — 1 = 0 and

2f" () }

Re + 13 >0, zeU.
{ [ (z)

A function f € A is a convex function by the order, 0 < a < 1if f verifies the inequality

Re{zjﬁll(iz)) + 1} >a,  zel.

We denote this class bl («).
In the paper[5] J. Stankiewicz and A. Wisniowska introduced the class of univalent functions,
SH (), > 0defined by:

2f' () 2f'(2)
(1.1) T —25(\/5—1) <Re{\/§f(z)}+25<\/§—1>, fes,
forall z € U.
Also, in the paper [3] F. Ronning introduced the class of univalent functidfsdefined by
P of'(2) _ |2 () _ '
(-2 re e e

for all z € U. The geometric interpretation of the relatipn {1.2) is that the c}a3ss the class
of all functionsf € S for which the expressionf’ (z) /f (z), z € U takes all values in the
parabolic region

Q={w:|jw—1] <Rew}={w=u+iv:v*<2u—1}.

In the paper[[B] F. Ronning introduced the class of univalent funct®Rg«, 5), a > 0,
B € [0,1), as the class of all functions € S which have the property:

(1.3) M—(a+ﬁ) <Rl

f(z) f(2)

for all z € U. Geometric interpretationf € SP (o, ) ifand only if zf' (2) /f (2),z € U
takes all values in the parabolic region

Qop={w:|lw—(a+B) <Rew+a— G}
={w=u+iw:v’<da(u-p)}.

We consider the integral operatby, defined by:

(1.4) F,(z) = /O (flt(t)yn (fnt(t))a” it

and we study its properties.

Remark 1.1. We observe that for = 1 anda; = 1 we obtain the integral operator of Alexan-
der,F (z) = [ {qt.
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2. MAIN RESULTS

Theorem 2.1.Let o, ¢ € {1,...,n} be real numbers with the properties > 0 for i €

{1,...,n}and
Zai <n-+ 1.
=1

We suppose that the functioris i = {1,...,n} are the starlike functions by ordej;, i€

{1,...,n}, thatisf; € S* (ai) forall: € {1,...,n}.Inthese conditions the integral operator
defined in[(1.]4) is convex.

Proof. We calculate for,, the derivatives of the first and second order. Frpm| (1.4) we obtain:

Fl(2) = (flz( )) ..... (fn7(z))a

and . A £l e
- Eo (1) (R ()
o (R0 oo (S0

en  EBoa( ) (HY)

By multiplying the relation[(2]1) withx we obtain:
Fl(z) -~ (2 N o2l
ey X () R

The relation[(2.R) is equivalent with

() zfi(2) 2/ (2)
S H e e B AT B
From (2.3) we obtain that:

2! (2) )_ 21 (2) )
(2.4) Re(F’(z)+1 = oy Re f1()+ -+ o, Re fn() 1 n+ 1

> ~, foralli € {1,...,n}. We apply

But f; € S* ( ) foralli € {1,...,n}, soRe )

this affirmation in the equality (2. 4) and obtaln

F" 1 1
(2.5) Re(z”(Z)—l—l)>a1—+---+ozn——o¢1—--~—ozn+1

F! (2) oy o,

=1
But, in accordance with the hypothesis, we obtain:

(£

so, I, is a convex function. O
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Theorem 2.2. Let oy, @ € {1,...,n}, be real numbers with the properties > 0 for i €

{1,...,n}and
ZOQ‘ < 1.
i=1

We suppose that the functiofis i = {1,...,n}, are the starlike functions. Then the integral
operator defined irf (1}4) is convex by ordek- Y7 | o

Proof. Following the same steps as in Theor@ 2.1, we obtain:

2F (2) = 2fl (2 zf’
o -Yu(FE1)- Z e
The relation[(2.6) is equivalent with

Fl() L fi) L e
S 1 B O Ry AT H
From [2.7) we obtain that:

2F" (2) 21 (2) 2fn (2)

(28) Re(F/<> +1) 1R fl(z) —|——|-anRe fn(z) -y — - —a, + 1

But f; € S*foralli € {1,...,n}, sORe Z]f (j > 0 foralli € {1,...,n}. We apply this
affirmation in the equallt){_(_2]8) and obtain that:

2y (2)
E (2)

(29) Re( +1)>a10++04n0—a1——ozn—i—l:l—Zal

But in accordance with the inequalify (2.9), obtain that
2F" (2) =
- 1 1-— ;
e (FG )7 X

so, F), is a convex function by order— >"" | . O

Theorem 2.3.Letw;, i € {1,...,n}, be real numbers with the properties > 0, fori €
{1,...,n}and

- V2
(2.10) ;aig RS RV

We suppose thaf, € SH (5), fori = {1,...,n} and3 > 0. In these conditions, the integral
operator defined i (I]4) is convex.

Proof. Following the same steps as in Theo@ 2.1, we obtain that:

(2.11) F" Z fz Xn:ai +1.

i=1

We multiply the relationml) with/2 and obtain:

(2.12) ﬁ(iﬁé)) ) zf Zf fz 0+ V3.
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The equality[(2.12) is equivalent with:

AR ) D (g e (=)

i=1 i=1
We calculate the real part from both terms of the above equality and obtain:
Fy (2) - 2fi (2)
\/§Re(z" +1): (ai<Re{\/§ t +28(v2-1
F! (2) ; fi(2) g ( )
—22%5( 2 1) V2 a4 V2.
=1

Becausef; € SH () for i = {1,...,n}, we apply in the above relation the inequality {1.1)
and obtain:

V2R (zf( ) Z

—Zﬁ(\/ﬁ—1>‘

—22%5( 2—1) —ﬁiaﬁ-\@.

ZHON Yo (V2 - 1)‘ >0, foralli € {1,...,n}, we obtain that

Becausey; )

(2.13)  V2Re (ZF”(( ) 22%5( 2—1)—\/§zn:ai+\/§.

Using the hypothesi§ (2.]L0), we have:

2F" (2)
2.14 R L 1)1>0
(219 (g 1) =0
so, I, is a convex function. O
Corollary 2.4. Leta be real numbers with the properti@s< o < — V2350 We

26(V2-1) 12’
suppose that the functions € SH (3). In these conditions the integral operatdr,(z) =

N ( t)) dt is convex.

Proof. In Theoren 2.3, we consider= 1, a; = aandf; = f. O

Theorem 2.5. Let o, ¢ € {1,...,n} be real numbers with the propertieg > 0 for i €

{1,...,n},

andl — 3"  «a; € [0,1). We consider the functions, f; € SP fori = {1,...,n}. Inthese
conditions, the integral operator defined 1.4) is convex by " | «; order.
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Proof. Following the same steps as in Theo@ 2.1, we have:

n

(2.16) ZF" Z fz ~S i+l

=1

We calculate the real part from both terms of the above equality and obtain:

(2.17) Re (Zg(g) + 1) - ia Re <Zf é’?) - ia +1.

Becausef, € SP fori = {1,...,n} we apply in the above relation the inequality (1.2) and
obtain:

2k, (2) ~ |zfl(2) -
(2.18) Re ( - + 1) > : —1 a; + 1.
£, (2) Z fi(2) ;
f >0, foralli € {1,...,n}, we get
F// ( )
(2.19) Re ( ; + 1) >1-— Q.
£, (2) Z
Using the hypothesis, we obtain tht is a convex function by — " | «; order. O
Remark 2.6. If Y~"" | a; = 1 then
2F ()
(2.20) Re ( F (2) + 1) > 0,

so, F), is a convex function.

Corollary 2.7. Let~ be a real number with the property< ~v < 1. We suppose thgt € SP.
In these conditions the integral operatbt(z) = [ < t“) dt is convex ofl — ~ order.

Proof. In Theorenj 2.p, we consider= 1, a; = yandf, = f. O

Theorem 2.8. We suppose that € SP. In this condition, the integral operator of Alexander,
defined by

(2.21) Fi(2) = /0 i fT(t)dt,

iS convex.

Proof. We have:

2] (2) f(2) _|2f ()
(2.22) Re <,1— + 1) = Re > —1]>0.
Fi(2) ) 1 ()
So, the relation (2.22) implies that the Alexander operator is convex. O

Remark 2.9. Theorenj 2.8 can be obtained from Corollary| 2.7, fo¢ 1.

Theorem 2.10.Let oy,i € {1,...,n} be real numbers with the properties > 0 for i €

{1,...,n},

(2.23) Zal a—5+1 a>0,6€el0,1)
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and(f—a—1)> " o+ 1€ (0,1). We suppose that € SP(a,[3), fori = {1,...,n}.
In these conditions, the integral operator define(1.4) is convéxbya —1)>" o +1
order.

Proof. Following the same steps as in Theofenj 2.1, we obtain that:
2F(2) _ 2fi (2) -
(2.24) n = a( +a-0)+(B-—a-1 Q.
e 25 ( )2
and
2F" (2) = z2fl(2) &
(2.25) — o t1= ai( : +a—-0|+(B—-—a-1 a; + 1.
ne e e ( )2
We calculate the real part from both terms of the above equality and get:
2 () - 2fi (2)
(2.26) Re< - +1):Re o ( +a—0
£ (2) Z fi(2)
B—a—=1)) o+l
=1

Becausef; € SP (a,f) fori = {1,...,n} we apply in the above relation the inequality {1.3)
and obtain:

(2.27) Re (—Zﬁflbl((j)) + 1) > Z a; Z;{((Zé)

zf(j) — (a+ 5)‘ > 0, foralli € {1,...,n}, using the inequalit3), we have

F// n
(2.28) Re(F/(())+1> (ﬂ—a—l)Zai+1>O.
=1
From (2.28), sincé3 —a — 1) 37", a;+1 € (0,1), we obtain that the integral operator defined
in (L.4) is convex by{3 — a — 1) ZZ L o; + 1 order. O
Corollary 2.11. Let~ be a real number with the property< v < 5+1, a>0,8€l0,1). W

suppose thaf € SP (a, ). In these conditions, the integral operatbr(z) = |, <f7t)> dt is
CONvex.

Proof. In Theorenj 2.10, we consider= 1, a; =y andf, = f.

Fora = 3 € (0, 1) we obtain the clasS§ («, «) that is characterized by the property
2f' (2) 2f' ()
f(2) f(2)

—(a—l—ﬁ)‘—i—(ﬁ—a—l)zn:ai—i-l.

Sinceq;

(2.29)

—204‘ < Re
O

Corollary 2.12. Letw;, i € {1,...,n} be real numbers with the properties > 0 for i €
{1,...,n} and

(2.30) 1— Zai cl0,1
=1

We consider the functions, f; € SP (a,«a),i = {1,...,n}, a« € (0,1). In these conditions,
the integral operator defined i.4) is convexloy > | «; order.
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Proof. From (1.4) we obtain

Fl(z) < 2f() <
231 o B Ny, -3,
(231 AEI SR Ao SN
which is equivalent with
2F (2) R O
(2.32) Re ( F (2 + 1) = ;al Re 10 ;al + 1.
From (2.31) and (2.32), we have:
2F (2) - Zf’( ) -
SinceY"l, a; [“LE) — 204‘ >0, foralli {1 .,n}, from (2.33), we get:
FI/ (
(2.34) R(F/(>+1>>l—2az

Now, from {2.34) we obtain that the operator definedlin|(1.4) is convexty’!" , «; order. [
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