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ABSTRACT. In the present paper, we investigate several inclusion relationships and other in-
teresting properties of certain subclasses of meromorphically multivalent functions which are
defined here by means of a linear operator involving the generalized hypergeometric function.
Some interesting applications on Hadamard product concerning this and other classes of integral
operators are also considered.
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1. INTRODUCTION

For any integern > 1 — p, let me be the class of functions of the form:

(1.1) f(2) :zp—l—iakzk (peN={1,2,...}),
k=m

which are analytic ang-valent in thepuncturedunit diskU* = { € C : 0 < |2| < 1} =
U\ {0}. We alsodenotg_,, , = > . For0 = a < p, we denote by _(p; ), >k (p; )
and)_(p; a), the subclasses 9f | consisting of all meromorphic functions which are, respec-
tively, p-valently starlike of ordety, p-valently convex of ordew andp-valently close-to-convex
of ordera.

If f andg are analytic inU, we say thatf is subordinate tg, written f < ¢ or (more
precisely)f(z) < g(z) z € U, if there exists a functioo, analytic inU with w(0) = 0 and
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lw(z)| < 1suchthatf(z) = g(w(z)), z € U. In particular, ifg is univalent inU, then we have
the following equivalence:

f(z) < g(2) (z € U) <= f(0) = g(0) and f(U) c g(U).
For a functionf € }° ., given by ) ang € ), defined byy(z) = 277+ Y27 b2,
we define the Hadamard product (or convolutionyf@&ndg by

[ r9() = (F49)(z) =27+ S bz (peN).
k=m

For real or complex numbers

a1, 0,0 and By, B, B (B¢ Zy ={0,-1,-2,...}; j=1,2,....,5),

we consider th@eneralized hypergeometric functigh; (see, for example| [17]) defined as
follows:

= () (o) 2*
1.2 : 12) = AN, .. (A, kIl
(1.2) qu(Oéh , o B, , Bs; 2) kz:% Bk -+ (Bs)n k!

(g<s+1; ¢se Ng=NU{0}; z€U),

where(z), denotes thé?2ochhammesymbol (or theshifted factoria) defined, in terms of the
Gamma functior’, by
I'(z+k) x4+ 1)(z+2)---(z+k—1) (keN)
(@)= —= 5= =
I'(z) 1 (k=0).

Corresponding to the functiapy, (o, . . ., ag; B1, - - -, Bs; 2) given by

(1.3) Op(ar,. . ag; By ..., B 2) = 27F (Fs(an, ... a0 B, ..., s 2),
we introduce a functiom,, (a1, . .., ag; 1, . . ., Bs; 2) defined by
(14) ¢p(a17 s 7aq; 617 s 768; Z) * ¢p,u(a17 s 7aq; 617 s 765; Z)

1

:W (u > —p; z€U").

We now define a linear operatf;/ (c, ..., ag; B1, .., Bs) 1 D2, 0 — D pm BY
(1.5)  Hptlea,...oaq B B5)f(2) = dpulan, .. g Bry. oo, Bsi 2) * [(2)
<Oéz',ﬁj €eC\Zy;i=12...,¢; J=1,2,...,8, u>—p; f € Z ; ZEU*).
p,m
For convenience, we write
Hoyk (ar, ... aq; 01,0, 0s) = HovM (oq)  and

p,q,s Psq,s
H;:;f;’“(al) = Hg,q,s(al) (,LL > _p)
If fis given by[1.1), then from (1].5), we deduce that
— . (M + p)p-l—k(ﬁl)p—&-k e (6s)p+k k
1.6 Hyvk(on)f(z) =27F + a2
(1.6) P (@1)f(z) kz?; (1)psk - () pr ‘

(> —p; z€U").
and it is easily verified fron{ (1]6) that
(L7 = (Hyi(aa)f) (=) = (u+p) Hy (an) F(z) = (u+ 2p) Hpti(en) f(2)
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and

1.8) 2 (HM(on+1)f) (2) = an M (an) f(2) — (p+ an)HIE (o) f(2).

We note that the linear operatéf]'.(«,) is closely related to the Choi-Saigo-Srivastava
operator [[5] for analytic functions and is essentially motivated by the operators defined and
studied in[3]. The linear operatd{f;;fs(al) was investigated recently by Cho and Kim [2],
WhereasH;;ﬁ(c,l;a; z) = Ly(a,c) (c € R, a ¢ Z;) is the operator studied inl[7]. In
particular, we have the following observations:

W) H™ (1, B BB, B f(2) = 2 / 2L f (1) d

2% J

(“) H;?ég—l,s(pa Bla ---765; ﬁla 7ﬂs)f(z) = H]Ti&-l,s(p_‘_la ﬁla '-'vﬁs; ﬁla ceey ﬁs)f(z) = f(Z),

(|||) Hz,li‘rl,s(p7 Bl, cee ,65; 61, B ,68)-]((2) = Zf (2) _;2pf(2)7

(V) HI2 0+ 1,81, Bei Brye s B f(2) = 2f'(2) + (2p + 1)f(z);
p+1

(V) H;;ﬁ,ln,s(ﬁlaﬁQ, e ,65, 1, ﬁl, . ,ﬁs)f(z) = ; — Dn+p_1f(2’)

2P(1 — z)ntp
(n is an integer> —p), the operator studied inl[6], and

(V) H (511, By B 136, B s B () = — /Ozt5+P1f(t) dt

T o+p

(6 > 0; z € U*), the integral operator defined Hy (B.6).

Let 2 be the class of all functions which are analytic, univalent i and for which¢(U) is
convex with¢(0) = 1 andR {¢(z)} > 0in U.
Next, by making use of the linear operafdf’,;’. (o ), we introduce the following subclasses

of an.

Definition 1.1. Afunction f € > is said to be in the clas$1S} 7" (g, s;n; ¢), if it satisfies
the following subordination condition:

1 e f) (2)
p—n{ TEFATAYIE *"}“M

(0peQ, 0=n<p, p>—p; zel).

(1.9)

In particular, for fixed parametersandB (—1 < B < A < 1), we set

m 1+ Az m
M (0.5 12 ) = M (i 4. ).

It is easy to see that

MSE (g, 87 0) = MS,i11.0, (g, 531 ¢) and
MSYS (.81 A, B) = MS,11,0,(¢, 5:m; A, B)

are the function classes studied by Cho and Kim [2].
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Definition 1.2. For fixed parameterd and B, a functionf € Zp,m Is said to be in the class
MCHT (g, 85 A A, B), if it satisfies the following subordination condition:

{0 = NEH ) )'(2) + MHE (0 f) ()} 1+ Az
p 1+ Bz
(-1=B<AS1, 220, pu>—p; z€U).

(1.10)

To make the notation simple, we write(C’7" <q, s;0;1 — %, —1) MCHT (g, s5m), the
class of functiong € > satisfying the condition:

—R {2 (i (0)f) ()} >0 (0Sy<pzel)

Meromorphically multivalent functions have been extensively studied by (for example) Liu
and Srivastava [7], Cho et al.l[4], Srivastava and Patel [18], Cho andKim [2], Abuf [1], Srivas-
tava et al.[19] and others.

The object of the present paper is to investigate several inclusion relationships and other in-
teresting properties of certain subclasses of meromorphically multivalent functions which are
defined here by means of the linear operdgjt*. (o, ) involving the generalized hypergeomet-
ric function. Some interesting applications of the Hadamard product concerning this and other
classes of integral operators are also considered. Relevant connections of the results presented
here with those obtained by earlier workers are also mentioned.

2. PRELIMINARIES
To prove our results, we need the following lemmas.

Lemma 2.1([8], see alsol[10]) Let the functiom. be analytic and convex(univalent) ihwith
h(0) = 1. Suppose also that the functigrgiven by

(2.1) $(z) =1+ c, 2" +cpp12"™ +--- (neN)
is analytic inU. If

2¢/(2)

o(=) + 2 L h(z) (R(R) 20, R A0; 2 € D),

then
P(2) < q(z) =

andq is the best dominant.

SI=

2 n /Zﬁ-lh(t) dt < h(z) (z€U)

The following identities are well-known [21, Chapter 14].

Lemma 2.2. For real or complex numbers, b, ¢ (¢ ¢ Z, ), we have

(2.2) /01 7 — )1 — t2) Tt = wgﬂ(a b;c;z) (R(e) > R(b) > 0)
(2.3) 2Fi(a,b;c; 2) = o Fy (b, a;¢; 2)

(2.4) JFi(a,bie;z) = (1 —2)7% ( 1)

(2.5) (b+ 1) Fy(1,b;04+1;2) = (b+ 1) + bz o Fiy (1, b+1 b+2;2)

and

(2.6) o Fy <1, 1;2; %) —21n2.
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We denote byP(~), the class of functiong of the form
(2.7) Y(z)=1+crz+cz? +---,
which are analytic ifU and satisfy the inequality:
R{v(2)} >~ (0=v<L; 2€l).
It is known [20] that if f; € P(v;) (0 < v; < 1; j = 1,2), then
(2.8) (fref2)(z) € Pys) (13=1-2(1=m)(1—"2))-

The result is the best possible.
We now state

Lemma 2.3([12]). If the functiony, given by|(2.]J7) belongs to the claB%y), then

R{p(2)} = 27— 1 4+ 21“+‘|j|) (0<y<1zel).

Lemma 2.4([8,/10]). Let the function? : C*>xTU — C satisfy the conditioft { U (ix,y; 2)} <
efore > 0, allreal z andy < —n(1 + z%)/2, wheren € N. If ¢ defined by[(2]1) is analytic in
UandR{¥ (¢(z), 2¢'(2); 2)} > ¢, thenR{p(z)} > 0in U.

We now recall the following result due to Singh and SirigH [16].

Lemma 2.5. Let the function® be analytic inU with ®(0) = 1 andR{®(z)} > 1/2in U.
Then for any functior’, analytic inU, (® = F')(U) is contained in the convex hull 6f(U).

Lemma 2.6([13]). The function(l — z)? = ef°8(=2) " 3 £ 0 is univalent inU, if 3 satisfies
either|f+ 1| <1lor|f—1] = 1.

Lemma 2.7([9]). Letq be univalent inU, # and ® be analytic in a domairD containingq(U)
with ®(w) # 0 whenw € ¢(U). SetQ(z) = z¢'(2)p(q(z)), h(z) = 0(q(2)) + Q(z) and
suppose that

(i) Q is starlike(univalent) irflU with Q(0) = 0, @'(0) # 0 and
(i) @Q andh satisfy

! { $<(§>)} - { e g<(>)} -0

If ¢ is analytic inU with ¢(0) = ¢(0), ¢(U) C D and
(29)  0((2)) + 2/ (2)® (8(2)) = 0(a(2)) + 2¢'(2)® (4(2)) = h(z) (2 € V),
theny < ¢ andq is the best dominant df (2.9).

3. MAIN RESULTS
Unless otherwise mentioned, we assuimeughoutthe sequel that
a; >0, a;, 3 e R\Zy (1=2,3,...,¢;7=1,2,...,9),
A>0,p>—-p and —1SB<AZ1.

Following the lines of proof of Cho and Kim|[2] (see, al§o [4]), we can prove the following
theorem.
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Theorem 3.1.Let¢ € Q with
max R{$(2)} <min{(u+2p—n)/(p—n),(ax+p—n)/(p—m}  (0=n<p).
Then
MSEEEL™ (g, sm;0) © MSET (q, 53m;0) C MSLT L (8515 0) -

b, yZ1e5%

By carefully choosing the functios in the above theorem, we obtain the following interest-
ing consequences.

Example 3.1. The function

6(2) = Gigi)a O<a<l zcU)

is analytic and convex univalent ith. Moreover,
1—A\“ 1+ A
< [
0= (155) <reen<(1g)
O0<as1l -1<B<AZL1;, zeU).
Thus, by Theorerh 3|1, we deduce that, if
(1—|—A)Cv , {u+2p—n a1+P—7]}
— < min ,
1+ B p=n pP=1

0<asl —-1<B<AZL),

then
MSL™ (a4, 8im50) C© MSHT (a:5:m39) © MSpat 1 (a:5:m59) -

p,o1 yZ1e01

Example 3.2. The function

¢(2)—1+%[10g<11—\/@>] (0<a<l1; zel)

is in the class? (cf. [14]) and satisfies

2 1+ va\]?
R{p(2)} < 1+F [log(l_\/a>] (z €U).
Thus, by using Theorem 3.1, we obtain that, if
2
1+32 {10g(1+\/a>} <min{'u+2p_n O‘”Lp_"} 0<a<l),
(A

1 —ya p—n = p—n

then
MSE" (q,5,m50) C MSET (q:5:m;9) C MSpi o (45515 9) -

p,o1 p,oa

Example 3.3. The function
Z):l—i—kE:l(m a’z (O<Oé<1,ﬁ§0,ZGU)

belongs to the clag3 (cf. [15]) and satisfies

%{¢(2)}<1+Z(%)ak O<a<1, 820)
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Thus, by Theorer 3|1, if

G ﬁ+1) P {u+2p—n a1+p—n}
14 (— a” < min , O<a<l, g=20),
; B+k p=n p=n ( )

then
M (g, 83m30) © MSEE (g, 83m50) € MSy 1 (g, 55m:0) -

p,o1 b1 p,a1+1

Theorem 3.2. If f € MCET (q,s;\; A, B), then

p,o1

P (gtlens) @) w(z) < A2

A
(3.1) D 14 Bz

(= €U),

where the function) given by

" {g (1= 3) (4 B2) R (L1522 + 1155 ) (B £0);
Z) =
(ntp)A —
1+ u+p;jr/\1()p+m)z (B=0)
is the best dominant df (3.1). Further,
(3.2) feMeCyy (q,s;pp),

where
{% HU= ) =B (Lt + i) (B A0)
p =
(u+p)A _
- u+pi/\1()p+m) (B =10).
The result is the best possible.

Proof. Setting

@3 o) = - T IECITE)

we note thatp is of the form [[2.]1) and is analytic id. Making use of the identity (1.7) if (3.3)
and differentiating the resulting equation, we get

o {00= 2 (e f) () + 2 (it () f) ()]
AR T p
< iigi (z € U).

Now, by applying Lemm@ 21 (with = (1 + p)/)) in (3.4), we deduce that
A (M) ) (2)
p

ptp R /z P 4 1+ Az
< _ _HTP o Xerm) [ 3erm) dt
e = Sprm)” i 1+ B-

A A ., o ptp Bz
§+(1_E)(1+Bz) 2F1<1’1’)\(p+m)+171+32) (B #0)
(n+p)A

p+p+Ap+m)

by a change of variables followed by the use of the identifieg (2.2), (2.3), (2.4) and (2.5), re-
spectively. This proves the assertipn {3.3).
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To prove [3.2), we follow the lines of proof of Theorem 1 in|[18]. The result is the best
possible ag) is the best dominant. This completes the proof of Thegrein 3.2. O

SettingA=1—(2n/p), B=—1, u=0, m=1—p, a; =A=p and a1 =0; (i =
1,2,...,s)in Theorenj 3.R followed by the use of the ident[ty {2.6), we get
Corollary 3.3. If f € >_ satisfies
R (p+2)f'(2) +2f"(2))} >n (0= <p;zeD),
then
—REP(2)} >n+2(p—n)(Im2-1) (z€0).
The result is the best possible.

PuttingA =1—(2n/p), B=—-1, u=0, m=2—p, ey =A=p and «;1 =0 (i =
1,2,...,s)in Theorenj 3.2, we obtain the following result due to Pap [11].
Corollary 3.4. If f €3, , satisfies

SR (2 () + ) > LD (),

then
—R{f'(2)} >0 (z€0).
The result is the best possible.

The proof of the following result is much akin to that of Theorem 2.in [18] and we choose to
omit the detalils.

Theorem 3.5. If f € MCET (¢,s;m) (0 =1 < p), then

b,a1

[ {1 (i) () A (g e)f) ()] >
(|z] < R(p, p, A, m)),
where

1
p+m

V(+p)2+ X (p+m)2 = Ap+m)
i+ p

R(p, p, A,m) = [
The result is the best possible.

p7q7s

Upon replacingp(z) by 22 H?“* () f(2) in ) and using the same techniques as in the
proof of Theorem 3]2, we get the following result.

Theorem 3.6. If f € >  satisfies

14+ Az
PO =N ) f(2) + AR () ()} < - (€ D),
then
m 1+ Az
T ()F() < U(:) < e (€ D)
and

R{PHS () f(2)} > p (2 € D),

p7q’s
wherey) and p are given as in Theoren 3.2. The result is the best possible.
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Letting

P 1 P 1\
A=dor (1, —L 1.2 1l R (1 — 2 1o ,
{2 1( A(p +m) 2) }{ ? 1( A(p +m) 2>}

B=-1, =0, a9 =p and a1 =0; (i=1,2,...,s)in Theorenj 3.6, we obtain
Corollary 3.7. If f € >, satisfies

. 1
3-2,F (1,1,m+1,5>

2{2 - B (11 5 + 1) }

(35) ® {(1 + N f(2) + ]—i\zp“f’(z)} > (z € 1),

then :
R{Lf(2)} > B (z € D).
The result is the best possible.

For a functionf € >_ . we consider the integral operatb,, defined by

(3.6) Fsp(2) = Fsp(f)(2) = e /OZ L £(¢) dt

— . 6 k *
:<Zp+kzgmmz)*f(z) (5>0;Z€U).
It follows from (3.6) thatFs,(f) € 3, ,, and

B.7) 2 (M (o) Fsp(f)) (2) = 0 HIM(an) f(2) — (8 + p) Hys () Fop(f)(2)-

Using [3.7) and the lines of proof of Theorem 1 [2], we obtain the following inclusion rela-
tion.

Theorem 3.8. Let¢ € Q withmax,cyR{¢(2)} < (+p—1n)/(p—n) (0=n <p; § >0).
If f € MSET (q,5;m;0), thenFs,(f) € MSET (g, 5;1; ).

p,a1 p,o1

Theorem 3.9. If f € - and the function;,(f), defined by (3]6) satisfies

(1) (i (e Fop(D) () + A (e f) ()} 14 as
_ =< (z € 1),
p 1+ Bz

then

n { pras (H;ﬁ‘(}f‘s(a];)fé,p(f)) (Z) } >0 (Z € U),

where
{g+ (1= 4 0=B) " oh (Llisghg + 1) (B#0)
Q:

A _
L ) (B=0).

The result is the best possible.

Proof. If we let

(39 o) = -2 (Hm(o‘;m’”“ VG . cu)
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theny is of the form [2.]1) and is analytic iV. Using the identity[(3]7) in (3]8) followed by
differentiation of the resulting equation, we get

2¢'(z) 14 Az
o “1vme ©
The proof of the remaining part follows by employing the techniques that proved Theorem
B.2.
Uponsettingd =1— (2n/p), B=—-1, A=pu=1, s =p+1 and a1 =0 (i =
1,2,...,s)in Theorenj 3.9, we have

Corollary 3.10. If f € > .(p;n) (0 < 1 < p), then the functior;,,(f) defined by[(3]6)
belongs to the clasy . (p; »), where

0 1
- ) dem (1,12 s ) 1l
4 77+(p 77){2 1(7 7p+m+ a2) }

e(z) + e U).

The result is the best possible.
Remark 1. Under the hypothesis of Theor¢m|3.9 and using the fact that

P (M () Foo(F)) (2) = / 5 (R () f) (B dE (5> 05z € T),

D,q,S Z(S D,4q,S
we obtain

—ére{% /0 P (H () ) (2) dt} >0 (zel),

z
whereyp is given as in Theorefn 3.9.
Following the same lines of proof as in Theorem 3.9, we obtain
Theorem 3.11. If f € - and the functior;,,( f) defined by (3]6) satisfies

1+ Az
1+ Bz

{1 = A) Hy () Fop(f)(2) + A My (an) f(2) } <

p?q?s p7q7S

(’Z S U)u

then
x {szm’“ (oq)f(;,p(f)(z)} >0 (z€0),

p?q7s
wherep is given as in Theorefm 3.9. The result is the best possible.

In the special case wheth =1 —-2n, B=—-1, A=1, u=1—p, ay =5+ 1, 1 =
6, a; =03 (1=2,3,...,5) and a,4; =1inTheorenj 3.1, we get
Corollary 3.12. If f € > satisfies

R{f(2)} >n (0=n<1; 2€l),

i Z5+p—1 _ 0 l —
(0>0; ze ).

then

The result is the best possible.

Theorem 3.13. Let—1 = B; < A; =1 (j = 1,2). If f; € ) satisfies the following
subordination condition:

(3.9) P L= MY () fi(2) + XHL G (an) fi(2)} <
(1=1,2; z€ 1),

1+A]Z
1‘|—B]Z
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then

(3.10) R[22 {(1 = AHE (an)g(z) + XHEF (an)g(2)}] > 7 (2 € U),
where

(3.11) 8(z) = Hj,, (a1)(fi f2)(2) (2 €T)

and

4(A1 — B1)(Ag — By) 1 p+p 1
1o 1—=oR (LAl o)
7 (1—B1)(1 - By) R GRS W

The result is the best possible whBpn= By = —1.
Proof. Setting

(3.12) pi(2) = 22 {(1 = NHE () fi(2) + b (an) f5(2) }
(1=1,2; z€ U),

we note thatp; is of the form [(2.7) for eachi = 1,2 and using[(3]9), we obtain

1—-A,
v € P(7;) <%‘ 1_3,1—1 2)

so that by|[(2.8),
(3.13) 102 €P(13) (13=1-2(1=m)(1—")).
Using the identity[(1]7) in (3.12), we conclude that

-|—p bt [F o ptp
My g o(1) fi(2) = “A R B N (L

0
(1=1,2; z€U")

which, in view of [3.11) yields
Hl‘ Iu —|—p 7p7u+P )

baslana(z) = S [ i e,

where, for convenience

(3.14) po(z) = 27 {(1 = MH, (an)a(z) + AHp L (an)a(2) }

14  opt
:M—HJZ_%/ E3 " (prpa)(t) dt (=€ ).
0

A
Now, by using[(3.183) in(3.14) and by appealing to Lenim& 2.3 and Lemma 2.5, we get
R{0(2) ”ip/ S R (o1 % o) (52) ds
I o (oo A o
L (e M) @
o (1_Bl>)((1AfBz> ( Hp/ Sy 1d>
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- (e (s )}

=7 (2€l).

This proves the assertion (3]10).
WhenB, = B, = —1, we consider the function§ & Zp defined by

+p _, e [ optp 14+ At
Hg,q,s(al)fj(z) = IUTZ LD /(; t A ! (?tj dt

(1=1,2; 2 €U").
Then it follows from [[3.14) that and Lemrpa .2 that
(1+A)1+ Az)) s

1— sz

Ut
eole) =15 [55 (1= A+ a0 +
0

+
1 w+p 1 _
which evidently completes the proof of Theorem 3.13. O

By takingAj =1- 277j7 Bj = -1 (j = 1,2), n = 0, a;p =P and i1 = ﬁz (’l =
1,2,...,s) in Theorenj 3.13, we get the following result which refines the corresponding work
of Yang [22, Theorem 4].

Corollary 3.14. If each of the functiong; € > satisfies

> 1

R {040 £+ 2210}

0<n <1, j=12; z€ ),

then
R o {00 G 06+ 2 20010 200

>0 (ze€0),
where
1 1
0:1—4(1—7;1)(1—7;2){1—521«"1 (1,1;§+1;§)}.
The result is the best possible.
ForAj = 1—2’)7]‘, Bj =—1 (] = 1,2), w =0, A=1, g =p+1 and (e 75N = [ (Z:

1,2,...,s)in Theoren 3.13, we obtain
Corollary 3.15. If each of the functiong; € > satisfies

R{L fi(2)} >m; (0=n; <1, 7=1,2; z€U),
then

1 1

The result is the best possible.
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Theorem 3.16. Let—1 = B; < A; = 1 (j = 1,2). Ifeach of the functiong; € > satisfies

m 1+Az .
(3.15) PHE )G < g, (=12 2€D)
then the functioy = 17+ () (f1 * f2) satisfies
Hywl (an)h(2)
G } >0 (z2€0),
& e =l

provided
(3.16) (A1 — B1)(As — By) 21+ 3p+m

(1—B))(1 - By) 9 {{(p-i—m) o Fy (1,1;ﬁ;%> —2}2 +2(p +p)] )

Proof. From (3.15), we have
FHy (1) fi(2) € Ply) (%‘ =7= Bj»; j= 1,2) :
J

Thus, it follows from [(2.8) that

p?q?s

(3.17) R {ZpHm’“H(oa)fJ(z) § 2 (b)) }

u+p
— R {PHI (an) fi(2) * PHIIH (0n) fa(2) )

Pp,q,s P,q,s
2(A - Bi)(4s — By)

T T B By

(z € ),

which in view of Lemma2Z]1 for

(A1 — B1)(Ay — By)
(1—-B)(1—By) ’

B=—-1,n=p+m and k=pu+p

A=—1+4

yields
(3.18) R {zPHJ(on)b(2)}

P,q,s
(A1 — B1)(Az — Bo) p+p 1
> 1+ (1—31)(1—32) o F1 1717p—|—m72 2 (ZGU)
From [3.I8), by using Theorem 3.6 for
_ (A1 — B1)(As — Ba) ptp 1
A= 1£10—Bﬂﬂ—3ﬁ o F LLp+mQ 2\
B=-1 and \=1,

we deduce that

) (A= B)(4A— By) atp 1Y L
wherev(z) = 2PHMH (a1)h(2). If we set

Hyils (a1)b(2)

o P,q,S
) = S )

(z € 1),
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theny is of the form [2.11), analytic ifif and a simple calculation gives

paym,pt1 < (szg}&{g“(al)b)’ (2)
(3.20) 2PH)ET (an)b(z) + e
. L 2O _ o
=00 { (001 + 22BN} =0 (p12),50/(20:2) (€ D)

whereW¥ (u, v; z) = ¥(z) {u* + (v/(u+ p))}. Thus, by applying(3.17) in} (3.20), we get
(A1 — B1)(Az — By)

RAV (0(2),2¢'(2);2)} >1 -2 1—B)(1-By (z € U).
Now, for all realz,y < —(p + m)(1 + z*)/2, we have
T, Y 2) = v — a? z
R0} = (=t R
_ptm 72 2(#"‘?):[2 .
= 2(u+p){1+ T Em }?R{ﬁ( %
< DI gy <1 - B = B) oy

2(p+p) (1= B1)(1 - By)

by (3.16) and[(3.19). Thus, by Lemia[2.4, we 8¢to(z)} > 0in U. This completes the proof
of Theoreni 3.16. O

TakingAj =1 _2773'7 Bj = —1 (] = 1,2), pw=0 A=1 a =p+1 and Qip1 =
B; (1 =1,2,...,s)in Theorenj 3.16, we have

Corollary 3.17. If each of the functiong; Zp,m satisfies
R{Z[i(z)} >m; (0=n; <1, j=12 z€l),
then

2P (fu* fa)(2)
"\ ) 70 e
provided

3p+m
5 .
2 {{(vam) JF, (1,1;p+Lm; %) - 2} 42
Theorem 3.18. If f € MC) (¢,5,04,B) andg € > satisfies|(35), therf x g €
MCE™ (g, 8\ A, B).

yZ1e51

(I=m)(1—=m) <

Proof. From Corollany 3., it follows tha{¢(z)} > 1/2in U. Since

(= NI (e0)(f * 9))'(2) + A(H () (f + 9))' ()}
p

- O NN Q) NGO (e

and the function(1 + Az)/(1 + Bz) is convex(univalent) iflJ, the assertion of the theorem
follows from (1.10) and Lemmfa 2.5. O
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Theorem 3.19. Let0 # 5 € Cand0 < ~ < p be such that eithefl + 28| < 1 or
[1-28y] = 1. If f € ) satisfies

Hy () f(2) } T,
(321 %{Hﬁ,q,s(a{)f(Z) <t U

then
(M}, () f(2)} < a(z) = (1= 2)*" (z €T)
andq is the best dominant.

Proof. Letting

(3.22) p(z) = {zHE, (a)f(2)} (2 eD)

and choosing the principal branch [n (3.22), we note thé analytic inU with ¢(0) = 1.
Differentiating [3.2P) logarithmically, we deduce that

zp'(z) 2 (H;f’q’s(al)f), (2) .
o(z) ’ {p i Hp.g.s(c) f(2) } (z€l),
which in view of the identitieq (1}7) anf (3]21) give

) T (1‘21)Z
(3.23) e+ pr(z) < —p—— Zp (z € D).

If we takeq(z) = (1—2)%", 0(z) = —p, ®(2) = 1/Bzin Lemmd 3.1]L, then by Lemnha 2.6,
¢ is univalentinU. Further, itis easy to see that ¢ and® satisfy the hypothesis of LemrpaP.7.
Since

2v z
1—=z

Q(z) = 2¢'(2)2(q(2)) =

is starlike (univalent) irfU,

h(z):_p+(p_27)z and %{Zh/(z>}:§}t{ ! }>O (z € 1),

11—z Q(2) 11—z
it is readily seen that the conditions (i) and (ii) of Lemima| 2.7 are satisfied. Thus, the assertion
of the theorem follows fron{ (3.23) and Leminal2.7. O

Pumngﬂ - 07 Y= p<1 - 77)7 ﬁ = _1/277 ap =P andOéiJrl = ﬁz (Z = 1727"'78) in
Theoren 3.19, we deduce that
Corollary 3.20. If f € ) satisfies

{35

}>p77 0=n<1; 2,

then
1

R{f)) 2= 5 2 (zew).

DN | —

The result is the best possible.
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