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ABSTRACT. In this paper we establish several new inequalities includingp-norms for functions
whose absolute values aroused to thep-th power are convex functions.
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1. I NTRODUCTION

Integral inequalities have become a major tool in the analysis of integral equations, so it is
not surprising that many of them appear in the literature (see for example [2], [5], [3] and [1]).
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One of the most important inequalities in analysis is the integral Hölder’s inequality which is
stated as follows (for this variant see [3, p. 106]).

Theorem A. Let p, q ∈ R� {0} be such that1
p

+ 1
q

= 1 and letf, g : [a, b] → R, a < b, be
such that|f (x)|p and|g (x)|q are integrable on[a, b] . If p, q > 0, then

(1.1)
∫ b

a

|f (x) g (x)| dx ≤
(∫ b

a

|f (x)|p dx

) 1
p
(∫ b

a

|g (x)|q dx

) 1
q

.

If p < 0 and additionallyf ([a, b]) ⊆ R� {0} , or q < 0 and g ([a, b]) ⊆ R� {0} , then the
inequality in(1.1) is reversed.

The Hermite-Hadamard inequalities for convex functions is also well known. This double
inequality is stated as follows (see for example [3, p. 10]): Letf be a convex function on
[a, b] ⊂ R, wherea 6= b. Then

(1.2) f

(
a + b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
.

To prove our main result we need comparison inequalities between the power means defined
by

M [r]
n (x; p) =



(
1

Pn

∑n
i=1 pix

r
i

) 1
r
, r 6= −∞, 0,∞;(∏n

i=1 xpi
i

) 1
Pn , r = 0;

min (x1, . . . , xn) , r = −∞;

max (x1, . . . , xn) , r = ∞,

wherex, p are positiven-tuples andPn =
∑n

i=1 pi. It is well known that for such means the
following inequality holds:

(1.3) M [r]
n (x; p) ≤ M [s]

n (x; p)

wheneverr < s (see for example [3, p. 15]).
In this paper we also use the following result (see [5, p. 152]):

Theorem B. Letξ ∈ [a, b]n , 0 < a < b, andp ∈ [0,∞)n be twon-tuples such that

n∑
i=1

piξi ∈ [a, b] ,
n∑

i=1

piξi ≥ ξj, j = 1, 2, . . . , n.

If f : [a, b] → R is such that the functionf (x) /x is decreasing, then

(1.4) f

(
n∑

i=1

piξi

)
≤

n∑
i=1

pif (ξi) .

If f (x) /x is increasing, then the inequality in(1.4) is reversed.

Our goal is to establish several new inequalities for functions whose absolute values raised to
some real powers are convex functions.
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2. RESULTS

In the literature, the following definition is well known.
Let f : [a, b] → R andp ∈ R+. Thep-norm of the functionf on [a, b] is defined by

‖f‖p =


(∫ b

a
|f (x)|p dx

) 1
p
, 0 < p < ∞;

sup |f (x)| , p = ∞,

andLp ([a, b]) is the set of all functionsf : [a, b] → R such that‖f‖p < ∞.

Observe that if|f |p is convex (or concave) on[a, b] it is also integrable on[a, b] , hence
0 ≤ ‖f‖p < ∞, that is,f belongs toLp ([a, b]) .

Althoughp-norms are not defined forp < 0, for the sake of the simplicity we will use the
same notation‖f‖p whenp ∈ R� {0} .

In order to prove our results we need the following two lemmas.

Lemma 2.1. Letx andp be twon-tuples such that

(2.1) xi > 0, pi ≥ 1, i = 1, 2, . . . , n.

If r < s < 0 or 0 < r < s, then

(2.2)

(
n∑

i=1

pix
s
i

) 1
s

≤

(
n∑

i=1

pix
r
i

) 1
r

,

and if r < 0 < s, then (
n∑

i=1

pix
r
i

) 1
r

≤

(
n∑

i=1

pix
s
i

) 1
s

.

If then-tuplex is only nonnegative, then(2.2) holds whenever0 < r < s.

Proof. Suppose thatx andp are such that the inequalities in(2.1) hold. It can be easily seen
that in this case for anyq ∈ R

n∑
i=1

pix
q
i ≥ xq

j > 0, j = 1, 2, . . . , n.

To prove the lemma we must consider three cases:(i) r < s < 0, (ii) 0 < r < s and
(iii) r < 0 < s. In case(i) we define the functionf : R+ → R+ by f (x) = x

s
r . Since in this

case we have(s− r) /r < 0, the function

f (x) /x = x
s
r
−1 = x

s−r
r

is decreasing. Applying Theorem B onf, ξ = (xr
1, . . . , x

r
n) andp we obtain(

n∑
i=1

pix
r
i

) s
r

≤
n∑

i=1

pi (x
r
i )

s
r =

n∑
i=1

pix
s
i ,

i.e., (
n∑

i=1

pix
r
i

) 1
r

≥

(
n∑

i=1

pix
s
i

) 1
s

sinces is negative.
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In case(ii) for the samef as in (i) we have(s− r) /r > 0, so similarly as before from
Theorem B we obtain (

n∑
i=1

pix
r
i

) s
r

≥
n∑

i=1

pi (x
r
i )

s
r =

n∑
i=1

pix
s
i ,

and sinces is positive,(2.2) immediately follows.
And in the end, in case(iii) we have(s− r) /r < 0, so using again Theorem B we obtain

(2.2) reversed. �

Remark 2.2. In this paper we will use Lemma 2.1 only in a special case when all weights are
equal to1. Then forr < s < 0 or 0 < r < s, (2.2) becomes

(2.3)

(
n∑

i=1

xs
i

) 1
s

≤

(
n∑

i=1

xr
i

) 1
r

and forr < 0 < s, (
n∑

i=1

xs
i

) 1
s

≥

(
n∑

i=1

xr
i

) 1
r

.

In the rest of the paper we denote

Cp =


2−

1
p , p ≤ −1 or p ≥ 1;

2, −1 < p < 0;

2−1, 0 < p < 1;

C̃p =


2, p ≤ −1;

2−
1
p
, −1 < p < 1, p 6= 0;

2−1, p ≥ 1.

.

Lemma 2.3. Letf : [a, b] → R, a < b. If |f |p is convex on[a, b] for somep > 0, then∣∣∣∣f (a + b

2

)∣∣∣∣ ≤ (b− a)−
1
p ‖f‖p ≤

(
|f (a)|p + |f (b)|p

2

) 1
p

≤ Cp (|f (a)|+ |f (b)|) ,

and if |f |p is concave on[a, b] , then

C̃p (|f (a)|+ |f (b)|) ≤
(
|f (a)|p + |f (b)|p

2

) 1
p

≤ (b− a)−
1
p ‖f‖p ≤

∣∣∣∣f (a + b

2

)∣∣∣∣ .
Proof. Suppose first that|f |p is convex on[a, b] for somep > 0. We have

‖f‖p =

(∫ b

a

|f (x)|p dx

) 1
p

= (b− a)
1
p

(
1

b− a

∫ b

a

|f (x)|p dx

) 1
p

.

From(1.2) we obtain

(2.4)

∣∣∣∣f (a + b

2

)∣∣∣∣p ≤ 1

b− a

∫ b

a

|f (x)|p dx ≤ |f (a)|p + |f (b)|p

2
,

hence ∣∣∣∣f (a + b

2

)∣∣∣∣ ≤ (b− a)−
1
p ‖f‖p ≤

(
|f (a)|p + |f (b)|p

2

) 1
p

.

Now we must consider two cases. Ifp ≥ 1 we can use(2.3) to obtain

(|f (a)|p + |f (b)|p)
1
p ≤ |f (a)|+ |f (b)| ,
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hence

(2.5)

(
|f (a)|p + |f (b)|p

2

) 1
p

≤ Cp (|f (a)|+ |f (b)|) ,

whereCp = 2−
1
p .

In the other case, when0 < p < 1, from (1.3) we have(
|f (a)|p + |f (b)|p

2

) 1
p

≤ |f (a)|+ |f (b)|
2

,

so again we obtain(2.5) , whereCp = 2−1. This completes the proof for|f |p convex.
Suppose now that|f |p is concave on[a, b] for somep > 0. In that case− |f |p is convex on

[a, b] , hence(1.2) implies

|f (a)|p + |f (b)|p

2
≤ 1

b− a

∫ b

a

|f (x)|p dx ≤
∣∣∣∣f (a + b

2

)∣∣∣∣p .

If p ≥ 1 from (1.3) we obtain(
|f (a)|p + |f (b)|p

2

) 1
p

≥ |f (a)|+ |f (b)|
2

,

hence (
|f (a)|p + |f (b)|p

2

) 1
p

≥ C̃p (|f (a)|+ |f (b)|) ,

whereC̃p = 2−1.
In the other case, when0 < p < 1, from (2.3) we have

(|f (a)|p + |f (b)|p)
1
p ≥ |f (a)|+ |f (b)| ,

hence (
|f (a)|p + |f (b)|p

2

) 1
p

≥ C̃p (|f (a)|+ |f (b)|) ,

whereC̃p = 2−
1
p . This completes the proof. �

Lemma 2.4. Letf : [a, b] → R� {0} , a < b. If |f |p is convex on[a, b] for somep < 0, then

Cp
|f (a) f (b)|

|f (a)|+ |f (b)|
≤
(
|f (a)|p + |f (b)|p

2

) 1
p

≤ (b− a)−
1
p ‖f‖p ≤

∣∣∣∣f (a + b

2

)∣∣∣∣
and if |f |p is concave on[a, b] , then∣∣∣∣f (a + b

2

)∣∣∣∣ ≤ (b− a)−
1
p ‖f‖p ≤

(
|f (a)|p + |f (b)|p

2

) 1
p

≤ C̃p
|f (a) f (b)|

|f (a)|+ |f (b)|
.

Proof. Suppose that|f |p is convex on[a, b] for somep < 0. From (2.4) , using the fact that
p < 0, we obtain(

|f (a)|p + |f (b)|p

2

) 1
p

≤ (b− a)−
1
p ‖f‖p ≤

∣∣∣∣f (a + b

2

)∣∣∣∣ .
Again we consider two cases. If−1 < p < 0, then from(1.3) we have(

|f (a)|−1 + |f (b)|−1

2

)−1

≤
(
|f (a)|p + |f (b)|p

2

) 1
p

,
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hence

Cp
|f (a) f (b)|

|f (a)|+ |f (b)|
≤
(
|f (a)|p + |f (b)|p

2

) 1
p

,

whereCp = 2.
In the other case, whenp ≤ −1, from (2.3) we have(

|f (a)|−1 + |f (b)|−1)−1 ≤ (|f (a)|p + |f (b)|p)
1
p ,

hence

Cp
|f (a) f (b)|

|f (a)|+ |f (b)|
≤
(
|f (a)|p + |f (b)|p

2

) 1
p

,

whereCp = 2−
1
p .

In the other case, when|f |p is concave on[a, b] for somep < 0, the proof is similar. �

Theorem 2.5.Letp, q > 0 and letf, g : [a, b] → R, a < b, be such that

(2.6) m (|g (a)|+ |g (b)|) ≤ |f (a)|+ |f (b)| ≤ M (|g (a)|+ |g (b)|)
for some0 < m ≤ M.
If |f |p and|g|q are convex on[a, b] , then

(2.7) ‖f‖p + ‖g‖q ≤
[

M

M + 1
Cp (b− a)

1
p +

1

m + 1
Cq (b− a)

1
q

]
K (f, g) ,

where
K (f, g) = |f (a)|+ |f (b)|+ |g (a)|+ |g (b)| .

If |f |p and|g|q are concave on[a, b] , then

(2.8) ‖f‖p + ‖g‖q ≥
[

m

m + 1
C̃p (b− a)

1
p +

1

M + 1
C̃q (b− a)

1
q

]
K (f, g) .

Proof. Suppose that|f |p and|g|q are convex on[a, b] for some fixedp, q > 0. From Lemma 2.3
we have that

‖f‖p + ‖g‖q

≤
(

b− a

2

) 1
p

(|f (a)|p + |f (b)|p)
1
p +

(
b− a

2

) 1
q

(|g (a)|q + |g (b)|q)
1
q

≤ Cp (b− a)
1
p (|f (a)|+ |f (b)|) + Cq (b− a)

1
q (|g (a)|+ |g (b)|) .(2.9)

Using(2.6) we can write

|f (a)|+ |f (b)| ≤ M (|f (a)|+ |f (b)|+ |g (a)|+ |g (b)|)−M (|f (a)|+ |f (b)|) ,

i.e.,

(2.10) |f (a)|+ |f (b)| ≤ M

M + 1
(|f (a)|+ |f (b)|+ |g (a)|+ |g (b)|) =

M

M + 1
K (f, g) ,

and analogously

(2.11) |g (a)|+ |g (b)| ≤ 1

m + 1
K (f, g) .

Combining(2.10) and(2.11) with (2.9) we obtain(2.7) .
Suppose now that|f |p and|g|q are concave on[a, b] for some fixedp, q > 0. From Lemma

2.3 we have that

‖f‖p + ‖g‖q ≥ C̃p (b− a)
1
p (|f (a)|+ |f (b)|) + C̃q (b− a)

1
q (|g (a)|+ |g (b)|) .
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Using again(2.6) we can write

|f (a)|+ |f (b)| ≥ m (|f (a)|+ |f (b)|+ |g (a)|+ |g (b)|)−m (|f (a)|+ |f (b)|) ,

i.e.,
|f (a)|+ |f (b)| ≥ m

m + 1
K (f, g) ,

and analogously

|g (a)|+ |g (b)| ≥ 1

M + 1
K (f, g) ,

from which(2.8) easily follows. �

Remark 2.6. A similar type of condition as in(2.6) was used in [1, Theorem 1.1] where a
variant of the reversed Minkowski’s integral inequality forp > 1 was proved.

Theorem 2.7.Letp, q < 0 and letf, g : [a, b] → R� {0} , a < b, be such that

m
|g (a) g (b)|

|g (a)|+ |g (b)|
≤ |f (a) f (b)|
|f (a)|+ |f (b)|

≤ M
|g (a) g (b)|

|g (a)|+ |g (b)|
for some0 < m ≤ M.
If |f |p and|g|q are concave on[a, b] , then

‖f‖p + ‖g‖q ≤
[

M

M + 1
C̃p (b− a)

1
p +

1

m + 1
C̃q (b− a)

1
q

]
H (f, g) ,

where

H (f, g) =
|f (a) f (b)|

|f (a)|+ |f (b)|
+

|g (a) g (b)|
|g (a)|+ |g (b)|

.

If |f |p and|g|q are convex on[a, b] , then

‖f‖p + ‖g‖q ≥
[

m

m + 1
Cp (b− a)

1
p +

1

M + 1
Cq (b− a)

1
q

]
H (f, g) .

Proof. Similar to that of Theorem 2.5. �

Theorem 2.8. Let f, g : [a, b] → R, a < b, be such that|f |p and |g|q are convex on[a, b] for
some fixedp, q > 1, where1

p
+ 1

q
= 1. Then∣∣∣∣∫ b

a

f (x) g (x) dx

∣∣∣∣ ≤ b− a

2
(|f (a)|p + |f (b)|p)

1
p (|g (a)|q + |g (b)|q)

1
q

≤ b− a

2
[M (f, g) + N (f, g)] ,

where

M (f, g) = |f (a)| |g (a)|+ |f (b)| |g (b)| , N (f, g) = |f (a)| |g (b)|+ |f (b)| |g (a)| .

Proof. First note that since|f |p and|g|q are convex on[a, b] we havef ∈ Lp ([a, b]) andg ∈
Lq ([a, b]) , and since1

p
+ 1

q
= 1 we know thatfg ∈ L1 ([a, b]) , that is,fg is integrable on[a, b].

Using Hölder’s integral inequality(1.1) we obtain∣∣∣∣∫ b

a

f (x) g (x) dx

∣∣∣∣ ≤ ∫ b

a

|f (x) g (x)| dx ≤ ‖f‖p ‖g‖q .

From Lemma 2.4 we have that

‖f‖p ≤
(

b− a

2

) 1
p

(|f (a)|p + |f (b)|p)
1
p ≤

(
b− a

2

) 1
p

(|f (a)|+ |f (b)|)
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and

‖g‖q ≤
(

b− a

2

) 1
q

(|g (a)|q + |g (b)|q)
1
q ≤

(
b− a

2

) 1
q

(|g (a)|+ |g (b)|) ,

hence ∣∣∣∣∫ b

a

f (x) g (x) dx

∣∣∣∣ ≤ b− a

2
(|f (a)|p + |f (b)|p)

1
p (|g (a)|q + |g (b)|q)

1
q

≤ b− a

2
(|f (a)|+ |f (b)|) (|g (a)|+ |g (b)|)

=
b− a

2
[M (f, g) + N (f, g)] .

�
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