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ABSTRACT. In this paper we establish several new inequalities inclugingrms for functions
whose absolute values aroused tojikth power are convex functions.
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1. INTRODUCTION

Integral inequalities have become a major tool in the analysis of integral equations, so it is
not surprising that many of them appear in the literature (see for example![2].][5], [3]land [1]).
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One of the most important inequalities in analysis is the integral Holder’s inequality which is
stated as follows (for this variant see [3, p. 106]).

Theorem A. Letp,q € R\ {0} be such that + - = 1andletf,g : [a,0] — R, a < b, be
such that f (z)|” and|g (x)|? are integrable ora, b] . If p, ¢ > 0, then

1) NI </ab|f(x)!”dx>; (f rg<:c>rqu);.

If p < 0 and additionallyf ([a,b]) € R\ {0}, or ¢ < 0 andg ([a,b]) C R\ {0}, then the
inequality in(L.1)) is reversed.

The Hermite-Hadamard inequalities for convex functions is also well known. This double
inequality is stated as follows (see for example [3, p. 10]): Edie a convex function on
la,b] C R, wherea # b. Then

(1.2) f (a;b> < bia/abf(x)dxg M

To prove our main result we need comparison inequalities between the power means defined
by

¢

1
(PLTL Z?:lpia’ﬂin)r , T # —00,0,00;
L
M (@ p) = { ([Lz)™ r=0;
min (zq,...,%,), T = —0;
| max (z1,...,2,), 7 =00,

wherez, p are positiven-tuples andP,, = " | p;. It is well known that for such means the
following inequality holds:

(1.3) M (z;p) < MY (x; p)

whenever < s (see for example [3, p. 15]).
In this paper we also use the following result (see [5, p. 152]):

Theorem B. Let€ € [a,b]",0 < a < b,andp € [0,00)" be twon-tuples such that
dop&elatl, D p&=&, j=12...n
=1 =1

If f:[a,b] — Ris such that the functioffi () /z is decreasing, then

(1.4) / (ZP@) < sz'f (&) -

If £ (z) /x is increasing, then the inequality is reversed.

Our goal is to establish several new inequalities for functions whose absolute values raised to
some real powers are convex functions.
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2. RESULTS

In the literature, the following definition is well known.
Let f : [a,b] — R andp € R*. Thep-norm of the functionf on[a, b] is defined by

(fab|f(x)|pdx>;, 0<p< oo;

sup | f ()|, p = 00,

and_Z? ([a, b]) is the set of all functiong : [a, b] — R such that| |, < co.

Observe that if| f|” is convex (or concave) ofu, b] it is also integrable ona, b] , hence
0 <|fll, < oo, thatis, f belongs tol? ([a, b]) .

Although p-norms are not defined for < 0, for the sake of the simplicity we will use the
same notatior f||, whenp € R\ {0} .

In order to prove our results we need the following two lemmas.

1A, =

Lemma 2.1. Letx andp be twon-tuples such that
(2.1) x>0, p;,>1, i=1,2,... n.

Ifr<s<0or0<r<s,then

(2.2) (ZWE?) < (Zml’?) :

andifr <0< S, then
i=1 i=1

If the n-tuplea is only nonnegative, thef2.2)) holds whenevet < r < s.

® =

SIS

Sl

Proof. Suppose that: andp are such that the inequalities {@.1) hold. It can be easily seen
that in this case for any € R

Zpix§2x?>0, j=12...,n
i=1

To prove the lemma we must consider three cagésr < s < 0, (it) 0 < r < s and
(4ii) r < 0 < s. In case(i) we define the functiorf : R, — R by f () = x+. Since in this
case we havés — r) /r < 0, the function

s—r

fa) /o =at =2
is decreasing. Applying Theordn B gin & = (27, ..., z7,) andp we obtain

(ZP&E:) < Zpi (af)" = ZPM?
i=1 i=1 i=1

1

1 1
(3] = (5
i=1 i=1
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In case(iz) for the samef as in (i) we have(s —r) /r > 0, so similarly as before from
TheoreniB we obtain

(Z pﬂf) > sz‘ (2])" = Zpixf,
=1 =1 i=1

and sinces is positive,(2.2) immediately follows.
And in the end, in casgiii) we have(s — r) /r < 0, so using again Theorefr] B we obtain
(2.2) reversed. O

Remark 2.2. In this paper we will use Lemnja 2.1 only in a special case when all weights are
equal tol. Thenforr < s <0or0 < r < s, (2.2)) becomes

(2.3) (Z x) < (Z x)

and forr < 0 < s,
n s n ;
() = (%)
=1 =1

In the rest of the paper we denote

1
T

2*%, p<-—1orp>1, 2, p< -1
C,=4 2 —1<p<O: Co=2 2% —l<p<l, p#£0; .
271 0<p<1; 271 p>1.

Lemma2.3.Letf : [a,b] — R, a <b. If|f|”is convex ofa, b

’f(a;b) <G-a s, < (RSO0

2
and if| f|” is concave ota, b] , then

Gy (1f (@) +17 (0)) < ('“Q)'p;’“b)'p); <e-a i, <) (50|

Proof. Suppose first thatf|” is convex ora, b] for somep > 0. We have

171, = (/ab|f<x>\”dx)‘l’ —(b-a) (ﬁ/@b\f@wﬁ;)’l’.

[}

for somep > 0, then

3 =

< Cp([f (@) +[F ),

=

From we obtain

b\ P b p b)|P
(2.4) ‘f(a; ) Sbia/ (@) de < L@ —2+|f()| |
hence

! <a;b> <(b—a) ¥ | fl, < ('f(“”p;'f(b)'pf’.

Now we must consider two casesplf> 1 we can usé2.3)) to obtain

(If @ +1f OP) < If @] +1f )],
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hence

@9 (R < 6,7 @i+ 1o,

whereC, = 275,
In the other case, wheh< p < 1, from (1.3)) we have

<|f(a)|p+ !f(b)|p>p < @l 411 0)]

2 2 ’

so again we obtaiff.5]) , whereC), = 2~'. This completes the proof fgf|” convex.
Suppose now thatf|” is concave ora, b] for somep > 0. In that case- | f|” is convex on

a, b] , hence(l.2)) implies

If(a)lp-glf(b)\p < bia/ab‘f(x)‘pdmg ‘f (a—gb)

If p > 1 from (1.3)) we obtain

(|f(a)|p+ If(b)|p>P - f ()] + 17 ()]

2 - 2 ’

p

hence

(\f(a)\’”r £ B)F
2

)p > Gy (17 @)+ 1F B)).

whereC, = 271,
In the other case, wheh< p < 1, from (2.3)) we have

(F @+ [f B > |f (@) +|F O,

hence )
f@P+1fOF\? _ ~
(L OB 6,7 @i+ 17 o,
Whereép = 275, This completes the proof. O

Lemma 2.4.Letf : [a,b] — R\ {0}, a < b. If |f|” is convex oria, b] for somep < 0, then
F@FO (@O ath
i S (F ) <e-a ”f”pg'f( > )'
and if| f|” is concave ota, b] , then
a+b F@P+1F P\ _ 5 1f (@) f ()
'f< ; >'§(b“’) i, < (PR < Gl

Proof. Suppose thatf|” is convex ona, b] for somep < 0. From (2.4) , using the fact that
p < 0, we obtain

(s |f<b>|’°>fi <o-a s, < | (450,

Again we consider two cases.H1 < p < 0, then from(1.3)) we have

(If(a)|_1+!f(b>|_1>_l . (If(a)\”+|f(b)l”)fl”

2 2
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hence

|f (a) £ (0)] (yf<a)yp+\f(b)|p)é
O Y
@I+ 170 2
whereC, = 2.
In the other case, when< —1, from ([2.3) we have

(F @ +1F @) < Af @ +1F @),

3=

hence

£ (@) £ () <(!f(a)!”+\f(b)lp)’1’
SOOI 2 ’
whereC, = 275,
In the other case, whelif|” is concave otja, b] for somep < 0, the proof is similar. O

Theorem 2.5.Letp, ¢ > 0 and letf, g : [a,b] — R, a < b, be such that

(2.6) m (|g ()] + g (O)) < |f ()] +|f (0)] < M (|g (a)| + g (b)])

for some) < m < M.
If | f|” and|g|? are convex ota, b] , then

@n Il + gl < [

where

1 1
Cp(b—a)p —|—m—+10q (b—a)

Q

T % (.0,

K (f,9) = 1f (@)l +1f ®) + g (a)] +1g (b)].

If | f|” and|g|? are concave offu, b] , then
m ~ 1
: > | — —a)a :

Proof. Suppose thaff|” and|g|? are convex orua, b] for some fixedp, ¢ > 0. From Lemma 23
we have that

C, (b—a)% +

11, + llgll,
< (F9) r@rriront+ (550) de@r+la o
29 <G b—a) (If (@] +[F BN +Cob—a)7 (lg(a)| + g (B)]).
Using we can write
F @]+ O < M(f (@] +1f @) + g (@] + g B)) = M (|f (@] + | B)])
i.e.,
(2.10) [f (@) +f ()] < Mﬂf S (F @11 @)+ 19 @] +19 0)) = 577K (F9).

and analogously
1
(2.11) g(a)l+1g O < ———=K(f.9)-

Combining(2.10) and(2.11]) with (2.9)) we obtain(2.7)) .
Suppose now thdtf|” and|g|? are concave ofu, b] for some fixedp, ¢ > 0. From Lemma

2.3 we have that
I1£1, + llgll, > Cp (b— a)7 (|f (@) + £ (B)]) + Cy (b — a)7 (g (@)] + g (B)]).
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Using again(2.6]) we can write
[F (@) +[f ) = m ([ f (@) +[f (0)] + g ()] + g (B)]) = m (If (@) + |f ®)])

ie.,
F@I+1f )] 2 =K (f.9).
and analogously
1
9(@)] +lg O] = 777K (19).

from which (2.8) easily follows. O

Remark 2.6. A similar type of condition as irf2.6) was used in[[1, Theorem 1.1] where a
variant of the reversed Minkowski’s integral inequality for- 1 was proved.

Theorem 2.7.Letp,q < O andletf, g : [a,b] — R\ {0}, a < b, be such that

- lg (a) g (D)] |f (a) £ (D) g (a) g (D)]
@+ lg®] T @+ 1701~ " Tg @] +1g 0
forsomed) < m < M.
If | f|” and|g|? are concave offu, b] , then

1L+ gl < [

M+1

Gyl @ 4~y Cyl= o)t | H (1.9)

where

@B Jaa)g®)
U9 = F o171 T @l +1g 1

If | f|” and|g|? are convex ota, b] , then
1

11, + ol = |-Gy (0= ) + 5 Cy 0= )] # ().

Proof. Similar to that of Theorern 2.5. O

_|_

ST

_|_

Theorem 2.8.Let f,g : [a,b] — R, a < b, be such thatf|” and|g|? are convex ora, b] for

some fixegh, ¢ > 1, wherel + 1 = 1. Then

b—a
2

<P (F0) + N ()],

3=
Q=

<

/ f(x)g(x)de (1f @ +1f ®)F)7 (g (@] +1g (0)I)

where

M (f,9) = 1f (@llg @] +[fOflg ®),  N(fr9) =[S (@)llg @) +[f (©®)l]g (a)].

Proof. First note that sincgf|” and|g|? are convex ora, b] we havef € L* ([a,b]) andg €
L% ([a,b]), and since;; +; = 1we know thatfg € L' ([a,0]), thatis, fg is integrable orja, b].
Using Holder’s integral inequalit{l.1]) we obtain

b b
/ f(x) g (x)de S/ |f () g ()| dz < [[f], 1],

From Lemma 2.4 we have that

1

i1, < (*5°) (r@p + 17 o)

3=

< (%59) wrwl+ 1o
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and
ol < (b;@)é (19 @)1 + 19 4)")? < (b;“); (19 (@)] +19 0]
hence
/abf(x)g(w)dx < P2 @+ IF B (g @)+ g D)
< P27 @+ 1 O)) (g ()] + Lo )
=P M (.g) + N (F0)]
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