BEURLING-HORMANDER UNCERTAINTY
PRINCIPLE FOR THE SPHERICAL MEAN
OPERATOR

N. MSEHLI L.T. RACHDI

Département de mathématiques et d’'informatique Département de Mathématiques
Institut national des sciences appliquées Faculté des Sciences de Tunis

et de technologie de Tunis El Manar I,

1080 Tunis, Tunisia 2092 Tunis, Tunisia

EMail: n.msehli@yahoo.fr EMail: lakhdartannech.rachdi@fst.rnu.tn
Received: 15 November, 2008

Accepted: 01 May, 2009

Communicated by: J.M. Rassias

2000 AMS Sub. Class.: 42B10, 43A32.

Key words: Uncertainty principle, Beurling-Hérmander theorem, Gelfand-Shilov theorem,
Cowling-Price theorem, Fourier transform, Spherical mean operator.

Abstract: We establish the Beurling-Hérmander theorem for the Fourier transform con-
nected with the spherical mean operator. Applying this result, we prove the
Gelfand-Shilov and Cowling-Price type theorems for this transform.
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1. Introduction

Uncertainty principles play an important role in harmonic analysis and have been
studied by many authors, from many point§ of vielB[19]. These principles
state that a functiorf and its Fourier transfornf cannot be simultaneously sharply
localized. Many aspects of such principles have been studied, for example the

Heisenberg-Pauli-Weyl inequality§] has been established for various Fourier trans- Uncertainty Principle for

forms [26, 31, 32 and several generalized forms of this inequality are given in the Spherical Mean Operator
[28, 29, 30]. See also the theorems of Hardy, Morgan, Beurling and Gelfand-Shilov N. Msehi and L.T. Rachd
[7, 15, 23, 25, 26]. The most recent Beurling-Hormander theorem has been proved vol. 10, iss. 2, art. 38, 2009

by Hormander 20] using an idea of Beurlingd. This theorem states that jfis an
integrable function ofR with respect to the Lebesgue measure and if

Title Page
/ , ‘f(x)Hf(y)’@lmy‘dxdy < 400, Contents
) 44 44
then f = 0 almost everywhere. - -

A strong multidimensional version of this theorem has been established by Bonami,
Demange and Jamind][(see also19]) who have showed that if is a square inte- Page 3 of 44
grable function oiR™ with respect to the Lebesgue measure, then
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if and only if f can be written as
journal of inequalities
—(Ax/x
fz) = P(x)e” /"), in pure and applied
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where A is a real positive definite symmetric matrix aitlis a polynomial with ceons 1uuaoench

degree(P) < %2
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In particular ford < n; f is identically zero.

The Beurling-Hormander uncertainty principle has been studied by many authors
for various Fourier transforms. In particular, Trimecl3&][has shown this uncer-
tainty principle for the Dunkl transform, Kamoun and TrimecB#] [have proved an
analogue of the Beurling-Hormander theorem for some singular partial differential
operators, Bouattour and TrimecHg have shown this theorem for the hypergroup
of Chébli-Trimeche. We cite also YakubovicB7], who has established the same
result for the Kontorovich-Lebedev transform.

Many authors are interested in the Beurling-Hérmander uncertainty principle be-
cause this principle implies other well known quantitative uncertainty principles such
as those of Gelfand-Shilo\ifl], Cowling Price [/], Morgan [2, 23], and the one of
Hardy [15].

On the other hand, the spherical mean operator is definegl. R x R") (the
space of continuous functions @&x R", even with respect to the first variable) by

ANeo) = [ 1m0+ 1) don(n.6),

whereS™ is the unit spherd (, &) € R x R™; n? + [£]* = 1} in R x R™ ando,, is
the surface measure ¢ff normalized to have total measure one.
The dual operatdt# of Z is defined by

t L)
@) = =i [ g (Ve oP) do
wheredy is the Lebesgue measure Bf.

The spherical mean operatet and its dual# play an important role and have
many applications, for example; in the image processing of so-called synthetic aper-
ture radar (SAR) datallr, 18], or in the linearized inverse scattering problem in
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acoustics11]. These operators have been studied by many authors from many points
of view [1, 8, 11, 24, 27].

In [24] (see also8, 27)); the second author with others, associated to the spherical
mean operata#Z the Fourier transforny defined by

FOwA = [ 10000
where
o pu(rz) = Z (cos(p.)e™" ) (r,z)
e dv, is the measure defined ¢h +oo[xR™ by

dx

1
dvy(r,x) = ————r"dr® ent

n—1
25T

They have constructed the harmonic analysis related to the transfo(mver-
sion formula, Plancherel formula, Paley-Wiener theorem, Plancherel theorem).

Our purpose in the present work is to study the Beurling-Hormander uncertainty
principle for the Fourier transfor¢, from which we derive the Gelfand-Shilov and
Cowling -Price type theorems for this transform.

More precisely, we collect some basic harmonic analysis results for the Fourier
transform.%.

In the third section, we establish the main result of this paper, that is, from the
Beurling Hormander theorem:

e Let f be a measurable function &x R"™; even with respect to the first variable
and such thaf € L2(d1/n). If

/// | f(r, F(f) (11, \)] el @) 16(A)]

1 + |0 2)[ + 160, A))?

dun(r, x)dy, (p, A) < +o0; d >0,
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then
i. Ford<n+1; f=0;

ii. Ford > n+ 1;there exists a positive constanand a polynomiaP onR x R"
even with respect to the first variable, such that

f(?”, JZ) _ P(T, m>6—a(r2+|x‘2)
with degree(P) < 4=+b.

D) ’ N. Msehli and L.T. Rachdi
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e [, isthe set given by
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e d7, is the measure defined dn by o Back
1 Full Screen
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The last section of this paper is devoted to the Gelfand-Shilov and Cowling Price :S:h?rf?ii
theorems for the transforr .
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e Letp, ¢ be two conjugate exponents; g €]|1, +oco[. Letn, ¢ be two positive
real numbers such that) > 1. Let f be a measurable function d x R";
even with respect to the first variable such tha L?(dv,,).

If
£p|(?°w)lp

/ / I dvy,(r,x) < +oo
and

’ |e£ \(296)\‘1

dYn(p, A) < o005 d >0,
S Sy e

then

i. Ford <™ f=0.
ii. Ford > t!; we have
— f=0forén>1
— f=0forén=1andp # 2
— f(r,x) = P(r,z)e "+l for ¢y = 1 andp = ¢ = 2, wherea > 0

andP is a polynomial oR x R™ even with respect to the first variable,

with degree (P) < d — £,

e Letn, & wy; andw, be non negative real numbers such that> }1 Letp, q be
two exponentsp, ¢ € [1,+oco] and letf be a measurable function dhx R”",
even with respect to the first variable such tfiat L*(dv,,).

" ‘ o112

(LG5

< 400

b,Vn
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and

6”‘0('7')‘2 y(f)
< 400,
(L4160, ) ) )
4, Yn

then

. Lo
. Forfn - 4 f 0 Uncertainty Principle for

i. For¢n = 1; there exists a positive constanaind a polynomiaP” onR x R", fhe Spherical Mean Operator

even with respect to the first variable such that N. Msehii and L. Rachdi

vol. 10, iss. 2, art. 38, 2009

f(r,x) = P(r,z)e "),
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2. The Spherical Mean Operator

For all (i, \) € C x C™; if we denote byyp, , the function defined by
fun(r ) = R (cos(u.)e ™) (r, ),
then we have
(2.1) PuA(r,T) = jus (r\/m> i)
where
¢ A=A £ A2 A= (A1, M) €

o (Nx)y=MNx1+ -+ s v = (21,...,2,) ER™;

° jnT_l is the modified Bessel function given by
n—1 JD S
(2.2) j34@=22r(”+1) =)

:F(ng—l)zﬁj}n%(%)%;

andJnT_l is the usual Bessel function of first kind and orégiE [9, 10, 22, 36)].

Also, the modified Bessel functiq’n%l has the following integral representation,
forall z € C:

i (2) = s /O (1= 12)3~" cos(=4) dt.
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Thus, for allz € C; we have

(2.3)

]u<z)‘ < €|Imz|.
2

Using the relationZ.1) and the properties of the functiq’n%, we deduce that the
functionyp,, ) satisfies the following propertie24, 27]:

[ ] Uncertainty Principle for
the Spherical Mean Operator
(24) sup |90u,A(T> [L’) ‘ =1 N. Msehli and L.T. Rachdi
(r,z)eERXR™

vol. 10, iss. 2, art. 38, 2009

if and only if (i, \) belongs to the sdt defined by

(2.5) D=RxR" U {(ip,\); (g, A) € R xR [u] < |A}. Title Page
e Forall(u, \) € C x C"; the functiony,, , is a unique solution of the system Contents
%(r, ) = —iNu(rx); 1<j<n 4« "
Lu(r,z) = —p? u(r,x) < >
u(0,0) = 1; %((O,ml, cesy) =0,V (2q,...,2,) ER” pageifolais
where Go Back
P nd <[\
L= —+4——— — ] . Full Screen
or? + ror Zl (8a:j)
I= Close

In the following, we denote by
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wheredz is the Lebesgue measure Bi.

e [P(dmy,41); p € [1,+00], the space of measurable functighsen [0, +oo[xR"
satisfying

1 .
(S5 Jon |f(ry )P dmygs (r,2)) ¥ < 400, if 1< p < +oc;
Hpr:mn-H =

ess sup |f(r,x)| < +o0, if p=+o0.
(r,x)€[0,400[xR™

e dv, the measure defined df, +oco[xR" by

r™ dr dx

dvp(r,z) = —— ® —.
" e ©

e [P(dv,), p € [1,+00], the space of measurable functiofi®n [0, +oo[xR"
such that| f||,,..,, < +oc.

e [, the subset of’, given by
Py = [0, +0o[xR" U { (i, A); (1, A) € R X R™ 0 < pu < [A]},
e Z%r, thes—algebra defined oh, by
(2.6) PBr, = {07'(B); B € %or([0,+00[xR")},

whered is the bijective function defined dn, by

0, 0) = (ViIZ + AP, A) .
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e dv, the measure defined a#r, by
VA € Br,;(A) = va(0(A)).
o [P(dv,), p € [1,+00], the space of measurable functionen I'; such that
Hngy'Yn < +00.
e d7, the measure defined a#r, by
25T (") dyn(p, N)
VT (e AP)?

e [P(d¥,), p € [1,+00], the space of measurable functionsn I', such that
19llp5. < 400

d:}/n(,ua )‘> =

e 5.(R x R™) the Schwarz space formed by the infinitely differentiable functions
onR x R™, rapidly decreasing together with all their derivatives, and even with
respect to the first variable.

Proposition 2.1.

i. For all non negative measurable function®nI", (respectively integrable on
', with respect to the measuit,,), we have

/fmmwmmm
Ly
= L (/ / 2 1IN pdpd
27L51F + % " /"L7 l’[’ /"L ll’

A :
+/kégmMMW—MWWMMO.
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ii. For all non negative measurable functiofion [0, +0co[xR™ (respectively in-
tegrable on0, +o0o[xR™ with respect to the measudien,, 1), the functionf o6
is measurable o, (respectively integrable ol with respect to the measure
d~,) and we have

/ fo0(p, N)dy,(u, A / f(r,z)dv,(r, x).
r. R"

iii. For all non negative measurable functiofion [0, +oo[xR" (respectively in-
tegrable on0, +oo[xRR™ with respect to the measuden,, . ;), we have

2.7) / [ o 01 0 / [ rra)dma(r.a),

whered is the function given by the relatioi ).

In the sequel, we shall define the Fourier transform associated with the spherical
mean operator and give some properties.

Definition 2.2. The Fourier transform# associated with the spherical mean oper-
ator is defined ol (dv,,) by

WA €T FO0N = [ [ fo0pua.ad ),

whereyp,, , is the function given by the relatiofi.() andI is the set defined by (5).

Remarkl. For all (i, \) € I', we have

(2.8) F (), A) = Z(f) o 0(n,N),
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where
@) FNN = [ [ S e i)

and Jno is the modified Bessel function given by the relatiGr?}.

Moreover, by the relation2(4), the Fourier transform” is a bounded linear
operator fromZL!(dv,,) into L>*(d~,) and for all f € L'(dv,):

(2.10) 1 (P)llsorn < N F 1110

Theorem 2.3 (Inversion formula) Let f € L'(dv,) such thatZ(f) € L'(dv,),
then for almost everyr, z) € [0, +oo[xR", we have

(2.11) flr x) //F N)@ua(r, T)dyn (1, A)

.
/ / Nzt (rp)e! ™) vy (1, N).

Lemma 2.4. LetR% be the mapping defined for all non negative measurable func-
tionsg on [0, +oo[xR"™ by

(2.12) Rua(g)(r,z) = %rln /Or(r2 — 123 Yg(t, z)dt
= ?/F%Fz; /0 (1 —t3)2"Yy(tr, x)dt
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then for all non negative measurable functighsy on [0, +00[xR™, we have
@13 [ [ Reps@o) )i ()
0 R™
— [ ] sttaps (1)t 0)dmna t.a)
0 n

whereWnT_l is the classical Weyl transform defined for all non negative measurable
functionsg on [0, +-oo[xR"™ by

(2.14) WnT_l(f)(t,x) = He) /t°°<7n2 —t2)2 7L f(r, x)2rdr-.

Proposition 2.5. For all f € L'(dv,), the functionV/nT_l(f) given by the relation
(2.14) is defined almost every where, belongs to the sga¢ém,, ;) and we have

(2.15) |||, <Ulhe
Moreover,
(2.16) F (1) A) = Mgz 0 W () (1 V),

whereA,,,; is the usual Fourier cosine transform defined bf{dm,, ) by
M@ N = [ [ gtraycostrle s (r.2).
0 n

and.Z is the Fourier-Bessel transform defined by the relatipri)

Remark2. It is well known [34, 35] that the Fourier transforms? and A,,.; are
topological isomorphisms frorfi, (R x R™) onto itself. Then, by the relatior2 (16),
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we deduce that the classical Weyl transf i is also a topological isomorphism
from S.(R x R™) onto itself, and the inverse isomorphism is given B[

. 9\
(2.17) Wi (N z) = (1) Fyy g <<@) f) (r,z),

whereF,; a > 0 is the mapping defined ofi.(R x R") by

1

(2.18) F.(f)(r,x) = T (a) /Oo(t2 — )L f (¢, x)2tdt

anda% is the singular partial differential operator defined by

()=
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3. The Beurling-H6rmander Theorem for the Spherical Mean
Operator

This section contains the main result of this paper, that is the Beurling-Hérmander
theorems for the Fourier transforgA associated with the spherical mean operator.

We firstly recall the following result that has been established by Bonami, De-
mange and Jaming].

Theorem 3.1.Let f be a measurable function dd x R", even with respect to the
first variable such thaf € L?(dm,,, ) and letd be a real numbex/ > 0. If

/ // / Lf(r @) [[Ansa () (s, 3/)|€|(m)|| Doy (1 2) i 1 (5.7) < +00,

AL+ |(r, )] + [ (s, 9)])¢

then there exist a positive constardnd a polynomialP’ onR x R"™ even with respect
to the first variable, such that

with degree(P) < %.
In particular, f =0ford < (n+1).

Lemma 3.2. Let f € L*(dv,) and letd be a real numbex/ > 0. If

0 D) F ) Neleownl
/// B (L )+ o)) e

then the functiory belongs to the spacg'(dv,,).
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Proof. Let f € L?(dv,), f # 0. From the relationsZ7) and ¢.8), we obtain

M y 7 0 H n 5 d n )
n - | T’ € | | (M7 )|>

’f r,x ||ﬁ' )( )| e\(r,x)\|(u7)\)| v (. 2)dm o
//J/ﬂ+wﬂﬂmﬂ) din(r, ) dimn 1 (4, A) < +o0.

Then for almost everyu, A) € [0, +oo[xR",

) £ (r, 2) [N
f , ‘/ / Sdvy(r, x) < +oo.
). e TPV TR R

In particular, there exist§u, Ao) € [0, +o0[xR™ \ {(0,0)} such that

’f T, x |€‘ T ||(NO AO)‘

(14 [(r, 2)] + [ (1o, Ao) )7

F ()10, o) # 0 and / / n

Let h be the function defined dif, +oo[ by

e51(1o,20)]
(1 + 5+ [(p0, Ao)))?
then the functiork has an absolute minimum attained at:

d . .
5o = { oo — L= 1(ko, Mo)ls i by > 1+ [ (o, Ao

0; it S < 1+ (o, M)l

h(s) =

Sdvn(r,r) < 400,
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Consequently,

/OOO - |f (7, z)|dvy(r, x)

’f T x |e‘ T,z ||(;u0 AO)‘

o (L[ (r @)+ (1o, Ao)[)?

Sdvy(r, x) < +oo.

0
Lemma 3.3. Let f € L?(dv,) and letd be a real numbei/ > 0. If

(r, 2)||-Z (f) (1, \)| el 210Gl i
I L e e o ) <4

then there exists > 0 such that the functio# ( f) is analytic on the set

{(1,N) e CxC" |Imp| <a, [ImA;| <a; Vj€{l,...,n}}.
Proof. From the proof of Lemma.2, there existgig, Ag) € [0, +oo[xR™\ {(0,0)}

such that @) el
f(r,z)|el\m®)i#o. A0
dvy(r, ) < 400.
//n1+|rx|+’(M07A0)|) (r.2)

Let a be a real number such that (n + 1)a < |(¢o, Ao)|- Then we have

|(r,z) || (10,20)|
/ / F(r2)le e
o (L4 [(r, 2)] + | (120, Xo)|)?
" A0)|[—(n+1)a
:/ |f(7“,:1:)|e(”+1)a\(r,:c)\ el (@) ((10,20) | = (n+1)a)
0o Jre (1+ |(r, )| + | (120, Mo)] )

dvy,(r, z) < +o0.

Uncertainty Principle for
the Spherical Mean Operator

N. Msehli and L.T. Rachdi
vol. 10, iss. 2, art. 38, 2009

Title Page
Contents
44 44
< >
Page 19 of 44
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:
http://jipam.vu.edu.au

Let g be the function defined 0, +oo| by
e5(l(1o,A0)|=(n+1)a)
145+ |(1o, Ao)))*

theng admits a minimum attained at

g(s) = (

d o d
oo —orms — L= (o, Mo)ls i ssfme > 14 (1o, o),

. _ .
K it e = 1+ (o, do)l.

Sp =
Consequently,

(3.1) /OO |f(r, )| DACDl gy, (r) 1)

o / / £ (r, )]l 7be %) Sdvy(r, v) < +oo.

(1 + [(p0, Ao)| + |(r, 2)])

On the other hand, from the relatioh §), we deduce that for all, ) € [0, +0o[xR™;
the function

50

(1, A) > ot (ria)e 2

is analytic onC x C" [6], even with respect to the first variable and by the relation
(2.9), we deduce that (r,z) € [0, +00[xR"™, V(u, A) € C x C",

(3.2) Jnor (rp)e” )| < erlimul i [tmsla|
2
< olra)[ITm p+ 327 [Tm Ay

Then the result follows from the relation8.9), (3.1), (3.2) and by the analyticity
theorem. O
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Corollary 3.4. Let f € L*(dv,), f # 0 and letd be a real numbeg/ > 0. If
// / / |f(r )| Z () (e, M) NN gy, () 2) A7 (1, N) < 00,
1"+ n

(L4 [(r @) + 16, M)

then for all real numbers, a > 0, we haven,,.1(A,) > 0, where

(33)  Av={(nN) ERX R F(f)(N) £ 0and|(u,\)] > a}.

Proof. Let f be a function satisfying the hypothesis. From Lentiria the function
f belongs tal.!(dv, ) and consequently the functich ( f) is continuous oiR x R™,
even with respect to the first variable. Then foralt> 0, the setA, given by the
relation 3.3) is an open subset & x R".

So, ifm,+1(A.) = 0, then this subset is empty. This means that for eyery)
R x R™, (11, \)| > a, we haveZ (f)(u, ) = 0.

From Lemma3.2, and by analytic continuation, we deduce tlﬁ%(f) =0, and
by the inversion formulaA.11), it follows that f = 0. O

Remark3.

i. Let f be a function satisfying the hypothesis of Corollary, then for all real
numbersy, a > 0, there exist$ig, Ag) € [0, +oo[xR™ such thaf (1, Ao)| > a
and

el (o)1 (ko,20)]

| A T E TP R P WY T

ii. Letd ando be non negative real numbets;i- 02 > d. Then the function

dvy,(r,x) < +00.

eat

t -
'—> (14+t+o)d
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is not decreasing off), +oo|.

Lemma 3.5. Let f be a measurable function d x R™ even with respect to the first
variable, andf € L*(dv,). Letd be real numberd > 0. If

el (mo)[10(1,)] )
L L@ s o e ) < e

then the functior%%l (f) defined by the relatior?(14) belongs to the spade? (dm, ;1).
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Proof. From the hypothesis and the relatiods/ and ¢.6), we have vol. 10, iss. 2, art. 38, 2009
00 | £ (7, )|l 210G .
F ;A dvy (1, ) dyn (16, A i
JI [ A e o)) —
S o0 ~ |f(f,"’ x)|e|(T7x)|‘(/'L7)‘)‘ Contents
= F ()1 N) dvy (r, ) dma 1 (1, A)
/0 /R/O / (1 +|(ry )| + [ (s M) " «“« »»
< +00.
< >

In the same manner as the proof of the inequality)(in Lemma3.2, there exists

Page 22 of 44
b€ R, b> 0such that

Go Back

/ R 7 (f) (1, )|€b| pX) ‘dmn-kl(,ua A) < +o0. Full Screen
O n
= : . cl
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In particular, the functiory is bounded and

(3.4) £l < [ 2]
By virtue of the relationZ.14), we get
1 & n
Wn—_l (f) (T’, l’) ) S n n / (TQ - tz) 5_1 ‘f(’l“, .CE) ’27"617“ Uncertainty Principle for
? 22 F<§) t the Spherical Mean pOperator
. r" > _ 1 N. Msehli and L.T. Rachdi
N 2%1—‘(%) /1 (y 1) |f(7’y, )‘dey- vol. 10, iss. 2, art. 38, 2009
Using Minkowski’s inequality for integralslp], we get:
1 Title Page
o0 2 2
(3.5) (/ / W”T*l (f)(r, x)‘ A, 1 (7, 95)) Contents
0 n

3 44 44

2 2
< 7R [/ ([ 05 o) dmm(r,x)] T
% Page 23 of 44
v [ L = vt Pame ) 2y —

(%)
_ ﬂ_11 _ [/ (o — 1)gly”+21>dy] Full Screen
23 F(g) 1 Close
o] 2
X [/ 82”|f(8,$)|2dmn+1(8,93)] journal of inequalities
1 0 " ) in pure and applied
r'(3) o0 . 2 mathematics
= ﬂ—sn-i-l / s? |f(s,x)|2dmn+1(s,a:) . issn: 1443-575k
22F< 4 ) 0 "
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Using the relationsd 1), (3.4) and 3.5), we deduce that

P~ ([ L

<K, / s 2)le "+1>a'<s’m>‘dun<s,x> oo,
0 R™

Wn 1 ( (r, x)dmy, 1 (r, x)) :
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r(: 1\ a1 2 vol. 10, iss. 2, art. 38, 2009
K%::'ﬁr—iéli_ V[EF ) 25 max(sme ) | £, t
QEF( ”2' ) 2 2 5>0 ’
] Title Page
Theorem 3.6.Letf € L*(dv,); f # 0 and letd be a real numberi > 0. Contents
44 44
F(f ) el )10 ()] < S
L ) 1. ) <+,
r+ n (L4 |(r, @)+ [0(k, A)]) Page 24 of 44
then Go Back
/ / / / Ws 1 (r,z ‘ ‘ ‘ Full Screen
" 8 Close

o)1)

SRR ERIRY)E
WhereWanl Is the Weyl transform defined by the relatian1(4).
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Proof. From the hypothesis, the relatioris ), (2.8) and Fubini’s theorem, we have

e [[ [ RnlmeJ()( )
ol )62,
I /n

i+ |<r x>| G w2
< +00.

/ / 2)[el el dun 2 ()
Vn T,l’ mn /’L’
" 1+| )|+ (1, M)]) !

i. If d =0, then by the relationZ 13 and Fubini’'s theorem, we get

o0 L L

s NN, () 2)dm g (1, A)

s/o /nﬁm(u \)

Y ( J A R e e x>) s (11, )
o Jrn 2

<[ [ |7t

([ 01 0 ), 1) )

Wn1 rxH/ (, A ‘
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However, by £.12), we deduce that for all-, ) € [0, +o00[xR",
(3.8) Rus (el MBI (1 ) < el e

Combining the relations3(6), (3.7) and 3.6), we deduce that

[LLL

ii. Ford > 0, let By = {(r, z) € [0, +oo[xR™; |(r,z)| < d}. We have

Wos (F)r,)| | Z(£) (. )| e

(r; &) dmo 1 (p, A)
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00 - |7/n L (f)(r, ) |el ol Contents
F ()1, ‘/ / dmy,1(r, x)dm, S A
| / I L 1+|m|+|<u, e e () 4 A « »
Wt (| 1) (r, )l 00 5 ,
< // F(f) / / dmy 1 (r, @) | dmpga(p, A)
a " 1+|Tx|+|(ﬂ’ A Page 26 of 44
Wn 1 ‘fl T, $)€|(TI)H(“’ )|
+ F(f / / dmy1(r, ) | dm,, JA). Go Back
/), 170 T T G e ) | e :2) -
u creen
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) (1, A ‘/ | f(r,z)]
Rn
Bl

S
(1,2
<ot (e e ) (b

However, from the relatior?(12) and ii) of Remark3, we deduce that for afl, \) €
Bjg, we have

e‘(?)”(ﬂ)‘)‘ e‘(rvx)‘l(l‘)‘)l
( d) (r,z) < .
(L1 )+ 1w M) (L+[(r,@)| + (s, M)
Combining the relations3(6), (3.9) and .10, we get

Il (/ R ) e
< / / |2

(/ /n 1|J{|Trxx|e||:x|)(||: A))Dddvn(r, a:)) dmy 1 (p, )
= /ooo /n Z () (/ /n 1|J{|rrxx|e||4:m](|/i’ ))|)dd1/”<r7 x)) dm,1(p, A)
< +00.

(310) Hus

We have

Jh. 170
< ([ J7v

Wacs (), ) el
dm,, Ay oy (1, A
s A ‘// 1+\m\+|u, e e (s @)dmna i, A

dmnH [y A ) (//B ‘Wn (f)(r ‘dmnﬂ(r :B))
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< "1 (Ba) | F (oo

Wui(f) .

By the relationsZ.10) and .15, we deduce that

I

By the relation £.13, we get
el(ra)[[(1,)]

//Bd #U // ‘Wlnvil (r, ) \l\(% A)[) dmip i1 (r, @) | dmp(p, A)
/ Woaca (| 1) (r, )l 1G]

Al e e Ddmaa(rz)dman (r,z)

://B ‘y(f)(u,MI(/OO | 1f( )]

PUSRIIIZRY]

<t (e T i) b)) ),

’% : 2)] el )
) dmy,1(r, x)dm,, S A
) [ 5 1+|7‘I|+I(u7 e D (A

< P mua (Bl fI7,, < +oc.

Z(f
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Thus,

(3.11) // F(f
By
el (m@)1(1,A)]

‘% () () d d A
//c 1—|—| r T |+|(M7 ) M1 (1, ) | dmgq (p, A)

d| (r,z)]

(14 |(r,z)| + d)?

<l (Ba) [[ 1fr0) v, ).

On the other hand, from i) of Remark there exists(yg, \g) € [0, +oo[xR",

|(p0, Ao)| > d such that

el(r$)|| 0)\0 |‘f(fr' f]:)‘
Sdvy (1, ) < 400.
/ /n (L +[(r, )+ [(10, X)) :%)

Again, by ii) of Remark3, we have

ol (r2)]

(14 |(r,z)| + d)?

(3.12) /Bc |f(r,z)] dvy, (1, )

el (m)[|(10,20)]
< f(r,x dv,(r,r) < +o00.
/B;' e T T TP W TR

The relations§.11) and (.12 imply that
W (1))

//Bd//d (L [(r, ) =+ [ (s, M)

and the proof of Theorem.1is complete. O

el (o)l ()]

F(Hp: )|

dmn+1 (Ta I) dmn+1 (/Lv )\) < —|—OO,
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Theorem 3.7 (Beurling Hérmander for #). Let f be a measurable function on
R x R", even with respect to the first variable and such that L*(dv,,).
Letd be a real numbeg/ > 0. If

~ N e L D
TR L Gy st i ) < 0

then
eFord<n+1, f=0.

e Ford > n+ 1, there exist a positive constamtind a polynomialP onR x R”
even with respect to the first variable, such that
f(ra CL’) _ P(T’, CL,>€—a,(r2—l—|z‘2)

with degree(P) < w.

Proof. Let f be a function satisfying the hypothesis. Then, from Theotemwe
have

e [ [
BICESIIEN]

A1)+ 10w VD

On the other hand, from Propositiarl, Lemma3.2and LemmeB.3, we deduce that
the function’#._. (f) belongs to the spack! (dm,,+1) N L*(dm,+1) and by ¢.16),
we have

Wnl rfo (g, A )

Sdmy, 1 (1, x)dmy 1 (1, A) < +00.

F () = Moer (P ().
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Wn 1 ( Ta:)‘

Substituting into £.13, we get
An—H (Wn 1(f>> ( 22 )‘
o)1 (V)]

IS
A1)+ 10w VD

Applying TheorenB.1whenf is replaced anTfl(f% we deduce that

S (7, 2)dmy, o (1, A) < +oo.

o lfd<n+1, WnT_l(f) = 0 and by Remark, we havef = 0.

o If d > n+ 1, there exista > 0 and a polynomialt) on R x R", even with
respect to the first variable such that

Vo (f)(r,2) = Q(r, w)e "+

_ E : a ar2kxa€—a(r +|z|? ) % = I?l R

n
2k+|a|<m

In particular, the functior%%l(f) lies in S.(R x R™) and by Remark, the
function f belongs taS,(R x R™) and we have

f =5 (Qrna)e D),

Now, using the relationZ.17), we obtain

(3.14)  f(r,z) =# L (Q(t,y)e ) (r, )

n 1 a [g}+1 t2 2
=(-1)* Flz1-2+1 (ﬁ) Q(t,y)e T (r, )
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n1iq o\ [zlt! . o
e (—1)[§]+ Z CLk7aF[%]_7§L+1 (@) (t yaefa( +|y‘ )) (7”, :Ij')

2k+|al<m

However, for alll € N,

l
(315) (%) (tQkyae—a(t2+|y\2))

min(l,k) :
- > ¢ PR oqys-ig2i=i) | o g-ale ol
— (k=)

and for allb > 0,

(3.16) F (t%yo‘e’“(tzﬂy‘ ))(r )

where the transfornk}, is defined by the relatior?(19).
Combining the relations3(14), (3.15 and 3.16), we deduce that

f(?”, I) _ P(T, x)efa(r2+‘x|2)7

where P is a polynomial, even with respect to the first variable dngree(P)

degree(Q).

k
b+ k _j) 2j a _—a(r?+|z|?)
Qb]_" (Z attk—ipy2i k2 | L€ ?

]
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4. Applications of the Beurling-Hormander Theorem

This section is devoted to giving some applications of the Beurling-Hormander the-
orem for the spherical mean operator. More precisely, we prove a Gelfand-Shilov

theorem for the Fourier transfor# and establish a Cowling Price type theorem for
this transform.

Lemma 4.1. Let P be a polynomial oiR x R"; P # 0 with degree(P) = m. Then
there exist two positive constamisand C' such that

Vi> A, o) = | |P(tw)|don(w) > Ct™,
Sn

wheredo,, is the surface measure on the unit sph&feof R x R".

Proof. Let P be a polynomial olR x R", P # 0 anddegree (P) = m. Then we
have

o= [ 1>
k=0
whereay, 0 < k < m are continuous functions o$f* anda,,, # 0.
Then the functionp is continuous o0, +oo[ and by the dominated convergence
theorem, we have

(4.1) o(t) ~ Cpt™  (t — +00),
where

ap(w)t*| do, (w),

C = / | (w)|dory (w) > 0.
Sn
Now, by (4.1), there existsA > 0 such that

wzmp@z%ﬂ
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Theorem 4.2 (Gelfand-Shilov).Letp, ¢ be two conjugate exponents,q €]1, +oo|.
Letn, £ be two positive real numbers such tigat> 1.

Let f be a measurable function dd x R"™, even with respect to the first variable
such thatf € L*(dv,).

If
apum)w
/ / I dvy,(r, z) < +00
and
7 Ve il
A (i, A) < 400, d >0,
[ e WA
then

i Ford <™, f—o.
ii. Ford > !, we have:
o f=0for&n > 1;
o f=0forén=1andp # 2;

o f(r,x) = P(r,z)e "+ for ¢y = 1 andp = ¢ = 2, wherea > 0 and
P is a polynomial orR x R™ even with respect to the first variable, with
degree (P) < d — .

Proof. Let f be a function satisfying the hypothesis. Sigee> 1, by a convexity
argument we have

(r OIF NN eoliowMg, (r 2\d5
(4.2) /F/ / (1+ [(r,2)] + 160, 1)) * e
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//m/ / 1+|J!C:3f ||f<ﬁ?9(u,)|)l)d

x MOl gy, (- 2)dA,, (1, N)
0716227 £P\(r.a)|P

FE N e
< Jf a0 [ e e

< +00.

Then from the Beurling-Hérmander theorem, we deduce that
i Ford <™ f=0.
. Ford > "T“ there exist a positive constamtand a polynomialP on R x R",
even with respect to the first variable such that
(4.3) f(r,@) = P(r,x)e "
with degree(P) < 24=7*1) "and using standard calculus, we obtain

(4.4) F () A) = Qu, N)em a0,
where( is a polynomial onR x R"™, even with respect to the first variable, with
degree (()) = degree(P).

On the other hand, from the relatioris ), (2.9), (4.2), (4.3) and ¢.4), we get

[ LR

X e da

e_a<r2+‘x|2)dun(r, x)dMmp41 (p, A) < +00.
So,

> p(t) ¥ (p) ntp _—at
(45) /0 /n T

2
2’ZTLtZ",ondzfd,o < 400,
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where

and

p(t) = [ [P(tw)|lw|"don(w)
gn

V(p) = . |Q(pw)|doy,(w).

Suppose thagn > 1. If f # 0, then each of the polynomial8 and( is not
identically zero. Letn = degree(P) = degree(Q).
From Lemma4.1, there exist two positive constantsandC' such that

VE> A, p(t) = Ct"

and
Vp> A, Y(p) =>Cp™.

Then the inequality4.5) leads to

4.6 e ~at* =52 dtd
. ~fad .
(4.6) / / A+r0d1rpis © p< oo

Lete > 0 such that = n¢ — « > 1. The relation {.6) implies that

> > eept cpt _—at? —ﬁ
4.7) /A /A <1+t)d(1+p)depe e dadtdp < +o00.

However, for allt > A > ¢ andp > A, we have
espt 65A2

A+ 091+ p) ~ (14 A
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and by ¢.7), it follows that

o0 [e.e] 2
(4.8) / / et o~ dtdp < +oo.
Let F(t) = [° ecﬂt—ﬂdp, then the functior¥’ can be written as
[ee] t
F(t) = 6a02t2 e_%adp + 2(1’)/6_%5 GCAS_GC252 ds Uncertainty Principle for
A 0 ) the Spherical Mean Operator
In partiCU|ar N. Msehli and L.T. Rachdi
’ 2,2 oo 02 vol. 10, iss. 2, art. 38, 2009
F(t) > e*? / e dadp.
A
Thus, Title Page
- > C tfat2fﬁ * a c —1 > ,ﬁ
e tadtdp > e dt e dadp =400 Contents
4 g N 44 44
because > 1. This contradicts the relatiod (8) and shows thaf = 0.
e Suppose thagn = 1 andp # 2. S 2
In this case, we have > 2 orq > 2. Page 37 of 44
Suppose thaj > 2. Then from the second hypothesis and the relatiang,(
(2.8) and ¢.4), we get Go Back
w e e 6 Full Screen
a q
(4.9) / BET O pldp < +00. Close

If f#£ O,.then thg polynomial) is not |dgntically zero, and by Lemmal and journal of inequalities
the relation ¢.9), it follows that there existsl > 0 such that in pure and applied
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which is impossible becauge> 2.

The proof of Theorem .2 is thus complete. O

Theorem 4.3 (Cowling-Price for spherical mean operator).Letn, &, w; and ws
be non negative real numbers such that> i Letp, ¢ be two exponent3,, ¢ €
[1,4+00] and letf be a measurable function db x R™, even with respect to the first
variable such thaff € L?(dv,). If

IR f
(4.10) —_— < 400
(L +[( ) )
p7V’n

and

(4 11) 677‘6('7'”2 y(f) < +

| (RSN I

then

i, Foren>1 f=o.

ii. Forén = }l there exist a positive constamtand a polynomialP onR x R",
even with respect to the first variable such that

f(r,2) = P(r,z)e=t" 4P,

Proof. Let p’ andq’ be the conjugate exponentsgofespectively.
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Let us pickd;, d; € R such thatl; > 2n+1 andd, > n+1. Then from Holder’s
inequality and the relationg (10 and ¢.11), we deduce that

o0 |f(r,z) ’e§|("”»$)|2
(4.12) /0 /R" L+ [(r, ) |)wr /P dvy(r, )

65|(”')|2f H 1
S 7 NI\ Uncertainty Principle for
(1 + ‘(7 )Dw (1 + ‘( >|)d1/p P \Vn the Spherical Mean Operator
€1(- )|2 L] N. Msehli and L.T. Rachdi
| S f / / dvn(r, 2) ! < 400. vol. 10, iss. 2, art. 38, 2009
L+ ()N (L [(r )™
an Title Page
A)|em0tm A2 Contents
A (b, A
//p+ 1+ IG N|ywerdara T (1. ) «“ >
o2 Z(f) H 1 < >
(1 + |0('a ')|)w2 0m (1 + |0('7 ')|>d2/ql 4" Page 39 of 44
By the relation £.7), we obtain Go Back
Full Screen
) (e, N) e
4.13 Ay (o, A
( ) //F+ 1+ 10(u, \)|)watde/d' (11, A) Close
0GP A1 (1, A) \ 7 : . »
(/ / nt+1\ > < +00. journal of inequalities
(L+ 10, -)])w o (T4 [(p, N in pure and applied
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we have

|f(r,x ‘eﬁ\m)l
dvy,(r,
/ /n1+wrww a(r @) < 00

.7 (), /\)|€n\9 AP
S Sy e 0 < oo

i Uncertainty Principle for
Then the desired result follows from Theorem. OJ the Spherical Mean Operator

and

. . N. Msehli and L.T. Rachdi
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