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ABSTRACT. In this paper, we extend the Ky Fan inequality to several general integral forms,
and obtain the monotonic properties of the funct'ﬂq% with a,a,b € (0,4+00) and
s eR.
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1. INTRODUCTION

The following inequality proposed by Ky Fan was recorded in [1, p. 5]0 ¥ z; < % for
1=1,2,...,n,then

1
(1.1) < | J g )" < D iy Ti
H?:1(1 — ;) B Z?:l(l — ;)
unlesse; = 29 = -+ = x2,,.
With the notation

(1.2) M, (z) =
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whereM,.(z) denotes the-order power mean af; > 0 fori = 1,2, ..., n, the inequality[(T.[1)
can be written as
My(x) M ()
(1.3) Mo(l—2) = M(1—2)
In 1996, Zh. Wang, J. Chen and X. Li]12] found the necessary and sufficient condition for
M,.(x) < M(x)
Mr<1 - x) N Ms(l - LL’)

whenr < s. Recently, Ch.-P. Chen proved that the functﬁﬁ% is strictly increasing for

0 < a < b < 5 and strictly decreasing fof < a < b < 1, wherer € (—oo,c0) and L, (a, b)
is the generalized logarithmic mean of two positive numhbebswhich is a special case of the
extended means(r, s; =, y) defined by Stolarsky [10] in 1975. For more information about the
extended means please referita [4,/6, 8, 11] and references therein.

Moreover, we have,

L.(a,b) = a, a=b;

(1.4)

br+1_ar+1 %
Lr 7b =\ 7N ) ba _17 )
@ =(Fron=g) @ oFerALo
b—a
L(0,b) = g = L@ D)
1
I AN
Loat) = () = rab),

where L(a,b) and I (a,b) are respectively the logarithmic mean and the exponential mean of
two positive numbers andb. Whena # b, L.(a,b) is a strictly increasing function of. In
particular,

lim L,(a,b) = min{a, b}, ligl L.(a,b) = max{a, b},
Li(a,b) = A(a,b), L_5(a,b) = G(a,b),

whereA(a,b) andG(a, b) are the arithmetic and the geometric means, respectively: Fob,
the following well known inequality holds:

(1.5) G(a,b) < L(a,b) < I(a,b) < A(a,b).

In this paper, motivated by inequality (1.4), we will extend the inequdity] (1.4) to general
integral forms. Some monotonic properties of several related functions will be obtained.

Theorem 1.1.Let

fi(s) = fab rédx : _ L.(a,b)
: fab(a—x)sdx Ly(a—a,a—=1b)’
s € (—oo,400) and « be a positive number. Thefy(s) is a strictly increasing function for
[a,b] € (0, 5], and is a strictly decreasing function for, b] C [5, «).
Corollary 1.2. If [a,b] C (0, 5] anda is a positive number, then
a G(a,b) L(a,b)
< <
a—b Gla—a,a—b) Lla—a,a—0)
I(a,b) _ A(a,b) b

I(a—a,a —b) A(a—a,&—b)<a—a'

(1.6)
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If [a,b] C [5,a), the inequalitieI.G) s reversed.

b s
Corollary 1.3. Leth,(s) = (Ifﬂ_f—‘jz , s € (—00, +00) anda be a positive number. Then
a—b x° x

h«(s) is a strictly increasing function fofa,b] C (0, 5], or a strictly decreasing function for
[a,b] C [5, ).

In [13], Feng Qi has proved that the function

r»—>( i Jy o da )T_ Li(a,)

M%afb—i_é‘frdx Lr(a'7b+5)

is strictly decreasing with € (—oo, +00). Now, we will extend the conclusion in the following
theorem.

Theorem 1.4.Let

a

1 b %
—— f zédx Ly(a,b)
— | bzaJa ™ T —
1 (d%cfcdaﬁdx Ly(c,d)’

s € (—o00,4+00) anda, b, ¢, d be positive numbers. Thefis) is a strictly increasing function
for ad < be, or a strictly decreasing function fard > be.

1 (Pasdy : a
h(S)Z <bafa ) :Ls( 7b)

ﬁfdmsdfﬂ L8<avd)7

s € (—o0,+00) anda, b, d are positive numbers. Théiis) is a strictly increasing function for
d < b, or a strictly decreasing function faf > b.

Corollary 1.5. Let

a

2. PROOFS OF THEOREMS

In order to prove Theorem 1.1, we make use of the following elementary lemma which can
be found in[[3, p. 395].

Lemma 2.1([3|, p. 395]) Let the second derivative g{x) be continuous with: € (—o0, 00)
and¢(0) = 0. Define

¢'(0), x=0.

Theng(x) is strictly conveXconcavgif and only ifg(z) is strictly increasingdecreasinywith
x € (—00,00).

(2.1) g(z) =

Remark 2.2. A general conclusion was given in/[7, p. 18]: A functigris convex ona, b] if
and only if%ﬁff‘)) is nondecreasing ofa, b| for every pointz, € [a, b].

Proof of Theorer 1]1lt is obvious that
b 1
xr5dx S bs+1 - as+1
fa(s) = bfa— - ( s+1 s+1>
[ (a—z)*dx (@ —a)*t! — (a =)

Ly(a,b)
Lia—a,a—1b)

1
s
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Define fors € (—o0, 00),

bs+1 . as+1
1 —1;
(@)

(2.2) p(s) =
N In(b/a) oo
]Qmm—wma—w)’ .
Then
e
(2.3) In fo(s) = { /.?O)’ 7 2’
©'(0), s=0.

In order to prove thain f, is strictly increasing (decreasing), it suffices to show thas
strictly convex (concave) ofr-oo, o). A simple calculation reveals that

(v —a)(a—0)
ab ’
which implies thaty” (-1 — s) = ¢”(—1 + s), andy has the same convexity (concavity) on
both(—oc0, —1) and(—1, o0). Hence, it is sufficient to prove thatis strictly convex (concave)
on(—1, c0).
A computation yields
¥ linb—a*'Ina (o —0)*In(a —b) — (a —a)* ' In(a — a)

(o) —
#(s) = bstl — gstl (v —b)st — (a0 — a)sH! ’

(2.4) (=1 —3s)=p(-1+s)+sln

a1 (In2)? (o —a)* (e —0b)**(In =

(s +1)%¢"(s) = (s +1)°

o (b5t — ast1)2 [(a — a)*t1 — (o — b)s+1]?
_ _(%)s+1[1n(%)s+1]2 (a Z)S+1[1n<§ Z>8+1]2
[1— ()] [1— (e=2)s+1]2
Define for0 <t < 1,
_ t(Int)
(2.5) w(t) = e

Differentiation yields

26 (-0t (1m0 -1 - — i ol gy,

w(t) n(n+1)

which implies that.’(t) > 0 for 0 < ¢ < 1. Itis easy to see that

ay s+l a—b\* a

_ C —_ _
2.7) 0<(b> <<a_&) <1 for [a,b]_(O,Q},s> 1,

a—b\"" a\st+! Q

_ C _ _

(2.8) 0<(a_a) <<b) <1 for ab_[2 a) s> —1,
and thereforey”(s) > 0 for [a,b] C (0,5] ands > —1, ¢"(s) < 0 for [a,b] C [F,a) and
s > —1. Theny is strictly convex (concave) o1, 00) for [a,b] € (0,5] ([a,b] C [5,))
respectively. By Lemmia 2.1 above, Theorenj 1.1 holds. O
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Sincef,(s) is a strictly increasing (decreasing) function forb] C (0, 5] ([a,b] C [, a)),

puts = —2,—1,0, 1 respectively. The inequalitiels (1.6) are deduced.

b g 5
Then, let(aw — x) = ¢t and apply it to the functior(%) . We get Corollar3.

Proof of Theorer 1]4Using an analogous method of proof to that of Thedrem 1.1, we get
A =
—a Ja s+1)(b—a
f(s) = (b— = %
L (s+1)(d—c)

_(d_ C) (bs+1 _ as+1):|i _ Ls(a,b)
(b= a) (@7 =) |

Let M = “=9 and define fos € (—oo, 00),

b—a)
bs+1 _ as+1
In (Mds+1 _ cs+1) , s7F =L

—~

(2.9) p(s) =

In(b/a) L
ln[Mln(d/c)}’ s =—1.
Then
©(s) ,
(2.10) nfs)=4 5 57U
90/(0)7 s =0,

andyp has the same convexity (concavity) on bothoo, —1) and(—1, o).
A computation yields

(s +1)%"(s) = —

Define for0 < t < 1,

t(Int)?

(2.11) “0)=

Differentiation yieldsv'(t) > 0 for 0 < ¢ < 1. Itis easy to see that

(2.12) 0< (%>8+1 < (g)SH <1 for ad<bc, s> —1,
(2.13) 0< (g)SH < (%)SH <1 for ad>bc, s> —1,

and thereforey”(s) > 0 for ad < bc ands > —1, ¢"(s) < 0 for ad > bc ands > —1 Then
¢ is strictly convex (concave) of-1,c0) for ad < be (ad > be) respectively. The proof is
complete. O

In Theoren 1.4, let = c. Thenf(s) is a strictly increasing function faf < b, or a strictly
decreasing function fat > b. Thus Corollary 1.6 holds.
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