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ABSTRACT. In this paper, we extend the Ky Fan inequality to several general integral forms,
and obtain the monotonic properties of the functionLs(a,b)

Ls(α−a,α−b) with α, a, b ∈ (0,+∞) and
s ∈ R.
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1. I NTRODUCTION

The following inequality proposed by Ky Fan was recorded in [1, p. 5] : If0 < xi ≤ 1
2

for
i = 1, 2, . . . , n, then

(1.1)

( ∏n
i=1 xi∏n

i=1(1− xi)

) 1
n

≤
∑n

i=1 xi∑n
i=1(1− xi)

,

unlessx1 = x2 = · · · = xn.
With the notation

(1.2) Mr(x) =


(

1
n

∑n
i=1 xr

i

) 1
r , r 6= 0;

(
∏n

i=1 xi)
1
n , r = 0,
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whereMr(x) denotes ther-order power mean ofxi > 0 for i = 1, 2, . . . , n, the inequality (1.1)
can be written as

(1.3)
M0(x)

M0(1− x)
≤ M1(x)

M1(1− x)
.

In 1996, Zh. Wang, J. Chen and X. Li [12] found the necessary and sufficient condition for

(1.4)
Mr(x)

Mr(1− x)
≤ Ms(x)

Ms(1− x)

whenr < s. Recently, Ch.-P. Chen proved that the functionLr(a,b)
Lr(1−a,1−b)

is strictly increasing for

0 < a < b ≤ 1
2

and strictly decreasing for1
2
≤ a < b < 1, wherer ∈ (−∞,∞) andLr(a, b)

is the generalized logarithmic mean of two positive numbersa, b, which is a special case of the
extended meansE(r, s; x, y) defined by Stolarsky [10] in 1975. For more information about the
extended means please refer to [4, 6, 8, 11] and references therein.

Moreover, we have,

Lr(a, b) = a, a = b;

Lr(a, b) =

(
br+1 − ar+1

(r + 1)(b− a)

) 1
r

, a 6= b, r 6= −1, 0;

L−1(a, b) =
b− a

ln b− ln a
= L(a, b);

L0(a, b) =
1

e

(
bb

aa

) 1
b−a

= I(a, b),

whereL(a, b) andI(a, b) are respectively the logarithmic mean and the exponential mean of
two positive numbersa andb. Whena 6= b, Lr(a, b) is a strictly increasing function ofr. In
particular,

lim
r→−∞

Lr(a, b) = min{a, b}, lim
r→+∞

Lr(a, b) = max{a, b},

L1(a, b) = A(a, b), L−2(a, b) = G(a, b),

whereA(a, b) andG(a, b) are the arithmetic and the geometric means, respectively. Fora 6= b,
the following well known inequality holds:

(1.5) G(a, b) < L(a, b) < I(a, b) < A(a, b).

In this paper, motivated by inequality (1.4), we will extend the inequality (1.4) to general
integral forms. Some monotonic properties of several related functions will be obtained.

Theorem 1.1.Let

fα(s) =

( ∫ b

a
xs dx∫ b

a
(α− x)s dx

) 1
s

=
Ls(a, b)

Ls(α− a, α− b)
,

s ∈ (−∞, +∞) andα be a positive number. Thenfα(s) is a strictly increasing function for
[a, b] ⊆ (0, α

2
], and is a strictly decreasing function for[a, b] ⊆ [α

2
, α).

Corollary 1.2. If [a, b] ⊆ (0, α
2
] andα is a positive number, then

a

α− b
<

G(a, b)

G(α− a, α− b)
<

L(a, b)

L(α− a, α− b)

<
I(a, b)

I(α− a, α− b)
<

A(a, b)

A(α− a, α− b)
<

b

α− a
.

(1.6)
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If [a, b] ⊆ [α
2
, α), the inequalities(1.6) is reversed.

Corollary 1.3. Lethα(s) =

( ∫ b
a xs dx∫ α−a

α−b xs dx

) 1
s

, s ∈ (−∞, +∞) andα be a positive number. Then

hα(s) is a strictly increasing function for[a, b] ⊆ (0, α
2
], or a strictly decreasing function for

[a, b] ⊆ [α
2
, α).

In [13], Feng Qi has proved that the function

r 7→

(
1

b−a

∫ b

a
xr dx

1
b+δ−a

∫ b+δ

a
xr dx

) 1
r

=
Lr(a, b)

Lr(a, b + δ)

is strictly decreasing withr ∈ (−∞, +∞). Now, we will extend the conclusion in the following
theorem.

Theorem 1.4.Let

f(s) =

(
1

b−a

∫ b

a
xs dx

1
d−c

∫ d

c
xs dx

) 1
s

=
Ls(a, b)

Ls(c, d)
,

s ∈ (−∞, +∞) anda, b, c, d be positive numbers. Thenf(s) is a strictly increasing function
for ad < bc, or a strictly decreasing function forad > bc.

Corollary 1.5. Let

h(s) =

(
1

b−a

∫ b

a
xs dx

1
d−a

∫ d

a
xs dx

) 1
s

=
Ls(a, b)

Ls(a, d)
,

s ∈ (−∞, +∞) anda, b, d are positive numbers. Thenh(s) is a strictly increasing function for
d < b, or a strictly decreasing function ford > b.

2. PROOFS OF THEOREMS

In order to prove Theorem 1.1, we make use of the following elementary lemma which can
be found in [3, p. 395].

Lemma 2.1([3, p. 395]). Let the second derivative ofφ(x) be continuous withx ∈ (−∞,∞)
andφ(0) = 0. Define

(2.1) g(x) =


φ(x)

x
, x 6= 0;

φ′(0), x = 0.

Thenφ(x) is strictly convex(concave) if and only ifg(x) is strictly increasing(decreasing) with
x ∈ (−∞,∞).

Remark 2.2. A general conclusion was given in [7, p. 18]: A functionφ is convex on[a, b] if
and only if φ(x)−φ(x0)

x−x0
is nondecreasing on[a, b] for every pointx0 ∈ [a, b].

Proof of Theorem 1.1.It is obvious that

fα(s) =

( ∫ b

a
xs dx∫ b

a
(α− x)s dx

) 1
s

=

(
bs+1 − as+1

(α− a)s+1 − (α− b)s+1

) 1
s

=
Ls(a, b)

Ls(α− a, α− b)
.
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Define fors ∈ (−∞,∞),

(2.2) ϕ(s) =


ln

(
bs+1 − as+1

(α− a)s+1 − (α− b)s+1

)
, s 6= −1;

ln

(
ln(b/a)

ln[(α− a)/(α− b)]

)
, s = −1.

Then

(2.3) ln fα(s) =


ϕ(s)

s
, s 6= 0;

ϕ′(0), s = 0.

In order to prove thatln fα is strictly increasing (decreasing), it suffices to show thatϕ is
strictly convex (concave) on(−∞,∞). A simple calculation reveals that

(2.4) ϕ(−1− s) = ϕ(−1 + s) + s ln
(α− a)(α− b)

ab
,

which implies thatϕ′′(−1 − s) = ϕ′′(−1 + s), andϕ has the same convexity (concavity) on
both(−∞,−1) and(−1,∞). Hence, it is sufficient to prove thatϕ is strictly convex (concave)
on (−1,∞).

A computation yields

ϕ′(s) =
bs+1 ln b− as+1 ln a

bs+1 − as+1
− (α− b)s+1 ln(α− b)− (α− a)s+1 ln(α− a)

(α− b)s+1 − (α− a)s+1
,

(s + 1)2ϕ′′(s) = (s + 1)2

[
−

as+1bs+1(ln a
b
)2

(bs+1 − as+1)2
+

(α− a)s+1(α− b)s+1(ln α−b
α−a

)2

[(α− a)s+1 − (α− b)s+1]2

]

= −
(a

b
)s+1[ln(a

b
)s+1]2

[1− (a
b
)s+1]2

+
( α−b

α−a
)s+1[ln( α−b

α−a
)s+1]2

[1− ( α−b
α−a

)s+1]2
.

Define for0 < t < 1,

(2.5) ω(t) =
t(ln t)2

(1− t)2
.

Differentiation yields

(2.6) (1− t)t ln t
ω′(t)

ω(t)
= (1 + t) ln t + 2(1− t) = −

∞∑
n=2

n− 1

n(n + 1)
(1− t)n+1 < 0,

which implies thatω′(t) > 0 for 0 < t < 1. It is easy to see that

(2.7) 0 <
(a

b

)s+1

<

(
α− b

α− a

)s+1

< 1 for [a, b] ⊆
(
0,

α

2

]
, s > −1,

(2.8) 0 <

(
α− b

α− a

)s+1

<
(a

b

)s+1

< 1 for [a, b] ⊆
[α
2
, α
)

, s > −1,

and thereforeϕ′′(s) > 0 for [a, b] ⊆ (0, α
2
] ands > −1, ϕ′′(s) < 0 for [a, b] ⊆ [α

2
, α) and

s > −1. Thenϕ is strictly convex (concave) on(−1,∞) for [a, b] ⊆ (0, α
2
] ([a, b] ⊆ [α

2
, α))

respectively. By Lemma 2.1 above, Theorem 1.1 holds. �
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Sincefα(s) is a strictly increasing (decreasing) function for[a, b] ⊆ (0, α
2
] ([a, b] ⊆ [α

2
, α)),

puts = −2,−1, 0, 1 respectively. The inequalities (1.6) are deduced.

Then, let(α− x) = t and apply it to the function
( ∫ b

a xs dx∫ b
a (α−x)s dx

) 1
s

. We get Corollary 1.3.

Proof of Theorem 1.4.Using an analogous method of proof to that of Theorem 1.1, we get

f(s) =

(
1

b−a

∫ b

a
xs dx

1
d−c

∫ d

c
xs dx

) 1
s

=

[
bs+1−as+1

(s+1)(b−a)

ds+1−cs+1

(s+1)(d−c)

] 1
s

=

[
(d− c)

(b− a)

(bs+1 − as+1)

(ds+1 − cs+1)

] 1
s

=
Ls(a, b)

Ls(c, d)
.

Let M = (d−c)
(b−a)

, and define fors ∈ (−∞,∞),

(2.9) ϕ(s) =


ln

(
M

bs+1 − as+1

ds+1 − cs+1

)
, s 6= −1;

ln

[
M

ln(b/a)

ln(d/c)

]
, s = −1.

Then

(2.10) ln f(s) =


ϕ(s)

s
, s 6= 0;

ϕ′(0), s = 0,

andϕ has the same convexity (concavity) on both(−∞,−1) and(−1,∞).
A computation yields

(s + 1)2ϕ′′(s) = −
(a

b
)s+1[ln(a

b
)s+1]2

[1− (a
b
)s+1]2

+
( c

d
)s+1[ln( c

d
)s+1]2

[1− ( c
d
)s+1]2

.

Define for0 < t < 1,

(2.11) ω(t) =
t(ln t)2

(1− t)2
.

Differentiation yieldsω′(t) > 0 for 0 < t < 1. It is easy to see that

(2.12) 0 <
(a

b

)s+1

<
( c

d

)s+1

< 1 for ad < bc, s > −1,

(2.13) 0 <
( c

d

)s+1

<
(a

b

)s+1

< 1 for ad > bc, s > −1,

and thereforeϕ′′(s) > 0 for ad < bc ands > −1, ϕ′′(s) < 0 for ad > bc ands > −1 Then
ϕ is strictly convex (concave) on(−1,∞) for ad < bc (ad > bc) respectively. The proof is
complete. �

In Theorem 1.4, leta = c. Thenf(s) is a strictly increasing function ford < b, or a strictly
decreasing function ford > b. Thus Corollary 1.5 holds.
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