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Heisenberg inequality;-Fourier transforms.

The aim of this paper is to stateanalogues of the Heisenberg uncertainty prin-

ciples for some®-analogue Fourier transforms introduced and studied,ig][
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1. Introduction

One of the most famous uncertainty principles is the so-called Heisenberg uncer-
tainty principle. With the use of an inequality involving a function and its Fourier
transform, it states that in classical Fourier analysis it is impossible to find a function
f that is arbitrarily well localized together with its Fourier transfofm

In this paper, we will prove that similar to the classical theory, a non-zero function
and its¢?-analogue Fourier transform (se& B]) cannot both be sharply localized.
For this purpose we will prove @analogue of the Heisenberg uncertainly principle.
This paper is organized as follows: in Sectibnsome notations, results and defi-
nitions from the theory of thg?-analogue Fourier transform are presented. All of
these results can be found ifj pnd [8]. In Section3, g-analogues of the Heisenberg
uncertainly principle are stated.
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2. Notations and Preliminaries

Throughout this paper, we will follow the notations af B]. We fix ¢ €]0, 1] such

that ngo(;(;)q) € 27Z. For the definitions, notations and properties of ¢hehifted

factorials and the-hypergeometric functions, refer to the book by G. Gasper and
M. Rahman 8].
Define

R,={£¢":ne€Z} and R,; ={¢" :ne€Z}.
We also denote

_ -4
(2.1) [g;}q_l_q, zeC
and
(2.2) [n],! = é‘”_q;’;n, neN.

The ¢?-analogue differential operator (sed)[is

fla'2) + f(=a7"2) — flaz) + f(=qz) —2f(-2)
2(1—q)z '

We remark that iff is differentiable at, thenlim,_., 9,(f)(z) = f'(2).

d, is closely related to the classicablerivative operators studied iB,[5].
The ¢-trigonometric functiong-cosine and-sine are defined by (seg, [8]):

23)  G(N)2) =

e 2n
(2.4) cos(a; ?) = 3 (~1)rqn D S
— [2n],!
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and

o0 2n+1
2 : cq2) — 1) n(n—&-l)‘r—.

These functions induce@-adapted;*-analogue exponential function by

(26) 6(2’; q2) = COS(—iZ; q2) + isin(—iz; q2). g-Heisenberg Uncertainty
. Principles
e(z; ¢*) is absolutely convergent for afl in the plane since both of its component e s

functions are absolutely convergeritm, ;- e(z; ¢*) = e* (exponential function)
pointwise and uniformly on compacta.
Theg-Jackson integrals are defined by (ség [

vol. 9, iss. 2, art. 47, 2008
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and

(2.11) Ly (Ry) = {fi [flloeq = sup |f(2)] < OO}-

z€R,
The following result can be verified by direct computation.
Lemma 2.1.If [*°_ f(t)d,t exists, then
d=q" [ f1)
2. f odd implies that/™_ f(t)d,t = 0;

1. for all integersn, [ f(q"t)d

3. fevenimplies thaf™ f(t)d,t =2 [ f(t)dyt.

The following lemma lists some useful computational propertie§,pfand re-
flects the sensitivity of this operator to the parity of its argument. The proof is
straightforward.

Lemma 2.2.

flat2)—f(2)
1-9)z -

1. If fis 0ddd, f(z) = L4=LE) and if f is evend, f(2) =

2. We havé), sin(z; ¢*) = cos(z; ¢*), 9, cos(z; ¢*) =
e(z;¢°).
3. If f andg are both odd, then

@ (2) s+ (20 ().

—sin(z; ¢%) andd,e(x; ¢*) =

94(f9)(2)
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4. If fis odd andyg is even, then
04(f9)(2) = (0,) (2) 9(2) + af (q2) (9a9) (q2) -

5. If f andg are both even, then
0 = @, () + £ 01a) ).

The following simple result, giving g-analogue of the integration by parts theo-
rem, can be verified by direct calculation.
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and

(2.15) F (f)(x) =2K /000 f(t)sin(xt; ¢*)d,t.

~ ~

Observe that iff is even thery(-; ¢*) = F, and if f is odd thenf(-; ¢*) =, F.

It was shown in §] that we have the following theorem.
Theorem 2.4.

10 f(u), uf(u) € Ly(R,), thend, ( f) (7;¢%) = (—iuf(u)Jz; ¢%).
2.1 f, 9,f € LL(R,), then(9,f) ~(z;¢%) = iaf (z;¢%)

3. For f € L2(Ry), | (6%)ll2g = [ fll2q-
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3. g-Analogue of the Heisenberg Uncertainly Principle

For a functionf defined onR,, we denote byf, and f. its odd and even parts
respectively. Let us begin with the following theorem.

~

Theorem 3.1.1f f, = f andx f(z; ¢°) are in L (R,), then

iy _3 3 -Heisenberg Uncertainty
BY  FIB, < Iaf sz [0 (14078 o follzg+ (1 +a? ) 1o, 2a] S
Wafa Binous

Proof. Using the properties of thg-analogue differential operatoy, the properties
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. .
=Nzl [a (14073 ) e follng + (1+02) I fellad] -

On the other hand, using tlyeintegration by parts theorem, we obtain

| avtDiee = = [ 1P = 1118,

o0 [e.o]

which completes the proof. O

Corollary 3.2. If f,xf andxfare in Lg(Rq), then

1
e DA%

(3.2) |z fllzqllef (@ ¢*)l2g > —
g:+1l+q+q°

Proof. The properties of the-integral imply
loflBe = [ @) + £.0)) (Fofe) + F.l0)) dy
- [ r@lades [ 2@

= ll2follzq + l2fellzg

So, [z follzg < 2 fl2g @Nd][z fellzg < [|l2fll2q-

These inequalities together with the previous theorem give the desired result.
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Corollary 3.3.
1.If f,zf andzF, are in L2(R, 1), then

(3.3) (/UOO x2|f(ac)|2dqm>é (/OOO 2| F,(2)? dqm) ’

1 oo
> i 24 r. -Heisenberg Uncertaint
2y [ P T
. 9 Wafa Binous
2. If f,zf andzx ,F arein Lq (Rg4), then vol. 9, iss. 2, art. 47, 2008
o0 3/ [ 3
2 2 2 2
ca ([ Arerae) ([Tl Foke) il Page
1 [e.e]
> — / |f(x)|2dq$. Contents
q <1 tq 2) 0 «“« >
Proof. The proof is a simple application of the previous theorem on taking = < >
f(z) if = is positive andy(z) = f(—z) (resp. g(x) = —f(—=)) if not in the first
Page 11 of 12
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