Journal of Integer Sequences, Vol. 12 (2009),

A Note On Perfect Totient Numbers

Moujie Deng ${ }^{1}$
Department of Applied Mathematics College of Information Science and Technology
Hainan University
Haikou 570228
P. R. China
dmj2002@hotmail.com

Abstract

In this note we prove that there are no perfect totient numbers of the form $3^{k} p$, $k \geq 4$, where $s=2^{a} 3^{b}+1, r=2^{c} 3^{d} s+1, q=2^{e} 3^{f} r+1$, and $p=2^{g} 3^{h} q+1$ are primes with $a, c, e, g \geq 1$, and $b, d, f, h \geq 0$.

1 Introduction

Let ϕ denote Euler's totient function. Define $\phi^{1}(n)=\phi(n)$ and $\phi^{k}(n)=\phi\left(\phi^{k-1}(n)\right)$ for all integers $n>2, k \geq 2$. Let c be the smallest positive integer such that $\phi^{c}(n)=1$. Define the arithmetic function S by

$$
S(n)=\sum_{k=1}^{c} \phi^{k}(n) .
$$

We say that n is a perfect totient number (or PTN for short) if $S(n)=n$.
There are infinitely many PTNs, since it is easy to show that 3^{k} is a PTN for all positive integers k. Perez Cacho [6] proved that $3 p$, for an odd prime p, is a PTN if and only if $p=4 n+1$, where n is a PTN. Mohan and Suryanarayana [5] proved that $3 p$, for an odd prime p, is not a PTN if $p \equiv 3(\bmod 4)$. Thus PTNs of the form $3 p$ have been completely characterized. D. E. Iannucci, the author and G. L. Cohen [3] investigated PTNs of the form $3^{k} p$ in the following cases:

1. $k \geq 2, p=2^{c} 3^{d} q+1$ and $q=2^{a} 3^{b}+1$ are primes with $a, c \geq 1$ and $b, d \geq 0$;

[^0]2. $k \geq 2, p=2^{e} 3^{f} q+1, q=2^{c} 3^{d} r+1$ and $r=2^{a} 3^{b}+1$ are all primes with $a, c, e \geq 1$ and $b, d, f \geq 0$;
3. $k \geq 3, p=2^{g} 3^{h} q+1, q=2^{e} 3^{f} r+1, r=2^{c} 3^{d} s+1$ and $s=2^{a} 3^{b}+1$, are all primes with $a, c, e, g \geq 1, b, d, f, h \geq 0$.

In the first case, they determined all PTNs for $k=2,3$ and proved that there are no PTNs of the form $3^{k} p$ for $k \geq 4$ by solving the related Diophantine equations. In the remaining cases, they only found several PTNs by computer searches. The author ([1, 2]) gave all solutions to the Diophantine equations $2^{x}-2^{y} 3^{z}-2 \cdot 3^{u}=9^{k}+1$, and $2^{x}-2^{y} 3^{z}-4 \cdot 3^{w}=3 \cdot 9^{k}+1$, which shows that there are no PTNs of the form $3^{k} p$ for $k \geq 4$ in the second case mentioned above.

In general, let \mathcal{M} be the set of all perfect totients, I. E. Shparlinski [7] has shown that \mathcal{M} is of asymptotic density zero, and F. Luca [4] showed that $\sum_{m \in \mathcal{M}} \frac{1}{m}$ converges.

The purpose of this note is to prove that, in the third case mentioned above, there are no PTNs of the form $3^{k} p$ for $k \geq 4$.

2 Lemmas

We first deduce related Diophantine equations. Let $k \geq 3, n=3^{k} p$. Suppose all of $s=$ $2^{a} 3^{b}+1, r=2^{c} 3^{d} s+1, q=2^{e} 3^{f} r+1$, and $p=2^{g} 3^{h} q+1$ are prime with $a, c, e, g \geq 1$, $b, d, f, h \geq 0$. If n is a PTN, then $S(n)=n$ by definition, which implies the diophantine equation

$$
\begin{equation*}
2^{g}\left(2^{e}\left(2^{c}\left(2^{a}-3^{d+f+h+k-3}\right)-3^{f+h+k-2}\right)-3^{h+k-1}\right)=3^{k}+1 . \tag{1}
\end{equation*}
$$

Apparently, $g=1$ or 2 for k even or odd, respectively. Next, according to $k=2 k_{1}$ or $k=2 k_{1}+1$, we consider more general Diophantine equations

$$
\begin{equation*}
2^{x}-2^{y} 3^{z}-2^{u} 3^{v}-2 \cdot 3^{w}=9^{k_{1}}+1 \tag{2}
\end{equation*}
$$

with $x \geq 4, y, u, w>0, z, v \geq 0, k_{1} \geq 2$, and

$$
\begin{equation*}
2^{x}-2^{y} 3^{z}-2^{u} 3^{v}-4 \cdot 3^{w}=3 \cdot 9^{k_{1}}+1 \tag{3}
\end{equation*}
$$

with $x \geq 4, y, u, w>0, z, v \geq 0, k_{1} \geq 1$, respectively. Since the terms $2^{y} 3^{z}$ and $2^{u} 3^{v}$ have symmetry in (2) and (3), we need only determine the solutions ($x, y, z, u, v, w, k)$ to (2) and (3) such that $y>u$ or $y=u, z \geq v$.

Let $\left(x, y, z, u, v, w, k_{1}\right)$ be any solution to the equation (2) (or (3)), and let

$$
\left(x, y, z, u, v, w, k_{1}\right) \equiv(\alpha, \beta, \gamma, \delta, \lambda, \mu, \nu,)(\bmod 36,36,36,36,36,36,18)
$$

denote $x \equiv \alpha(\bmod 36), y \equiv \beta(\bmod 36), z \equiv \gamma(\bmod 36), u \equiv \delta(\bmod 36), v \equiv \lambda(\bmod 36)$, $w \equiv \mu(\bmod 36)$, and $k_{1} \equiv \nu(\bmod 18)$. In solving equation (2) and equation (3), we first determine all the $\alpha, \beta, \gamma, \delta, \lambda, \mu, \nu$.

Lemma 1. Let $\left(x, y, z, u, v, w, k_{1}\right)$ be any solution to the equation (2), and let

$$
\left(x, y, z, u, v, w, k_{1}\right) \equiv(\alpha, \beta, \gamma, \delta, \lambda, \mu, \nu)(\bmod 36,36,36,36,36,36,18)
$$

Then all the possible $\alpha, \beta, \gamma, \delta, \lambda, \mu, \nu$ with $36 \geq \alpha, \beta, \delta, \lambda \geq 1,35 \geq \gamma, \lambda \geq 0,19 \geq \nu \geq 2$, $\beta>\delta$ or $\beta=\delta$ and $\gamma \geq \lambda$ are listed in Table 1 and Table 1^{\prime}.

Proof: Since

$$
2^{36} \equiv 1(\bmod 5 \cdot 7 \cdot 13 \cdot 19 \cdot 37 \cdot 73), 3^{36} \equiv 1(\bmod 5 \cdot 7 \cdot 13 \cdot 19 \cdot 37 \cdot 73)
$$

$\alpha, \beta, \gamma, \delta, \lambda, \mu, \nu$ must satisfy

$$
\begin{equation*}
2^{\alpha}-2^{\beta} 3^{\gamma}-2^{\delta} 3^{\lambda}-2 \cdot 3^{\mu} \equiv 9^{\nu}+1 \quad(\bmod 5 \cdot 7 \cdot 13 \cdot 19 \cdot 37 \cdot 73) \tag{4}
\end{equation*}
$$

But note that $2^{x} \equiv 0\left(\bmod 2^{4}\right), 9^{k_{1}} \equiv 0\left(\bmod 3^{3}\right), 2^{36} \equiv 1\left(\bmod 3^{3}\right), 3^{36} \equiv 1\left(\bmod 2^{4}\right)$; $M=36 l+m$ implies $2^{M} \equiv 0$ or $2^{m}\left(\bmod 2^{4}\right)$ and $3^{M} \equiv 0$ or $3^{m}\left(\bmod 3^{3}\right)$. Hence $\alpha, \beta, \gamma, \delta, \lambda, \mu, \nu$ must satisfy one of the 4 congruences

$$
\begin{equation*}
-2^{\beta} \cdot B \cdot 3^{\gamma}-2^{\delta} \cdot D \cdot 3^{\lambda}-2 \cdot 3^{\mu} \equiv 9^{\nu}+1 \quad\left(\bmod 2^{4}\right) \tag{5}
\end{equation*}
$$

and one of the 8 congruences

$$
\begin{equation*}
2^{\alpha}-2^{\beta} 3^{\gamma} \cdot C-2^{\delta} 3^{\lambda} \cdot E-2 \cdot 3^{\mu} \cdot F \equiv 1 \quad\left(\bmod 3^{3}\right), \tag{6}
\end{equation*}
$$

where B, C, D, E, F take value 0,1 independently. The congruences (4), (5) and (6) were tested on a computer with a program written in UBASIC. All the $(\alpha, \beta, \gamma, \delta, \lambda, \mu, \nu)$ that satisfy (4), (5) and (6) are divided into two parts: those listed in Table 1 are in fact solutions to equation (2), and the remainder, listed in Table 1^{\prime}, are not.

Similarly, we have
Lemma 2. Let $\left(x, y, z, u, v, w, k_{1}\right)$ be any solution to the equation (3), and let

$$
(x, y, z, u, v, w, k) \equiv(\alpha, \beta, \gamma, \delta, \lambda, \mu, \nu)(\bmod 36,36,36,36,36,36,18)
$$

Then all the possible $\alpha, \beta, \gamma, \delta, \lambda, \mu, \nu$ with $36 \geq \alpha, \beta, \delta, \mu \geq 1,35 \geq \gamma, \lambda \geq 0,18 \geq \nu \geq 1$, $\beta>\delta$ or $\beta=\delta$ and $\gamma \geq \lambda$ are listed in Table 2 and Table 2^{\prime}.

Lemma 3. Let ($\alpha, \beta, \gamma, \delta, \lambda, \mu, \nu$) be any solution to equation (2) or (3) that is listed in Table 1 or Table 2, and suppose

1. $\alpha>\beta>\delta$; or
2. $\alpha>\beta+2, \beta=\delta$;
holds. Then there is no other solution $(x, y, \gamma, u, \lambda, \mu, \nu)$ to equation (2) or (3) that satisfies $(x, y, u) \equiv(\alpha, \beta, \delta)(\bmod 36,36,36)$

Proof: Let $x=\alpha+36 i, y=\beta+36 j, u=\delta+36 l$. We have

$$
\begin{equation*}
2^{\alpha}\left(2^{36 i}-1\right)=2^{\beta} 3^{\gamma}\left(2^{36 j}-1\right)+2^{\delta} 3^{\lambda}\left(2^{36 l}-1\right) \tag{7}
\end{equation*}
$$

In case 1 , consideration of (7), modulo 2^{β} and 2^{α} in turn gives $l=0$ and $j=0$. Hence we have $i=0$. In case 2 , since $3^{\gamma}+3^{\lambda} \equiv 2,4(\bmod 8)$, consideration of (7), modulo 2^{α}, gives $j=l=0$, and therefore $i=0$.

3 Main Results

Theorem 1. All the solutions to equation (2) are given by $\left(x, y, z, u, v, w, k_{1}\right)=(\alpha, \beta, \gamma, \delta, \lambda$, $\mu, \nu)$ with $\alpha, \beta, \gamma, \delta, \lambda, \mu, \nu$ listed in Table 1.

Proof: Let $\left(x, y, z, u, v, w, k_{1}\right)$ be any solution to equation (2), and let

$$
\left(x, y, z, u, v, w, k_{1}\right) \equiv(\alpha, \beta, \gamma, \delta, \lambda, \mu, \nu)(\bmod 36,36,36,36,36,36,18)
$$

By Lemma 1, all of $\alpha, \beta, \gamma, \delta, \lambda, \mu, \nu$ are listed in Table 1 or Table 1'. Put $x=\alpha+36 i, y=$ $\beta+36 j, z=\gamma+36 l, u=\delta+36 m, v=\lambda+36 n, w=\mu+36 t, k_{1}=\nu+18 t_{1}$. Then we must have

$$
2^{\alpha+36 i}-2^{\beta+36 j} \cdot 3^{\gamma+36 l}-2^{\delta+36 m} \cdot 3^{\lambda+36 n}-2 \cdot 3^{\mu+36 t} \equiv 9^{\nu+36 t_{1}}+1 \quad(\bmod 11 \cdot 31 \cdot 181 \cdot 331 \cdot 631)
$$

For $\alpha, \beta, \gamma, \delta, \lambda, \mu, \nu$ appearing in Table 1 , since $2^{180} \equiv 3^{360} \equiv 1(\bmod 11 \cdot 31 \cdot 181 \cdot 331 \cdot 631)$, we first test (8) within

$$
4 \geq i \geq 0,4 \geq j \geq 0,9 \geq l \geq 0,4 \geq m \geq 0,9 \geq n \geq 0,9 \geq t \geq 0,9 \geq t_{1} \geq 0
$$

With computer assistance, it follows that $l=n=t=t_{1}=0$ in this case. Since any $\alpha, \beta, \gamma, \delta, \lambda, \mu, \nu$ that listed in Table 1 satisfy the conditions of Lemma 3, we must have $i=j=m=0$ by Lemma 3 .

For $\alpha, \beta, \gamma, \delta, \lambda, \mu, \nu$ appearing in Table 1^{\prime}, since $(\alpha, \beta, \gamma, \delta, \lambda, \mu, \nu)$ is not a solution to equation(2), we have $i \geq 1$. The congruence (8) was then tested on a computer within the ranges

$$
5 \geq i \geq 1,4 \geq j \geq 0,9 \geq l \geq 0,4 \geq m \geq 0,9 \geq n \geq 0,9 \geq t \geq 0,9 \geq t_{1} \geq 0
$$

with no $\left(i, j, l, m, n, t, t_{1}\right)$ being found, which shows that $\left(x, y, z, u, v, w, k_{1}\right)$ cannot be a solution to equation (2).
Theorem 2. All the solutions to equation (3) are given by $\left(x, y, z, u, v, w, k_{1}\right)=(\alpha, \beta, \gamma, \delta, \lambda$, $\mu, \nu)$ with $\alpha, \beta, \gamma, \delta, \lambda, \mu, \nu$ listed in Table 2 .
Proof: The proof is basically the same as that for theorem 1, with the only difference being that $(\alpha, \beta, \gamma, \delta, \lambda, \mu, \nu)=(9,7,0,7,0,1,2)$, listed in Table 2, does not satisfy the conditions of Lemma 3. Suppose that $x=9+36 i, y=7+36 j, z=36 l, u=7+36 m, v=36 n, w=1+$ $36 t, k_{1}=2+36 t_{1}$ is a solution to equation (3). Then a computer test of the related congruence within $4 \geq i \geq 0,4 \geq j \geq 0,9 \geq l \geq 0,4 \geq m \geq 0,9 \geq n \geq 0,9 \geq t \geq 0,9 \geq t_{1} \geq 0$ gives $l=n=t=t_{1}=0$. Consideration of (7) with $\alpha, \beta, \gamma, \delta, \lambda$ replaced by $9,7,0,7,0$, modulo 2^{7}, gives $j=l=0$. Therefor $i=0$.
Theorem 3. There are no PTNs of the form $3^{k} p, k \geq 4$, where all of $s=2^{a} 3^{b}+1$, $r=2^{c} 3^{d} s+1, q=2^{e} 3^{f} r+1$, and $p=2^{g} 3^{h} q+1$ are prime with $a, c, e, g \geq 1, b, d, f, h \geq 0$.

Proof: Suppose (a, c, d, e, f, g, h, k) is a solution to equation (1). Let $x=a+c+e+g$, $y=c+e+g, z=d+f+k-3, u=e+g, v=f+h+k-2, w=h+k-1$, and $k_{1}=\frac{k}{2}$ or $k_{1}=\frac{k-1}{2}$ for k even or odd, respectively. Then (x, y, z, u, v, w, k_{1}) must be a solution to equation (2) or equation (3). From the first two theorems it follows that the only solutions to equation(1) are $(a, c, d, e, f, h, k)=(4,1,0,1,2,1,3),(1,2,0,4,0,0,3),(3,1,0,4,1,0,3),(2,2,1,4,0,0,3)$, $(8,1,4,1,0,1,3),(5,1,2,4,1,0,3),(4,2,0,4,2,0,3)$.

α	β	γ	δ	λ	μ	ν	α	β	γ	δ	λ	μ	ν	α	β	γ	δ	λ	μ	ν
7	2	2	2	0	1	2	10	5	3	3	1	3	2	12	8	2	6	2	5	3
7	3	1	2	0	2	2	10	5	3	3	2	1	2	12	10	1	5	2	1	3
7	4	0	2	1	2	2	10	6	1	4	1	3	3	13	6	0	2	3	6	4
7	4	0	3	1	1	2	10	6	1	5	1	1	3	13	8	3	6	0	5	3
7	5	0	3	0	1	2	10	7	0	2	0	4	3	13	10	1	4	0	7	3
8	1	1	1	1	4	2	10	7	1	3	2	5	2	14	6	5	4	1	3	3
8	1	4	1	1	1	2	10	8	0	5	0	1	3	14	6	5	5	1	1	3
8	2	3	2	1	3	2	10	8	1	2	1	4	2	14	10	1	2	3	8	2
8	3	0	2	0	4	2	11	3	5	2	0	2	2	15	10	3	4	0	7	3
8	4	1	2	3	2	2	11	4	0	3	5	1	2	16	3	6	3	4	1	5
8	4	1	3	2	3	2	11	4	4	2	0	2	3	16	5	4	4	5	1	5
8	4	2	2	1	2	2	11	4	4	4	0	1	3	16	6	4	4	4	1	5
8	4	2	3	1	1	2	11	7	2	2	0	4	3	16	7	1	6	3	7	5
8	5	1	3	1	3	2	11	8	0	6	2	5	3	16	8	5	5	4	1	3
8	5	1	3	2	1	2	11	8	1	6	0	5	3	16	9	1	6	2	7	5
9	8	0	2	1	4	2	11	10	0	5	2	1	3	16	9	4	3	7	1	4
10	3	1	2	3	4	3	12	4	3	2	6	2	3	16	9	4	5	6	1	3
10	3	3	3	1	3	3	12	4	5	2	3	2	2	16	11	0	6	0	7	5
10	3	3	3	2	1	3	12	4	5	3	2	3	2	16	11	1	2	4	2	5
10	4	2	4	2	1	3	12	5	2	2	6	4	3	16	11	1	5	2	3	5
10	4	3	3	1	5	2	12	5	4	5	2	5	3	16	13	1	5	3	9	3
10	5	1	2	2	4	3	12	7	2	6	3	5	3	18	10	5	2	3	8	2
10	5	1	4	2	3	3	12	7	3	3	2	5	2	18	13	3	5	3	9	3
10	5	2	3	4	1	2	12	8	1	5	4	1	3							

Table 1

α	β	γ	δ	λ	μ	ν	α	β	γ	δ	λ	μ	ν	α	β	γ	δ	λ	μ	ν
5	1	0	1	0	2	19	6	3	1	2	1	2	19	8	3	14	2	1	16	13
5	2	1	2	0	1	19	6	3	1	2	2	36	18	8	3	15	2	1	14	13
5	3	0	2	0	2	18	6	3	12	2	2	14	12	8	6	1	2	2	2	19
5	3	1	2	0	36	18	6	3	13	2	2	12	12	10	3	1	2	5	2	19
5	3	12	2	0	14	12	6	4	0	2	2	36	19	10	9	0	3	1	5	18
5	4	0	20	0	36	19	6	5	0	2	0	2	19	12	7	2	2	6	2	19
5	3	13	2	0	12	12	7	5	1	2	0	2	19	18	34	22	21	16	33	11
6	2	2	2	1	1	19	8	3	2	2	1	4	19	30	23	2	1	13	1	15
6	3	0	2	2	2	18	8	3	3	2	1	2	19							

Table 1 ${ }^{\prime}$

α	β	γ	δ	λ	μ	ν	α	β	γ	δ	λ	μ	ν	α	β		δ	λ	μ	ν
6	1	2	1	1	1	1	10	6	2	5	1	4	1	12	7	3	7	1	1	2
6	2	1	2	1	1	1	10	6	2	6	1	1	2	12	8	1	7	1	6	1
6	4	0	3	0	1	1	10	7	1	3	2	4	2	12	8	2	6	2	5	2
7	4	0	3	2	1	1	10	7	1	5	2	3	2	12	8	2	6	3	2	1
7	4	1	4	0	2	1	10	7	1	5	2	4	1	12	9	1	4	1	4	3
7	5	0	5	0	2	1	10	7	1	6	2	2	1	12	9	1	8	2	1	2
7	6	0	3	1	1	1	10	7	1	7	1	1	2	12	10	0	7	0	6	1
8	1	4	1	3	1	1	10	8	1	3	3	1	1	12	10	1	3	1	5	1
8	2	3	2	1	3	1	10	8	1	6	1	2	1	12	10	1	8	1	1	2
8	2	3	2	3	1	1	10	9	0	8	0	1	2	13	6	0	3	6	3	3
8	4	1	3	2	3	1	11	6	0	3	5	1	1	13	6	0	5	5	3	2
8	4	2	3	2	1	1	11	6	3	6	0	1	2	13	6	0	5	5	4	1
8	4	2	4	1	2	1	11	8	0	6	2	5	2	13	6	4	6	0	6	1
8	5	1	3	1	3	1	11	8	0	6	3	2	1	13	8	3	6	0	5	2
8	5	1	5	1	2	1	11	8	1	6	0	5	2	13	10	0	8	3	1	2
8	6	1	3	1	1	1	11	9	1	8	0	1	2	13	10	1	4	0	6	3
8	7	0	6	0	2	1	11	10	0	3	1	5	1	13	12	0	7	2	6	1
9	4	0	3	3	2	2	11	10	0	8	1	1	2	14	6	5	6	2	1	2
9	4	2	4	0	3	2	12	4	5	3	2	3	1	14	8	1	6	5	2	1
9	4	2	4	0	4	1	12	4	5	4	2	2	1	14	9	3	4	1	4	3
9	4	3	4	0	2	1	12	5	2	3	4	5	3	14	9	3	8	2	1	2
9	6	0	5	1	3	2	12	5	2	3	4	6	2	14	10	1	7	4	6	1
9	6	0	5	1	4	1	12	5	2	4	4	4	3	14	10	2	8	3	1	2
9	6	1	6	0	1	2	12	5	3	3	2	5	3	14	12	1	7	2	6	1
9	7	0	5	0	3	2	12	5	3	3	2	6	2	15	10	3	4	0	6	3
9	7	0	5	0	4	1	12	5	3	5	2	6	1	16	8	5	7	1	6	1
9	7	0	7	0	1	2	12	5	4	5	2	5	2	16	10	1	8	5	1	2
9	7	1	6	0	2	1	12	6	2	4	4	2	3	18	4	3	3	6	9	5
9	8	0	3	3	1	1	12	6	2	6	2	6	1	18	4	3	3	6	10	4
9	8	0	6	1	2	1	12	6	3	3	2	3	3	18	5	6	4	3	10	3
10	1	2	1	1	5	1	12	6	3	4	2	2	3	18	5	6	5	4	10	1
10	2	1	2	1	5	1	12	7	2	3	4	3	3	18	7	4	6	5	10	1
10	2	5	2	1	1	1	12	7	2	3	5	5	1	18	8	4	6	4	10	1
10	3	4	3	1	3	2	12	7	2	4	3	4	3	18	10	3	7	5	8	5
10	3	4	3	1	4	1	12	7	2	5	4	3	2	18	10	4	3	5	3	5
10	4	0	3	0	5	1	12	7	2	5	4	4	1	18	10	4	6	3	4	5
10	4	3	3	1	4	2	12	7	2	6	3	5	2	18	10	5	7	4	6	1
10	5	1	3	4	2	2	12	7	3	3	2	4	2	18	11	3	7	3	8	5
10	5	3	3	1	3	1	12	7	3	5	2	3	2	18	11	4	3	7	9	1
10	5	3	5	1	2	1	12	7	3	5	2	4	1	18	11	4	5	7	8	1
10	6	2	5	1	3	2	12	7	3	6	2	2	1	18	11	4	7	6	6	1

Table 2

α	β	γ	δ	λ	μ	ν	α	β	γ	δ	λ	μ	ν	α	β	γ	δ	λ	μ	ν
6	1	2	1	1	2	18	7	6	0	3	1	2	18	18	18	18	2	9	1	14
6	2	1	2	1	2	18	8	3	3	3	1	1	18	18	18	20	1	14	31	18
6	2	2	2	1	1	18	8	5	1	4	2	1	18	18	20	33	14	20	36	1
6	3	1	3	1	1	18	8	6	1	3	1	2	18	18	23	12	17	3	32	1
6	3	35	3	1	2	17	8	6	1	4	1	1	18	18	27	30	3	34	9	7
6	4	0	3	0	2	18	8	9	35	3	2	1	17	18	28	18	7	20	3	2
6	5	35	4	0	2	17	10	3	1	3	1	5	18	18	28	18	7	20	4	1
6	6	35	3	35	2	18	12	7	2	3	1	6	18	18	29	2	3	29	31	6
6	6	35	4	35	2	17	18	11	0	10	4	36	5	18	29	5	23	21	34	3
6	9	33	3	0	2	16	18	18	18	2	1	9	14	18	33	35	19	24	12	15

Table 2 ${ }^{\prime}$

4 Acknowledgments

The author thanks Professor G. L. Cohen and Professor Huishi Li for useful advice and the referee for helpful suggestions which improved the quality of this paper.

References

[1] Moujie Deng, On the Diophantine equation $2^{x}-2^{y} 3^{z}-2 \cdot 3^{u}=9^{k}+1$, (in Chinese), Journal of Natural Science of Heilongjiang University, 23 (2006), 87-91.
[2] Moujie Deng, On the Diophantine equation $2^{x}-2^{y} 3^{z}-4 \cdot 3^{w}=3 \cdot 9^{k}+1$,(in Chinese), Journal of Inner Mongolia Normal University, 37 (2008), 45-49.
[3] D. E. Iannucci, D. Moujie and G. L. Cohen, On perfect totient numbers, J. Integer Sequences 6 (2003), Article 03.4.5.
[4] F. Luca, On the distribution of perfect totients, J. Integer Sequences 9 (2006), Article 06.4.4.
[5] A. L. Mohan and D. Suryanarayana, "Perfect totient numbers", in: Number Theory (Proc. Third Matscience Conf., Mysore, 1981) Lect. Notes in Math. 938, Springer-Verlag, New York, 1982, 101-105.
[6] L. Perez Cacho, Sobre la suma de indicadores de ordenes sucesivos, Revista Matematica Hispano-Americana 5.3 (1939), 45-50.
[7] I. E. Shparlinski, On the sum of iterations of the Euler function, J. Integer Sequences 9 (2006), Article 06.1.6.

2000 Mathematics Subject Classification: Primary 11A25.

Keywords: totient, perfect totient number, diophantine equation.
(Concerned with sequence A082897.)

Received April 14 2009; revised version received July 18 2009. Published in Journal of Integer Sequences, August 302009.

Return to Journal of Integer Sequences home page.

[^0]: ${ }^{1}$ Supported by the Natural Science Foundation of Hainan province, Grant No. 808101.

