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Abstract

In this article, we describe a method for finding congruent number elliptic curves
with high ranks. The method involves an algorithm based on the Monsky’s formula for
computing 2-Selmer rank of congruent number elliptic curves, and Mestre-Nagao’s sum
which is used in sieving curves with potentially large ranks. We apply this method for
positive squarefree integers in two families of congruent numbers and find some new
congruent number elliptic curves with rank 6.
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1 Introduction

One of the major topics connected with elliptic curves is construction of elliptic curves
with high ranks. Several authors considered this problem for elliptic curves with prescribed
properties and relatively high ranks. For instance, we cite [6, 14] for the curves with given
torsion groups, [2, 9] for the curves y* = 23 + dx, [10, 19] for the curves z* + y* = k related
to the so-called taxicab problem, [8] for the curves y? = (ax + 1)(bx + 1)(cz + 1)(dx + 1)
induced by Diophantine quadruples {a, b, ¢, d}, etc. Dujella [6] collected a list of known high
rank elliptic curves with prescribed torsion groups. The largest known rank of elliptic curves,
found by N. D. Elkies in 2006, is 28.

In this work we deal with a family of elliptic curves which are closely related to the
classical Congruent Number problem. A positive squarefree integer n is called a congruent
number if it is the area of a right triangle with rational sides A006991, A003273. The problem
of determining congruent numbers is closely related to the curves E, : y*> = 2% — n?x,
which are called congruent number elliptic curves or CN-elliptic curves. In fact, the positive
squarefree integer n is a congruent number if and only if the Mordell-Weil rank r(n) of E,
is a positive integer [13, Chap. 1, Prop. 18]. In this case, we refer to n itself as a CN-elliptic
curve, which corresponds to E,. In 1972, Alter, Curtz, and Kubota [1] conjectured that
n=>5,6,7 (mod 8) are congruent numbers. In 1975, appealing to the Birch and Swinnerton-
Dyer conjecture and Shafarevich-Tate conjecture, Lagrange [23] deduced a conjecture on the
parity of the r(n) as follows:

r(n) = { 0 (mod 2), i n =

1,2,3 (mod 8);
1 (mod 2), if n=5,6,7 (mod 8).

The problem of constructing high rank CN-elliptic curves was considered by several au-
thors. In 1640, Fermat proved that r(1) = 0, so n = 1 is not a congruent number. Billing
[3] proved that 7(5) = 1. Wiman [26] proved that r(34) = 2, 7(1254) = 3 and r(29274) = 4
A062693, A062694, A062695 . In 2000, Rogers [18], based on an idea of Rubin and Silverberg
[22], found the first integers n = 4132814070, 61471349610 such that r(n) = 5,6, respec-
tively. Later, in his PhD thesis [19], Rogers gave other integers with r(n) = 5,6 smaller
than those presented in [18]. Also he found [19] the first integer n = 797507543735 with
r(n) = 7. During the preparation of this paper, Rogers informed us that the smallest n with
r(n) = 5 which he was aware is 48272239, while the smallest n with 7(n) = 6 is 6611719866.
This rank 6 curve is known to be minimal [27]. Here we give the complete list on n’s with
r(n) = 6 communicated to us by Rogers [20], other than those curves which are noted above:
66637403074, 94823967361, 129448648329, 179483163699, 208645752554, 213691672290,
226713842409, 248767798521, 344731563386, 670495125874, 797804045274, 898811499201.

In Section 2, we briefly describe the complete 2-descents and 2-Selmer rank of CN-
elliptic curves, denoted by s(n), which is an upper bound for (n). In Section 3, we describe
Monsky’s formula for computing the value of s(n). In Section 4, we study Mestre-Nagao’s
sum method [15, 16, 7] which is used as a sieving tool in our algorithm. In Section 5, we
design an algorithm to find high rank CN-elliptic curves, based on the Monsky’s formula
for 2-Selmer rank CN-elliptic curves s(n), and Mestre-Nagao’s sum S(N,n). We applied
our algorithm for positive squarefree integers arisen from two specific families of congruent
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numbers. We found a large number of curves with rank 5 and twenty-four new curves with
rank 6. We have not found any new curve with r(n) > 7, although with some variants of
our method we have rediscovered Rogers’ example with r(n) = 7 (and some of his examples
with 7(n) = 5 and 6). We have also found several curves with 5 < r(n) < 7, where the upper
bound is obtained by MWRANK program (option -s). It might be a challenging problem
to decide whether these curves have ranks equal to 5 or 7.

In our computations we used the PARI/GP software (version 2.4.0) [17] and Cremona’s
MWRANK program [5] for computing the Mordell-Weil rank of the CN-elliptic curves (using
the method of descent via 2-isogeny).

2 Complete 2-descent and 2-Selmer rank

In this section, we briefly describe an upper bound for Mordell-Weil rank of CN-elliptic
curves r(n), which is based on the cardinality of 2-Selmer group S®(FE,/Q). We denote
this group by S®. For more details on the (2-)Selmer groups and related topics, please see
(24, Chap. X]. In the following we will describe 2-descents over Q for the CN-elliptic curves.
The number of 2-descents is the order of S@). This is a power of 2, and will be a multiple
of 4, on account of the rational points of order 2 on the curve E,. We shall therefore write
#S5@ = 25+2 The exponent s(n) is called 2-Selmer rank of the curve E,,. Next we describe
the 2-descent process on the curve F,,. For a similar argument of complete 2-descent, please
see [24, Chap. X, §1], [23, Sec. 3] and [11, Sec. 2].

Let pi1, ..., pi be the odd prime factors of the squarefree integer n, and let Mg be the
set of all places of Q. Define the sets S and Q(S,2) as follows.

S - {00727])17 cee 7pt}7

={a € Q"/Q**|v,(a) = 0 (mod 2) Vp € Mg\S} .

Theorem 1. Let E, be the elliptic curve y*> = x® —n’x and let O be the identity element of
the group E,(Q). With the above notation, we have:

(i) There is an injective homomorphism

0: E.(Q)/2E,(Q) — Q(S,2) x Q(5,2)

(x,x —mn), if P# 0O,(0,0),(n,0);
(—=1,—n), if P =(0,0);

(n,2), if P=(n,0);

(1,1), it P=20.

Y

(i) Let (a,b) € Q(5,2) x Q(S,2)\{(1,1),(=1,—n),(n,2)}. Then (a,b) is the image of a
point P = (z,y) € E,(Q)/2E,(Q) if and only if the following system of equations have
a common solution (X,Y,Z) € Q* x Q* x Q*.

(¥) aX? —bY? =n, aX?®—abZ? = —
If such a solution exist then one can take P = (aX?, abXY Z) = (bY? + n,abXY 7).
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For a proof of this theorem see [24, Chap. X, §1] or [23, Sec. 3] .
Note that the Mordell-Weil rank of the curve F,, can be found by

() = tog, (724,

Also, the cardinality of S® is equal to the number of the pairs (a,b) such that the system ()
is everywhere locally solvable. If one take the set R = {£2%p{" -+ pi* |, q, ..., € {0,1}}
as representatives for Q(S9,2), then it is immediate that #Q(S,2) = 22 and so

r(n) < s(n) < 2w(n).

3 Monsky’s formula for 2-Selmer rank

In 1994, P. Monsky [12] proved a theorem on the parity of the 2-Selmer rank of CN-elliptic
curves. He gave a formula for computation of the s(n) through his proof of this theorem.

Theorem 2. Let n be a positive squarefree integer. Then

(n) = 0 (mod 2), if n=1,2,3 (mod 8);
U= 1 (mod 2), if n=5,6,7 (mod 8).

For a proof of this theorem see Appendix of [12].

Let n be a positive squarefree integer with odd prime factors pq, ..., p;. Define the
diagonal t x ¢t matrix D; = (d;), for [ € {—1,—2,2} | and the square ¢ x t matrix A = (a;)
as follows:

0, if (L) = 1; 0, if (Z)=1,j £
L — pi — i Jpp— ..
& { 1, if (pil) =—1, i { L, if ( J) =-—1,7 #1, i Z -

ARl

Monsky showed that s(n) can be computed as

s(n) = § 2t ranke, (M), if n = pipa---pi
2t — ranky, (M,), if n=2pips---py,

where M, and M, are the following 2t x 2t matrices:

MO:{A+D2 D, ] 6:[ Dy, |A+D,

Dy |A+D_, AT+ D, | Dy

4 Mestre-Nagao’s sum

Now we describe a sieving method for finding the best candidates for high rank CN-elliptic
curves. For any elliptic curve E : y> = 2° 4+ ax + b over Q, and every prime number p not
dividing the discriminant A = —16(4a® + 27b%) of E, we can reduce a and b modulo p and



view E as an elliptic curve over the finite field IF,. Let #E(F,) be the number of points on
the reduced curve:

#EF,) =1+#{0<2,y<p—-1:y*=2"+ax+b (mod p)}.

There is both theoretical and experimental evidence which suggests that elliptic curves of
high ranks have the property that #FE(F,) is large for many primes p.

Definition 3. Let N be a positive integer and Py be the set of all primes less than V.
Mestre-Nagao’s sum is defined by

S(N,E) = 2(1—

peEPN

—a +2
#E gp—z p Ing-

Note that S(N, E') can be computed efficiently with PARI/GP software [17], provided N
is not too large. It is experimentally known [7, 15, 16] that we may expect that high rank
curves have large S(INV, F). See [4] for a heuristic argument which connects this assertion

with the famous Birch and Swinnerton-Dyer conjecture. For a positive squarefree integer n,
we denote S(N, E,,) by S(N,n).

5 An algorithm for finding high rank

Now we are ready to exhibit our algorithm for finding high rank CN-elliptic curves, based
on Monsky’s formula for 2-Selmer rank of CN-elliptic curves s(n) and Mestre-Nagao’s sum
S(N,n). In this algorithm, first of all, a list of different positive squarefree congruent number
is considered. Next, for any integer n in this list, the value of s(n) is computed by the
Monsky’s formula which is described in the section 3. Selecting those n’s with s(n) > s for
a given positive number s, a new list of integers n is scored by Mestre-Nagao sum S(N,n)
using finitely many successive primes. Finally, the Mordell-Weil rank r(n) is computed by
MWRANK for integers n with s(n) > s and large values of Mestre-Nagao sums. To be more
precise, we write our algorithm step by step as follows.

Step 1. Let s be a positive integer. Choose a non-empty set T" of some squarefree congruent
numbers. For any n € T' compute s(n) by the Monsky’s formula. Define the subset T’
of T containing all n € T with s(n) = s. If T is empty choose another set T

Step 2. Let k be a positive integer. Choose the set M as follows:
Mg={(N;yM;): 0< Ny <--- < Np, 0<M,;, 1 <i<k}.
Put Tf =Ty, and for any ¢ with 1 < ¢ < k, define the recursive sets

T!={neT:": S(Nyn)> M:}.

Step 3. Take j, 1 < j <k, such that for any i with j < i <k, the sets T? are empty. Now
for any n € T?, compute r(n) using Cremona’s MWRANK [5].



Remark 4. For a given positive integer s in Step 1, choice of starting set T' is very
important. To save the time, we should avoid any repeated elements in 1. By applying
Theorem 2 and Lagrange’s conjecture about the parity of r(n), one can expect to find an
integer n in the set Ty such that r(n) is less than s and has the same parity as s.

Remark 5. The most sensitive part of our algorithm is choosing the sets M, in Step 2.
For a prescribed value of s, we must choose the elements of M, and its cardinality in such
a way that the total time of available computations is as small as possible. Note that the
elements of the sets T7, in Step 3, are the best candidates for high rank CN-elliptic curves.

Remark 6. In Step 3, we try to compute r(n) for any n € T7. This is done by Cremona’s
program MWRANK efficiently for small values of n. However, for large n’s the computation
can be much slower, and MWRANK often gives only lower and upper bounds for r(n).

Given any positive integer s, our algorithm can be implemented in some different ways
depending on the choice of the starting set 7" in Step 1. To explain our strategy, we need the
next result which gives two specific families of congruent numbers. For a proof of the cases
(I) and (II) see [21] and [23], respectively. Note that the construction of congruent numbers
via case (I) is the same as that in [22] (originally due to Gouvéa and Mazur), applied to the
curves F; : y? = 2% — x and El1 cy? = a2+ 4a.

Theorem 7. Let u and v be arbitrary positive integers such that v < v, ged(u,v) = 1 and
u + v is odd. Then the squarefree parts of the following families of integers are congruent
numbers:

M) wo(v —u)(v+u), () ww(u® +v?)/2.

In this paper, we focused on the integers s > 5 and all different positive squarefree
integers n of the forms (I) and (II) with u < v < 10° and w(n) > 5, where w(n) denotes the
number of distinct prime factors of n.

After choosing two sets 77 and Tj; related to the integers of the form (I) and (II), we
then took the starting set of the our algorithm as T = T; U T7; and got different sets T} for
each s > 5. Then for each s > 5, we considered the related sets M, as follows:

{N;}T_, = {500, 1000, 5000, 10000, 15000, 20000, 50000} ,

M = {(N1,10), (N2,12), (N3, 15), (N4, 20), (N5, 25), (Ng, 28), (N7, 30)}
Me = {(N1,10), (N2, 14), (N3, 18), (N, 22), (N5, 25), (Ng, 30), (N7, 35)}
Mz = {(N1,10), (N2, 15), (N3,20), (N4, 25), (N5, 30), (Ng, 35), (N7,40)}
Mg = {(N1,10), (N2, 14), (N3, 16), (N4, 20), (N5, 25), (Ng, 30), (N7, 35)},
My = {(N1,10), (N2,15), (N3, 20), (Na, 25), (N5, 28), (Ng, 30), (N7, 35)}

Msqo = {(Ny,10), (No, 12), (N3, 15), (Ny, 18), (N5, 22), (Ng, 25), (N7, 30)} .

For each s > 5 and each i, 1 < i <7, by choosing (N, M) = (N;, M;) € M, and computing
S(Nj,n) for all n € T:"! gets the sets T? of n’s that satisfy S(N;,n) > M;. The elements
of the sets T7 are best candidates to give high rank CN-elliptic curves. Finally, we used
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MWRANK to compute Mordell-Weil rank r(n), for n’s in each of the sets T7. This stage of
our algorithm was very time consuming. By the implementation of our algorithm, we have
rediscovered some of the Rogers’ examples with r(n) = 5,6, and 7. Also, we were able to
find some new CN-elliptic curves with r(n) = 6 and some curves with 5 < r(n) < 7. We
give these curves in the Tables 1 and 2, respectively.

We give also generators of the Mordell-Weil group for two smallest new examples with
r(n) = 6. By using MWRANK we find 6 indepenent points on E,, which are moreover
generators of the Mordell-Weils group, while LLL-algorithm is used for finding the generators
with smaller heights, which are listed below.

For n = 531670544130 we have the curve

y® = 2° — 2826735674954902774569002

with the generators

P1 = [-317205078080, 240309412570889200],

P2 = [1110744023070, 1027815645288207600],

P3 [-8842721250, 49989119984694000],

P4 [2350922039070, 3511212519485048400],

P5 = [7424745951989070/361, 639554031769152257946000/6859],

P6 = [-165395800834700271/51351556, 11103259191546833925683935833/367985250296]

For n = 602730488666 we have the curve
y? = 2® — 3632840419675551544595562

with the generators

P1 [25844642800106/25, 106746067884077780496/125],

P2 [-89776938384, 178580334935648520],

P3 = [3666632085466, 6925523273366507040],

P4 = [26198594092166458/10609, 4112253205326835858960032/1092727],

P5 [2097707297289652801/1012036, 2906919721960250194451760705/1018108216],

P6 [56187004732864967512122/8543489761,
44888914750852091711316911386224/789683302098991]
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n factorization nmod 8 | s(n)
531670544130 2:3-5-11-17-107-463-1913 2 6
602730488666 2:29-41-97-137-19073 2 6
1079812755065 5-11-23-41-89-449-521 1 6
1351528542210 2:3-5:7-11-29-31-47-61-227 2 6
1440993982946 2-7-17-23-41.73-281-313 2 8
1544991154746 2-3-13-19-83-163-251-307 2 6
1663586838899 17-103-137-756-9161 3 8
2280190889130 2:3-5-7-11-23-41-257-4073 2 6
4611082954146 2-3-19-41-113-953-9161 2 8
8231905771386 2-3-11-17-19-23-41-43-89-107 2 6
9033322597530 2-3-5-7-11-43-53-59-127-229 2 6
17434310103210 2:3-5-7-11-13-17-19-67-139-193 2 6
46485304142530 2-5-11-19-23-43-67-107-3137 2 6
90181020280890 2-3-5-7-11-251-397-401-977 2 6
165130972136130 2-3-5-7-11-13-29-103-233-7901 2 6
179009302343970 2-3-5-7-17-19-23-47-53-73-631 2 6
181025271456226 2-17-103-127-151-1259-2141 2 6
243339180933145 5-11-401-1049-3169-3319 1 8
339507119347242 2-3-7-17-19-23-37-59-113-401 2 6
444724421083665 3-5-17-31-71-103-137-233-241 1 8
846249312638730 2-3-5-7-11-13-31-37-41-101-349 2 6
1056710141801930 | 2-5-7-11-41-43-53-71-269-769 2 6
4601440550332626 | 2-3-7-11-13-17-19-37-41-101-113-137 2 6
13897395819317010 | 2-3-5-7-11-13-23-29-31-61-113-191 2 6

Table 1: Some new CN-elliptic curves with r(n) = 6




n factorization nmod 8 | s(n)
1024801887174 2-3-13-37-409-769-1129 6 7
1025774078934 2-3-11-17-41-43-641-809 6 7
1649085975174 2-3-11-47-73-97-193-389 6 7
2093383150230 2-3-5-29-73-97-419-811 6 7
2392760979654 2-3-17-41-43-83-160313 6 7
2473595024934 2-3-11-17-41-83-347-1867 6 7
5080701332454 2-3-11-17-41-59-521-3593 6 7
5449406258406 2-3-11-17-41-251-683-691 6 7
7322494848870 2-3-5-17-19-137-151-36529 6 7
7391341307526 2-3-11-19-59-67-523-2851 6 7
7697325362694 2-3-11-137-401-547-3881 6 7
7836495180886 2-17-281-353-971-2393 6 9
7889458857566 2-11-19-881-1049-1571 6 7
8549294440966 2:17-19-37-137-353-5857 6 7
10571147972390 2-5-17-89-277-587-4297 6 7
11050024116846 2-3-11-13-17-29-31-569-1481 6 7
12651761296614 2-3-11-17-19-43-59-449-521 6 7
14020765617254 2-11-17-23-71-241-95257 6 7
19843964725254 2-3-17-19-937-2683-4073 6 7
25161173711039 19-23-29-103-1657-11633 7 7
25837148295902 2-31-97-593-1217-5953 6 9
26755379766174 2-3-23-59-233-353-39953 6 7
29130582949206 2-3-19-113-283-1913-4177 6 7
32334652741974 2-3-11-43-89-113-883-1283 6 7
34243576397574 2-3-73-89-457-953-2017 6 7
35876712238310 2-5-31-41-1289-1361-1609 6 7
44066140293846 2-3-11-17-41-43-59-491-769 6 9
56858065281654 2-3-7-13-19-73-89-769-1097 6 7
57705905931141 3-13-17-131-521-937-1361 ) 7
57939619068870 2-3-5-7-11-37-53-89-137-1049 6 7
61639096639029 3-7-13-29-241-2113-15289 ) 7
109995988504269 3-17-41-65809-114193 5 7
114490690064454 2-3-11-19-577-1873-84481 6 9
117205364344206 2-3-7-17-73-97-233-293-2377 6 7
119231629856526 2-3-11-17-29-41-59-83-18251 6 7
121466637600990 2-3-5-11-17-31-89-107-1033 6 7
130629627999390 2-3-5-13-17-37-41-97-257-521 6 7
146421396607926 2-3-11-17-19-449-2417-6329 6 7
175656508365734 2-11-97-113-10169-71633 6 9
180196195115046 2-3-11-17-43-83-179-251393 6 7
191519081464326 2-3-7-11-31-41-59-89-89-179-347 6 7
242515586992326 2-3-19-41-73-587-641-1889 6 9
433182183087126 2-3-11-17-41-251-2707-13859 6 7
459848288031405 3-5:7-13-17-41-61-389-20369 5 7
1687029282320910 2-3-5-11-1049-1729-2027 6 7
2053424339679966 2-3-11-17-19-31-43-179-499-809 6 7
2059195525185430 2-5-89-641-823-929-4721 6 9
3167344617712806 2-3-19-73-89-283-3137-4817 6 9
8797235243700486 2-3-11-19-313-577-5147-7547 6 9
342916139097905191 | 3-13-17-37-53-61-157-1753-6733 7 7

Table 2: Some CN-elliptic curves with 5 < r(n) <7




References

[1] R. Alter, T. B. Curtz, and K. K. Kubota, Remarks and results on congruent numbers,
Proc. Third Southestern Conf. on Combinatorics, Graph Theory and Computing, 1972,
pp. 27-35.

2] J. Aguirre, F. Castaneda, and J. C. Peral, High rank elliptic curves of the forms 3? =
23 + Bz, Rev. Math. Complut., 13 (2000), 1-15.

[3] G. Billing, Beitrége zur arithmetischen theorie der ebenen kubischen kurven geschlech-
teeins, Nova Acta Reg. Soc. Sc. Upsaliensis (4) 11 (1938), Nr. 1. Diss. 165 S.

[4] G. Campbell, Finding Elliptic Curves and Families of Elliptic Curves over Q of Large
Rank , PhD Thesis, Rutgers University (1999).

[5] J. Cremona, MWRANK program, available from
http://www.maths.nottingham.ac.uk/personal/jec/ftp/progs/.

6] A. DuJeELLA, High rank elliptic curves with prescribed torsion,
http://www.maths.hr/~duje/tors.html, 2009.

(7] A. Dujella, On the Mordell-Weil groups of elliptic curves induced by Diophantine triples,
Glas. Mat. Ser. III 42 (2007), 3-18.

[8] A. Dujella, Irregular Diophantine m-tuples and elliptic curves of high rank, Proc. Japan
Acad. Ser. A Math. Sci. 74 (2000), 66-67.

9] N. D. Elkies, Algorithmic Number Theory: Tables and Links,
http://www.math.harvard.edu/~elkies/compnt.html, (2002-2006).

[10] N. D. Elkies and N. F. Rogers, Elliptic curves ® + 3* = k with high rank, Proc.
ANTS-6 (ed. D. Buell), Lecture Notes in Comput. Sci. 3076 (2004), 184-193.

[11] D. R. Heath-Brown, The size of Selmer groups for congruent number problem, Invent.
Math. 111 (1993), 171-195.

[12] D. R. Heath-Brown, The size of Selmer groups for congruent number problem, II.
Invent. Math. 118 (1994), 331-370.

[13] N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer-Verlag, GTM
97, 2nd ed, Berlin (1993).

[14] L. Kulesz and C. Stahlke, Elliptic curves of high rank with nontrivial torsion group over
Q, Experiment Math. 10 (2001), 475-480.

[15] K. Nagao, An example of elliptic curve over Q with rank > 20, Proc. Japan Acad. Ser.
A Math. Sci. 69 (1993), 291-293.

[16] K. Nagao, An example of elliptic curve over Q with rank > 21, Proc. Japan Acad. Ser.
A Math. Sci. 70 (1994), 104-105.

10


http://www.maths.nottingham.ac.uk/personal/jec/ftp/progs/
 http://www.maths.hr/~duje/tors.html
http://www.math.harvard.edu/~elkies/compnt.html

[17] PARI/GP, version 2.4.0, Bordeaux, 2008,
http://pari.math.u-bordeaux.fr.

[18] N. Rogers, Rank computations for the congruent number elliptic curves, Ezperiment.
Math. 9 (2000), 591-594.

[19] N. Rogers, Elliptic curves 2 + y* = k with high rank, PhD Thesis in Mathematics,
Harvard University (2004).

[20] N. Rogers, Personal communication, 2009.

[21] S. Roberts, Note on a problem of Fibonacci’s, Proc. London Math. Soc. 11 (1879),
35—44.

[22] K. Rubin and A. Silverberg, Ranks of elliptic curves in the families of quadratic twists,
Ezperiment Math. 9 (2000), 583-590.

[23] P. Serf, Congruent numbers and elliptic curves. In Computational Number Theory.
Debrecen: de Gruyter (1991), 227-238.

[24] J. H. Silverman, The Arithmetic of Elliptic Curves, Springer-Verlag, GTM 106, New
york (1986).

[25] N. J. A. Sloane, The on-line encyclopedia of integer sequences,
http://www.research.att.com/~njas/sequences/.

[26] A. Wiman, Uber rationale punkte auf kurven y* = z(2% — ), Acta Math. 77 (1945),
281-320.

[27] http://wiki.l-functions.org/LfunctionsAndModularFormsII/CentralValues/Rank4.

2000 Mathematics Subject Classification: Primary 11G05; Secondary 14H52.
Keywords: CN-elliptic curve, Mordell-Weil rank, 2-Selmer rank, Mestre-Nagao sum.

(Concerned with sequences A003273, A006991, A062693, A062694, and A062695.)

Received April 5 2009; revised version received July 14 2009. Published in Journal of Integer
Sequences, July 16 20009.

Return to Journal of Integer Sequences home page.

11


 http://pari.math.u-bordeaux.fr
http://www.research.att.com/~njas/sequences/
 http://wiki.l-functions.org/LfunctionsAndModularFormsII/CentralValues/Rank4
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A003273
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A006991
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A062693
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A062694
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A062695
http://www.cs.uwaterloo.ca/journals/JIS/

	Introduction
	 Complete 2-descent and 2-Selmer rank 
	Monsky's formula for 2-Selmer rank
	Mestre-Nagao's sum
	An algorithm for finding high rank 
	Acknowledgements

