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Abstract

An (X, Y )-descent in a permutation is a pair of adjacent elements such that the
first element is from X, the second element is from Y , and the first element is greater
than the second one. An (X, Y )-adjacency in a permutation is a pair of adjacent
elements such that the first one is from X and the second one is from Y . An (X, Y )-
place-value pair in a permutation is an element y in position x, such that y is in Y

and x is in X. It turns out, that for certain choices of X and Y some of the three
statistics above become equidistributed. Moreover, it is easy to derive the distribution
formula for (X, Y )-place-value pairs thus providing distribution for other statistics
under consideration too. This generalizes some results in the literature. As a result of
our considerations, we get combinatorial proofs of several remarkable identities. We
also conjecture existence of a bijection between two objects in question preserving a
certain statistic.

1 Introduction

Let Sn denote the set of permutations of [n] = {1, . . . , n} and N = {1, 2, . . .}. Also, E and O

denote the set of even and odd numbers, respectively. For σ = σ1 · · ·σn ∈ Sn and X,Y ⊆ N

define the following permutation statistics

desX,Y (σ) = |{i : σi > σi+1, & σi ∈ X & σi+1 ∈ Y }|,

adjX,Y (σ) = |{i : σi ∈ X & σi+1 ∈ Y }|,

valX,Y (σ) = |{i : i ∈ X & σi ∈ Y }|,

excX,Y (σ) = |{i : σi > i & i ∈ X & σi ∈ Y }|,

and the following corresponding polynomials

DX,Y
n (x) =

∑

σ∈Sn

xdesX,Y (σ) =
n−1
∑

s=0

DX,Y
n,s xs,

AX,Y
n (x) =

∑

σ∈Sn

xadjX,Y (σ) =
n−1
∑

s=0

AX,Y
n,s xs,

V X,Y
n (x) =

∑

σ∈Sn

xvalX,Y (σ) =
n−1
∑

s=0

V X,Y
n,s xs,

EX,Y
n (x) =

∑

σ∈Sn

xexcX,Y (σ) =
n−1
∑

s=0

EX,Y
n,s xs.

Objects counted by desX,Y are called (X,Y )-descents in [2]. Similarly, we can talk of (X,Y )-
adjacencies, (X,Y )-place-value pairs, and (X,Y )-excedances.

Foata’s first transformation [1] exchanging excedances and descents (to be used in the
paper) can most easily be explained with an example. The permutation w = 61437258 has



three excedances: 6, 4, and 7 in positions 1, 3, and 5, respectively. We write w in cycle
form: (162)(34)(57)(8). Next, write each cycle with largest element last, and order the
cycles by increasing largest element: (34)(216)(57)(8). Finally, reverse each cycle and erase
the parentheses to get the outcome permutation 43612758 with the descents 43, 61, and 75.

Remark 1. Using Foata’s first transformation, one obtains that DX,Y
n (x) = EY,X

n (x). Thus,
we do not need to provide any arguments for the polynomial EX,Y

n (x) and its coefficients,
instead studying the other three polynomials.

In this paper, we use the following notation for any X ⊆ N and integer n ≥ 1:

Xn = [n] ∩ X, xn = |Xn|, X
c
n = [n] − X, and xc

n = |Xc
n|.

Collecting some data on the polynomials, we noticed several equidistributions among the
statistics, and nice formulas associated with them, for particular choices of sets X and Y .
We collect those observations in Table 1, where an,k denotes the number of permutations in
Sn with k occurrences of the corresponding statistic.

Many of formulas listed in Table 1 are known (see, e.g., [4]). Others are new but quite easy
to prove. Our idea to establish the equidistribution results is to prove general recurrence
relations for the statistics for arbitrary choice of sets X and Y . Then we will get the
equidistributions in Table 1 as a simple corollary to the fact that the recurrences for the
statistics in a given block are the same for a particular choice of X and Y . For example, we
will show that whenever X and Y are disjoint subsets of N, then AX,Y

n,s = V X,Y
n,s for all n and

s. Indeed, the recursions that we develop will allow us to give a bijective proof of this fact.
Other equidistribution results follow from simple bijections. For example, it is easy to see
that for any X and Y , AX,Y

n,s = AY,X
n,s since if σiσi+1 is an (X,Y )-adjacency in σ = σ1 · · ·σn,

then σi+1σi is a (Y,X)-adjacency in the reverse of σ, σr = σnσn−1 · · ·σ1.
Several of our formulas are quite easy to prove for one of our three statistics. For example,

it is always easy to compute V X,Y
n,s .

Theorem 2. For any X,Y ⊆ N, n ≥ 1, and 0 ≤ s ≤ n,

V X,Y
n,s = s!(xn − s)!(xc

n)!

(

xn

s

)(

yn

s

)(

yc
n

xn − s

)

. (1)

Proof. To count the number of permutations of length n with s occurrences of valX,Y , we
can first pick s positions from Xn in

(

xn

s

)

ways for the places where we will have values of Y
occurring in the places corresponding to Xn. Then we pick s values from Yn in

(

yn

s

)

ways,
and permute the values in s! ways to arrange the s occurrences of values in Yn in the places
in Xn. In the remaining xn − s places in Xn, we must choose values from Y c

n . We thus have
(

yc
n

xn−s

)

ways to choose those values and (xn − s)! ways to rearrange them. Finally we have
xc

n! ways to arrange the elements in places outside of Xn.

Similarly, it is easy to count AX,X
n,s for any set X ⊆ N. That is, we have the following

theorem.
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Stat. Description, related polynomial, and enumeration

S1 # of even descent-tops (DE,N
n,k ). E.g., S1(215436) = 2.

S2 # of even excedance values (EN,E
n,k ). E.g., S2(215436) = 1.

S3 # of even entries in even positions (V E,E
n,k ). E.g., S3(215436) = 2.

a2n,k =
[

n!
(

n
k

)]2
; a2n+1,k = n!(n + 1)!

(

n
k

)(

n+1
k+1

)

.

S4 # of odd descent-bottoms (DN,O
n,k ). E.g., S4(215436) = 2.

S5 # of odd excedance positions (EO,N
n,k ). E.g., S5(215436) = 2.

S6 # of even entries in odd positions (V O,E
n,k ). E.g., S6(215436) = 1.

S7 # of odd entries in even positions (V E,O
n,k ). E.g., S7(215436) = 1.

S8 # of (odd,even) pairs (AO,E
n,k ). E.g., S8(2154 36) = 2.

S9 # of (even, odd) pairs (AE,O
n,k ). E.g., S9(215436) = 2.

a2n,k =
[

n!
(

n
k

)]2
; a2n+1,k = n!(n + 1)!

(

n
k

)(

n+1
k

)

.

S10 # of odd descent-tops (DO,N
n,k ). E.g., S10(215436) = 1.

S11 # of odd excedance values (EN,O
n,k ). E.g., S11(215436) = 1.

S12 # of (odd,odd) pairs (AO,O
n,k ). E.g., S12(215436) = 1.

a2n,k = (n!)2
(

n−1
k

)(

n+1
k+1

)

; a2n+1,k = n!(n + 1)!
(

n
k

)(

n+1
k

)

.

S13 # of even descent-bottoms (DN,E
n,k ). E.g., S13(215436) = 1.

S14 # of even excedance positions (EE,N
n,k ). E.g., S14(215436) = 0.

a2n,k = (n!)2
(

n−1
k

)(

n+1
k+1

)

; a2n+1,k = n!(n + 1)!
(

n
k

)(

n+1
k+1

)

.

S15 # of odd entries in odd positions (V O,O
n,k ). E.g., S15(215436) = 2.

a2n,k =
[

n!
(

n
k

)]2
; a2n+1,k = n!(n + 1)!

(

n
k−1

)(

n+1
k

)

.

S16 # of (even,even) pairs (AE,E
n,k ). E.g., S16(215436) = 0.

a2n,k = (n!)2
(

n−1
k

)(

n+1
k+1

)

; a2n+1,k = n!(n + 1)!
(

n−1
k

)(

n+2
k+2

)

.

Table 1: 16 statistics under consideration classified into 6 statistic groups.
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Theorem 3. For any X ⊆ N, n ≥ 1, and 0 ≤ s ≤ n − 1,

AX,X
n,s = (xn)!(xc

n)!

(

xn − 1

s

)(

xc
n + 1

xn − s

)

. (2)

Proof. Fix n ≥ 1. First we pick a permutation σ of X ∩ [n] and a permutation τ of [n]−X.
Clearly, we have (xn)!(xc

n)! ways to pick σ and τ . We are now interested in finding the
number of permutations of γ of Sn such that γ restricted to the elements in X ∩ [n] yields
the permutation σ, γ restricted to the elements in [n] − X yields the permutation τ , and
adjX,X(γ) = s. Next in σ1σ2 · · ·σxn

, we think of choosing s spaces from the xn − 1 spaces
between the elements of σ to create the adjacencies that will appear in such a γ. For example,
if n = 12, s = 2, X = E, σ = 4 2 10 8 6 12, and we pick spaces 2 and 5, then our choice
partitions σ into four blocks, 4, 2 − 10, 8 and 6 − 12. Our idea is to insert these blocks into
the spaces that either lie immediately before an element of τ or immediately after the last
element of τ . We label these spaces from left to right. For example, suppose τ = 5 1 7 9 3 11
and we pick spaces 2, 4, 5, and 7. Then we would insert the block 4 immediately before 1,
the block 2− 10 immediately before 9, the block 8 immediately before 3, 6− 12 immediately
after 11 to obtain the permutation

5 4 1 7 2 10 9 8 3 11 6 12.

Clearly there are
(

xn−1
s

)

ways to choose the spaces to obtain our s adjacencies. This will

leave us with xn−s blocks. Then there are
(

xc
n+1

xn−s

)

to choose the spaces for τ where we insert
the blocks.

Hall and Remmel [2] gave direct combinatorial proofs of a pair of formulas for DX,Y
n,s

which combined with our equidistribution results, gives formulas for the other polynomials
under consideration. We state these results here together with an example of using them.

Theorem 4. For any X,Y ⊆ N, n ≥ 1, and 0 ≤ s ≤ n − 1,

DX,Y
n,s = |Xc

n|!
s
∑

r=0

(−1)s−r

(

|Xc
n| + r

r

)(

n + 1

s − r

)

∏

x∈Xn

(1 + r + αX,n,x + βY,n,x), (3)

Theorem 5. For any X,Y ⊆ N, n ≥ 1, and 0 ≤ s ≤ n − 1,

DX,Y
n,s = |Xc

n|!

|Xn|−s
∑

r=0

(−1)|Xn|−s−r

(

|Xc
n| + r

r

)(

n + 1

|Xn| − s − r

)

∏

x∈Xn

(r + βX,n,x − βY,n,x), (4)

where for any set A and any j, 1 ≤ j ≤ n, we define

αA,n,j = |Ac ∩ {j + 1, j + 2, . . . , n}| = |{x : j < x ≤ n & x /∈ A}|, and

βA,n,j = |Ac ∩ {1, 2, . . . , j − 1}| = |{x : 1 ≤ x < j & x /∈ A}|.

Example 1. Suppose X = {2, 3, 4, 6, 7, 9}, Y = {1, 4, 8}, and n = 6. Thus X6 = {2, 3, 4, 6}, Xc
6 =

{1, 5}, Y6 = {1, 4}, Y c
6 = {2, 3, 5, 6}, and we have the following table of values of αX,6,x, βY,6,x,

and βX,6,x.
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x 2 3 4 6
αX,6,x 1 1 1 0
βY,6,x 0 1 2 3
βX,6,x 1 1 1 2

Equation (3) gives

DX,Y
6,2 = 2!

2
∑

r=0

(−1)2−r

(

2 + r

r

)(

7

2 − r

)

(2 + r)(3 + r)(4 + r)(4 + r)

= 2 (1 · 21 · 2 · 3 · 4 · 4 − 3 · 7 · 3 · 4 · 5 · 5 + 6 · 1 · 4 · 5 · 6 · 6)

= 2(2016 − 6300 + 4320)

= 72,

while (4) gives

DX,Y
6,2 = 2!

2
∑

r=0

(−1)2−r

(

2 + r

r

)(

7

2 − r

)

(1 + r)(0 + r)(−1 + r)(−1 + r)

= 2 (1 · 21 · 1 · 0 · (−1) · (−1) − 3 · 7 · 2 · 1 · 0 · 0 + 6 · 1 · 3 · 2 · 1 · 1)

= 2(0 − 0 + 36)

= 72.

The paper is organized as follows. In Section 2 we find general recurrence relations for
DX,Y

n,k , AX,Y
n,k , and V X,Y

n,k , and use them to explain the facts in Table 1. In Section 3 we
generalize several of the results that appear in Table 1, and use this to obtain combinatorial
proofs of several remarkable identities. Finally, in Section 4, we discuss some directions for
further research.

2 Recurrence relations for DX,Y
n,k , AX,Y

n,k , and V X,Y
n,k

In this section, we derive recurrence relations for DX,Y
n,k , AX,Y

n,k , and V X,Y
n,k . We notice that

the recurrences we get for AX,Y
n,k and V X,Y

n,k are almost identical, except for the case when the
element n+1 ∈ X ∩Y — the recurrences differ by “1+.” However, assuming X ∩Y = ∅, we
do not have this case, leading, in particular, to the explanation of all of the equidistributions
in Table 1, and to many more results for other choices of X and Y , X ∩ Y = ∅.

Another thing to observe is that in the case of the same recurrence relations, we naturally
get bijective proofs for the corresponding equidistributed statistics. Indeed, one can label
positions in a permutation, say from left to right, in which we insert the largest element,
n + 1, or do the other insertion procedure (see Subsection 2.3); then, it is enough to match
insertions in the positions having the same labels. However, such straightforward approach
is not necessarily the best one, as labeling positions differently, rather than just from left
to right, one may preserve extra statistics in bijections (see Section 4 for conjectures, which
should be possible to prove using our approach with different labeling).
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2.1 Recurrences for DX,Y
n,k

A recursion for DX,Y
n,k is derived in [2]:

DX,Y
n+1,k =

{

(k + 1)DX,Y
n,k+1 + (n + 1 − k)DX,Y

n,k , if n + 1 6∈ X;

(yn − (k − 1))DX,Y
n,k−1 + (n + 1 − (yn − k))DX,Y

n,k , if n + 1 ∈ X.

An argument for deriving the recursion is as follows. We are thinking of inserting the element
n + 1 in a permutation σ = σ1 · · ·σn, and we consider which of the obtained permutations
are counted by DX,Y

n,k . If n + 1 6∈ X then one never increases the number of (X,Y )-descents
by inserting n + 1. More precisely, the number of (X,Y )-descents is either unchanged, or it
is decreased by 1, when n + 1 is inserted between σi ∈ X and σi+1 ∈ Y where σi > σi+1.
The corresponding recursion case follows.

For the second case, notice that if n + 1 ∈ X, then the number of (X,Y )-descents is
unchanged if n + 1 is inserted at the end of the permutation, in front of σj 6∈ Y , or between
σi ∈ X and σi+1 ∈ Y where σi > σi+1, and it is increased by 1 in other cases (that is, when
n+1 is inserted in front of σj ∈ Y not involved in an (X,Y )-descent). The second recursion
case follows.

We use a similar approach to derive recurrence relations for AX,Y
n,k . Our derivations for

V X,Y
n,k use a different insertion procedure.

2.2 Recurrences for AX,Y
n,k

We consider 4 cases.
Case 1. n + 1 6∈ X ∪ Y . The number of (X,Y )-adjacent pairs is decreased by 1 when

n + 1 is inserted between σi ∈ X and σi+1 ∈ Y and it is unchanged otherwise. Thus, in this
case

AX,Y
n+1,k = (k + 1)AX,Y

n,k+1 + (n + 1 − k)AX,Y
n,k .

Case 2. n + 1 ∈ X ∩ Y . Adding n + 1 after a σi ∈ X or before a σj ∈ Y increases
adjX,Y by 1, while it keeps adjX,Y (σ) unchanged otherwise. However, we note that the place
between σi ∈ X and σi+1 ∈ Y is after a σi ∈ X and before a σi+1 ∈ Y . Thus, in this case

AX,Y
n+1,k = (xn + yn − (k − 1))AX,Y

n,k−1 + (n + 1 − (xn + yn − k))AX,Y
n,k .

Case 3. n+1 ∈ X−Y . Inserting n+1 to the left of a σi 6∈ Y does not change adjX,Y (σ),
which is also the case if n + 1 is inserted between σi ∈ X and σi+1 ∈ Y , or n + 1 is inserted
at the very end. On the other hand, if n + 1 is inserted between σi 6∈ X and σi+1 ∈ Y , the
number of (X,Y )-adjacent pairs is increased by 1. Thus, in this case

AX,Y
n+1,k = (yn − (k − 1))AX,Y

n,k−1 + (n + 1 − (yn − k))AX,Y
n,k .

Case 4. n + 1 ∈ Y − X. Inserting n + 1 to the right of a σi 6∈ X does not change
adjX,Y (σ), which is also the case if n + 1 is inserted between σi ∈ X and σi+1 ∈ Y , or n + 1
is inserted at the very beginning. On the other hand, if n + 1 is inserted between σi ∈ X
and σi+1 6∈ Y , the number of (X,Y )-adjacent pairs is increased by 1. Thus, in this case

AX,Y
n+1,k = (xn − (k − 1))AX,Y

n,k−1 + (n + 1 − (xn − k))AX,Y
n,k .
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2.3 Recurrences for V X,Y
n,k

Instead of inserting the largest element, n+1, in all possible places, we use another insertion
procedure I

(i)
n (σ) that generates Sn+1 from Sn. For σ = σ1 · · ·σn, let I

(n+1)
n+1 (σ) = σ(n + 1) =

σ1 · · ·σn(n + 1), and for 1 ≤ i ≤ n, let I
(i)
n+1(σ) = σ1 · · ·σi−1(n + 1)σi+1 · · ·σnσi (that is, in

the last case we replace σi in σ by n + 1 and move σi to the very end).
We now consider 4 cases.
Case 1. n + 1 6∈ X ∪ Y . In this case, one can only decrease the number of (X,Y )-place-

value pairs. This happens when n + 1 occupies position i ∈ X in I
(i)
n+1(σ) for some σ, such

that σi ∈ Y (σi is in position n + 1 in I
(i)
n+1(σ)). Thus, in this case

V X,Y
n+1,k = (k + 1)V X,Y

n,k+1 + (n + 1 − k)V X,Y
n,k .

Case 2. n+1 ∈ X∩Y . It is straightforward to see that the number of (X,Y )-place-value
pairs is unchanged if i 6∈ X and σi 6∈ Y , and it increases by 1 in each of the following three
cases: i ∈ X and σi ∈ Y , i ∈ X and σi 6∈ Y , and i 6∈ X and σi ∈ Y . Note that we add 1 for
each i ∈ X and 1 for each σi ∈ Y , so we count i ∈ X and σi ∈ Y twice. Moreover, having
n + 1 in position n + 1 gives one more (X,Y )-place-value pair. Thus, in this case

V X,Y
n+1,k = (1 + xn + yn − (k − 1))V X,Y

n,k−1 + (n + 1 − (1 + (xn + yn − k)))V X,Y
n,k .

Case 3. n + 1 ∈ X − Y . One can check that in this case, the number of (X,Y )-place-
value pairs increases by 1 if i 6∈ X and σi ∈ Y , and it is unchanged otherwise. Thus, in this
case

V X,Y
n+1,k = (yn − (k − 1))V X,Y

n,k−1 + (n + 1 − (yn − k))V X,Y
n,k .

Case 4. n + 1 ∈ Y − X. One can check that in this case, the number of (X,Y )-place-
value pairs increases by 1 if i ∈ X and σi 6∈ Y , and it is unchanged otherwise. Thus, in this
case

V X,Y
n+1,k = (xn − (k − 1))V X,Y

n,k−1 + (n + 1 − (xn − k))V X,Y
n,k .

There are a number of cases where the recursions for V A,B
n,k , AC,D

n,k , and DE,F
n,k coincide so

that we immediately have equality between the various pairs of statistics. For example,
comparing the recursions for AX,Y

n,k and V X,Y
n,k , we immediately have the following theorem.

Theorem 6. For all X,Y ⊆ N such that X ∩ Y = ∅, n ≥ 1, and 0 ≤ k ≤ n, V X,Y
n,k = AX,Y

n,k .

In fact, it is easy to see that our proofs of the recursions can be used to give an inductive
proof that there exists a bijection from Sn onto Sn for all n that will witness this equality.
That is, our proofs of the recursions immediately allow us to construct inductively bijections
Θn : Sn → Sn for all n such that for all σ ∈ Sn,

adjX,Y (σ) = valX,Y (Θn(σ)).

For example, suppose that we have constructed Θn and n + 1 6∈ X ∪ Y . First consider our
insertion procedure to prove the recursions for AX,Y

n,s . If σ ∈ Sn, then we consider the places

8



where we can insert n + 1 to σ. We first label the spaces between the elements σi ∈ X and
σi+1 ∈ Y from left to right with 1, . . . , adjX,Y (σ) and then label the rest of the spaces from
left to right with adjX,Y (σ)+1, . . . , n+1. For example, if X = E, Y = O, and σ = 1 4 3 2 5,
the spaces would be labeled by

−

3
1−

4
4−

1
3−

5
2−

2
5−

6
.

We then let σ(i) be the permutation that results by inserting n + 1 into the space labeled i.
For example, in our example, σ(4) = 1 6 4 3 2 5. Next we consider our insertion procedure
for proving the recursions for V X,Y

n,s . Now if τ ∈ Sn, then we label the positions of τ by first
labeling the positions i such that i ∈ X and τi ∈ Y from left to right with 1, . . . , valX,Y (τ) and
then label the remaining positions from left to right with valX,Y (τ) + 1, . . . , n. For example,
if X = O and Y = E and τ = 1 4 2 5 3, then we would label the positions

1

2

4

3

2

1

5

4

3

5

where we have indicated the labels in boldface. If label j is in position i, then we let
τ (j) = I

(i)
n (τ) and we let τ (n+1) = I

(n+1)
n (τ). For example, in our case, τ (2) = 6 4 2 5 3 1.

Then for any σ ∈ Sn and i ∈ {1, . . . , n + 1}, we can define

Θn+1(σ
(i)) = Θn(σ)(i).

We can extend Θn to Θn+1 in the other cases of the recursions in a similar manner.
Similarly, comparing the recursions for the V A,B

n,k , AC,D
n,k , and DE,F

n,k , we can also derive
bijective proofs of the following theorems.

Theorem 7. If X and Y are subsets of N, A = X ∪ Y and there exists a B ⊆ N such that

bn = |B ∩ [n]| satisfies

bn =











xn + yn = |X ∩ [n]| + |Y ∩ [n]|, if n + 1 ∈ X ∩ Y ;

yn = |Y ∩ [n]|, if n + 1 ∈ X − Y ;

xn = |X ∩ [n]|, if n + 1 ∈ Y − X,

then DA,B
n,k = AX,Y

n,k .

Theorem 8. If X and Y are subsets of N, A = X ∪ Y and there exists a B ⊆ N such that

bn = |B ∩ [n]| satisfies

bn =











1 + xn + yn = 1 + |X ∩ [n]| + |Y ∩ [n]|, if n + 1 ∈ X ∩ Y ;

yn = |Y ∩ [n]|, if n + 1 ∈ X − Y ;

xn = |X ∩ [n]|, if n + 1 ∈ Y − X,

then DA,B
n,k = V X,Y

n,k .

9



2.4 Explanation of Table 1 using our general results

1. The first group of statistics. DE,N
n,k = EN,E

n,k by Foata’s first transformation. Also,

DE,N
n,k = V E,E

n,k by Theorem 8. Indeed, in this case A = X = Y = E and B = N leading
to A = X ∪ Y , X − Y = Y − X = ∅, and bn = n = 1 + 2|E ∩ [n]| if n + 1 ∈ E. As for
the formulas, we can apply Theorem 2 with X = Y = E:

a2n,k = V X,Y
2n,k = k!(n − k)!n!

(

n

k

)(

n

k

)(

n

n − k

)

=

[

n!

(

n

k

)]2

;

a2n+1,k = V X,Y
2n+1,k = k!(n − k)!(n + 1)!

(

n

k

)(

n

k

)(

n + 1

n − k

)

= n!(n + 1)!

(

n

k

)(

n + 1

k + 1

)

.

2. The second group. DN,O
n,k = EO,N

n,k by Foata’s first transformation. Applying the

reverse operation to each permutation, one sees that AO,E
n,k = AE,O

n,k . Applying the inverse

operation to each permutation, one gets V O,E
n,k = V E,O

n,k . By Theorem 6, V O,E
n,k = AO,E

n,k

as O ∩ E = ∅. Finally, by Theorem 7, DN,O
n,k = AO,E

n,k . Indeed, in this case A = N,
B = X = O, and Y = E leading to A = X ∪ Y , and

bn = # of odd numbers in [n] =

{

E ∩ [n], if n + 1 6∈ O;
O ∩ [n], if n + 1 ∈ E.

As for the formulas, we can apply Theorem 2 with X = E and Y = O:

a2n,k = V O,E
2n,k = k!(n − k)!n!

(

n

k

)(

n

k

)(

n

n − k

)

=

[

n!

(

n

k

)]2

;

a2n+1,k = V O,E
2n+1,k = k!(n− k)!(n+1)!

(

n

k

)(

n + 1

k

)(

n

n − k

)

= n!(n+1)!

(

n

k

)(

n + 1

k

)

.

3. The third group. Again, DO,N
n,k = EN,O

n,k by Foata’s first transformation. Moreover, by

Theorem 7, DO,N
n,k = AO,O

n,k . Indeed, in this case A = X = Y = O and B = N leading to
A = X ∪ Y , X − Y = Y − X = ∅, and bn = n = 2|O ∩ [n]| if n + 1 ∈ O. As for the
formulas, we can apply Theorem 3 with X = O:

a2n,k = AO,O
2n,k = (n!)2

(

n − 1

k

)(

n + 1

k + 1

)

;

a2n+1,k = AO,O
2n+1,k = n!(n + 1)!

(

n

k

)(

n + 1

k

)

.

4. The fourth group. DN,E
n,k = EE,N

n,k by Foata’s first transformation. The formulas for

DN,E
n,k are proved in [4, Section 4].
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5. The fifth group. We use Theorem 2 with X = Y = O, to get

a2n,k = V O,O
2n,k = k!n!n!

(

n

k

)(

n

k

)(

n

n − k

)

=

[

n!

(

n

k

)]2

;

a2n+1,k = V O,O
2n+1,k = k!(n+1−k)!n!

(

n + 1

k

)(

n + 1

k

)(

n

k − 1

)

= n!(n+1)!

(

n

k − 1

)(

n + 1

k

)

.

6. The sixth group. We use Theorem 3 with X = E, to get

a2n,k = AE,E
2n,k = (n!)2

(

n − 1

k

)(

n + 1

k + 1

)

;

a2n+1,k = AE,E
2n+1,k = n!(n + 1)!

(

n − 1

k

)(

n + 2

n − k

)

.

3 Applications

In this section, we shall generalize several of the results that appear in Table 1. That is,
in Table 1, we consider the parity of the elements in a descent, adjacency, or place-value
pair. We shall show that we can get similar formulas when we consider the equivalence class
modulo k of the elements in a descent, adjacency, or place-value pair. See [3] for related
research on descents generalizing results of [4]. For any k ≥ 2 and 0 ≤ i ≤ k − 1, we let
i + kN = {i + kn : n ≥ 0}.

First, we shall consider V X,Y
n,k and AX,Y

n,k where X = i + kN and Y = j + kN and

0 ≤ i < j ≤ k − 1. It follows from Theorem 6 that V X,Y
n,k = AX,Y

n,k in this case. Sup-
pose that A = i + kN ∪ j + kN and B = i + kN. Note that when m + 1 = kn + i ∈ X − Y ,
then ym = n = bm = |B ∩ [m]| and when m + 1 = kn + j ∈ Y − X, then xm = n + 1 = bm.
Thus it follows from Theorems 7 and 8 that DA,B

n,k = V X,Y
n,s = AX,Y

n,s for all n and s. We then
have three cases.

Case 1. m = kn + t where 0 ≤ t < i. In this case, xm = |X ∩ [m]| = ym = |Y ∩ [m]| = n
and xc

m = |[m]−X| = yc
m = |[m]− Y | = (k − 1)n + t. Thus it follows from Theorem 2 that

V X,Y
m,s =

(

n

s

)2(
(k − 1)n + t

n − s

)

s!(n − s)!((k − 1)n + t)!. (5)

On the other hand, it follows from Theorem 4 that

DA,B
m,s = |Ac

m|!
s
∑

r=0

(−1)s−r

(

|Ac
m| + r

r

)(

m + 1

s − r

)

∏

x∈Am

(1 + r + αA,m,x + βB,m,x). (6)

In this case |Ac
m| = kn + t − 2n = (k − 2)n + t. For any x, it is easy to see that

αA,m,x + βB,m,x = kn + t − 1 − |A ∩ [x + 1, kn + t] − |B ∩ [x − 1]|

11



where [x + 1, kn + t] = {r : x + 1 ≤ r ≤ kn + t}. Thus for any 0 ≤ a ≤ n − 1,

αA,m,ak+i + βB,m,ak+i = kn + t − 1 − (2n − (2a + 1)) − a

= (k − 2)n + t + a (7)

and

αA,m,ak+j + βB,m,ak+j = kn + t − 1 − (2n − (2a + 2)) − (a + 1)

= (k − 2)n + t + a. (8)

Thus
∏

x∈Am

(1 + r + αA,m,x + βB,m,x) =

(

n−1
∏

a=0

(1 + r + αA,m,ak+i + βB,m,ak+i)

)(

n−1
∏

a=0

(1 + r + αA,m,ak+j + βB,m,ak+j)

)

=

(

n−1
∏

a=0

(1 + r + (k − 2)n + t + a)

)2

=

(1 + r + (k − 2)n + t)n(1 + r + (k − 2)n + t)n

where we define (a)n by (a)0 = 1 and (a)n = a(a+1) · · · (a+n−1) for n ≥ 1. Since we have a
combinatorial proof of the fact that V X,Y

m,s = DA,B
m,s in this case and the proof of Theorem 4 is

also completely combinatorial, it follows that we have a combinatorial proof of the following
identity:

(

n

s

)2(
(k − 1)n + t

n − s

)

s!(n − s)!((k − 1)n + t)! = (9)

((k − 2)n + t)!
s
∑

r=0

(−1)s−r

(

(k − 2)n + t + r

r

)(

kn + t + 1

s − r

)

×

(1 + r + (k − 2)n + t)n(1 + r + (k − 2)n + t)n.

Case 2. m = kn + t where i ≤ t < j. In this case, xm = |X ∩ [m]| = n + 1 and
ym = |Y ∩ [m]| = n and xc

m = |[m]−X| = (k−1)n+ t−1 and yc
m = |[m]−Y | = (k−1)n+ t.

Thus it follows from Theorem 2 that

V X,Y
m,s =

(

n + 1

s

)(

n

s

)(

(k − 1)n + t

n + 1 − s

)

s!(n + 1 − s)!((k − 1)n + t − 1)!. (10)

On the other hand, we can obtain a formula for V X,Y
m,s = DA,B

m,s from equation (6). In this
case |Ac

m| = kn + t − (2n + 1) = (k − 2)n + t − 1. For any 0 ≤ a ≤ n,

αA,m,ak+i + βB,m,ak+i = kn + t − 1 − (2n + 1 − (2a + 1)) − a

= (k − 2)n + t − 1 + a (11)
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and, for any 0 ≤ a ≤ n − 1

αA,m,ak+j + βB,m,ak+j = kn + t − 1 − (2n + 1 − (2a + 2)) − (a + 1)

= (k − 2)n + t − 1 + a. (12)

Thus
∏

x∈Am

(1 + r + αA,m,x + βB,m,x) =

(

n
∏

a=0

(1 + r + αA,m,ak+i + βB,m,ak+i)

)(

n−1
∏

a=0

(1 + r + αA,m,ak+j + βB,m,ak+j)

)

=

(1 + r + (k − 2)n + t − 1)n+1(1 + r + (k − 2)n + t − 1)n =

(r + (k − 2)n + t)n+1(r + (k − 2)n + t)n.

As in Case 1, it follows that we have a combinatorial proof of the following identity:
(

n + 1

s

)(

n

s

)(

(k − 1)n + t

n + 1 − s

)

s!(n − s)!((k − 1)n + t − 1)! = (13)

((k − 2)n + t − 1)!
s
∑

r=0

(−1)s−r

(

(k − 2)n + t − 1 + r

r

)(

kn + t + 1

s − r

)

×

(r + (k − 2)n + t)n+1(r + (k − 2)n + t)n.

Case 3. m = kn+t where j ≤ t ≤ k−1. In this case, xm = |X∩[m]| = ym = |Y ∩[m]| = n+1
and xc

m = |[m] − X| = yc
m = |[m] − Y | = (k − 1)n + t − 1. Thus it follows from Theorem 2

that

V X,Y
m,s =

(

n + 1

s

)2(
(k − 1)n + t − 1

n + 1 − s

)

s!(n + 1 − s)!((k − 1)n + t − 1)!. (14)

On the other hand, we can obtain a formula for V X,Y
m,s = DA,B

m,s from equation (6). In this
case |Ac

m| = kn + t − (2n + 2) = (k − 2)n + t − 2. For any 0 ≤ a ≤ n,

αA,m,ak+i + βB,m,ak+i = kn + t − 1 − (2n + 2 − (2a + 1)) − a

= (k − 2)n + t − 2 + a (15)

and, for any 0 ≤ a ≤ n

αA,m,ak+j + βB,m,ak+j = kn + t − 1 − (2n + 2 − (2a + 2)) − (a + 1)

= (k − 2)n + t − 2 + a. (16)

Thus
∏

x∈Am

(1 + r + αA,m,x + βB,m,x) =

(

n
∏

a=0

(1 + r + αA,m,ak+i + βB,m,ak+i)

)(

n
∏

a=0

(1 + r + αA,m,ak+j + βB,m,ak+j)

)

=

(1 + r + (k − 2)n + t − 2)n+1(1 + r + (k − 2)n + t − 2)n+1 =

(r + (k − 2)n + t − 1)n+1(r + (k − 2)n + t − 1)n+1.
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It follows that we have a combinatorial proof of the following identity:

(

n + 1

s

)2(
(k − 1)n + t − 1

n + 1 − s

)

s!(n + 1 − s)!((k − 1)n + t − 1)! = (17)

((k − 2)n + t − 1)!
s
∑

r=0

(−1)s−r

(

(k − 2)n + t − 1 + r

r

)(

kn + t + 1

s − r

)

×

(r + (k − 2)n + t − 1)n+1(r + (k − 2)n + t − 1)n+1.

Next we shall consider V X,Y
n,k and AX,Y

n,k where X = Y = i + kN for 0 ≤ i ≤ k − 1 and

k ≥ 2. In this case, it is no longer the case that AX,X
m,s = V X,X

m,s so we will handle the cases of
AX,X

m,s and V X,X
m,s separately.

First we shall consider V X,Y
n,s . Note that if A = i+kN and B = i+kN∪i+1+kN, then for

m+1 = kn+ i ∈ X ∩Y , then xn = |X ∩ [m]| = n = ym = |Y ∩ [m]| and bm = |B∩ [m]| = 2n.
Thus it follows from Theorem 8 that V X,X

n,s = DA,B
n,s for all n and s. We then have two cases.

Case I. m = kn + t where 0 ≤ t < i. In this case, xm = |X ∩ [m]| = n and xc
n =

|[m] − X| = (k − 1)n + t. Then it follows from Theorem 2 that

V X,X
m,s =

(

n

s

)2(
(k − 1)n + t

n − s

)

s!(n − s)!((k − 1)n + t)!. (18)

On the other hand, we can obtain a formula for V X,X
m,s = DA,B

m,s from equation (6). In this
case |Ac

m| = kn + t − n = (k − 1)n + t. For any 0 ≤ a ≤ n,

αA,m,ak+i + βB,m,ak+i = kn + t − 1 − (n − (a + 1)) − 2a

= (k − 1)n + t − a. (19)

Thus
∏

x∈Am

(1 + r + αA,m,x + βB,m,x) =

n−1
∏

a=0

(1 + r + αA,m,ak+i + βB,m,ak+i) =

n−1
∏

a=0

(1 + r + (k − 1)n + t − a) =

(1 + r + (k − 1)n + t) ↓n

where (a) ↓n is defined by (a) ↓0= 1 and (a) ↓n= a(a − 1) · · · (a − n + 1) for n ≥ 1. Thus it
follows that

(

n

s

)2(
(k − 1)n + t

n − s

)

s!(n − s)!((k − 1)n + t)! = (20)

((k − 1)n + t)!
s
∑

r=0

(−1)s−r

(

(k − 1)n + t + r

r

)(

kn + t + 1

s − r

)

(1 + r + (k − 1)n + t) ↓n .
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Case II. m = kn + t where i ≤ t ≤ k − 1. In this case, xm = |X ∩ [m]| = n + 1 and
xc

n = |[m] − X| = (k − 1)n + t − 1. Then it follows from Theorem 2 that

V X,X
m,s =

(

n + 1

s

)2(
(k − 1)n + t − 1

n + 1 − s

)

s!(n + 1 − s)!((k − 1)n + t − 1)!. (21)

On the other hand, we can obtain a formula for V X,X
m,s = DA,B

m,s from equation (6). In this
case |Ac

m| = kn + t − (n + 1) = (k − 1)n + t − 1. For any 0 ≤ a ≤ n,

αA,m,ak+i + βB,m,ak+i = kn + t − 1 − (n + 1 − (a + 1)) − (2a + 1)

= (k − 1)n + t − 1 − a. (22)

Thus
∏

x∈Am

(1 + r + αA,m,x + βB,m,x) =

n
∏

a=0

(1 + r + αA,m,ak+i + βB,m,ak+i) =

n−1
∏

a=0

(1 + r + (k − 1)n + t − 1 − a) =

(r + (k − 1)n + t) ↓n+1 .

Thus it follows that
(

n + 1

s

)2(
(k − 1)n + t − 1

n + 1 − s

)

s!(n + 1 − s)!((k − 1)n + t − 1)! = (23)

((k − 1)n + t − 1)!
s
∑

r=0

(−1)s−r

(

(k − 1)n + t − 1 + r

r

)(

kn + t + 1

s − r

)

(r + (k − 1)n + t) ↓n+1 .

Next we consider the case of computing AX,Y
n,s where X = Y = i + kN where k ≥ 2

and 0 ≤ i ≤ k − 1. Let A = i + kN and B = i − 1 + kN. Then it is easy to see that if
m + 1 = kn + i ∈ X ∩ Y = X, then xm = ym = n and bm = 2n + 1. Thus it follows from
Theorem 7 that AX,Y

n,k = DA,B
n,s for all n and s in this case. We then have two cases.

Case A. m = kn + t where 0 ≤ t < i− 1. In this case, xm = n and xc
m = (k− 1)n + t. Thus

if follows from Theorem 3 that

AX,X
m,s = n!((k − 1)n + t)!

(

n − 1

s

)(

(k − 1)n + t + 1

n − s

)

. (24)

On the other hand, we can obtain a formula for AX,X
m,s = DA,B

m,s from equation (6). In this
case |Ac

m| = (k − 1)n + t. For any 0 ≤ a ≤ n,

αA,m,ak+i + βB,m,ak+i = kn + t − 1 − (n − (a + 1)) − (2a + 1)

= (k − 1)n + t − 1 − a. (25)
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Thus
∏

x∈Am

(1 + r + αA,m,x + βB,m,x) =

n−1
∏

a=0

(1 + r + αA,m,ak+i + βB,m,ak+i) =

n−1
∏

a=0

(1 + r + (k − 1)n + t − 1 − a) =

(r + (k − 1)n + t) ↓n .

Thus it follows that

n!((k − 1)n + t)!

(

n − 1

s

)(

(k − 1)n + t + 1

n − s

)

= (26)

((k − 1)n + t)!
s
∑

r=0

(−1)s−r

(

(k − 1)n + t + r

r

)(

kn + t + 1

s − r

)

(r + (k − 1)n + t) ↓n .

Case B. m = kn+ t where i ≤ t < k−1. In this case, xm = n+1 and xc
m = (k−1)n+ t−1.

Thus if follows from Theorem 3 that

AX,X
m,s = (n + 1)!((k − 1)n + t − 1)!

(

n

s

)(

(k − 1)n + t

n + 1 − s

)

. (27)

On the other hand, we can obtain a formula for AX,X
m,s = DA,B

m,s from equation (6). In this
case |Ac

m| = (k − 1)n + t − 1. For any 0 ≤ a ≤ n,

αA,m,ak+i + βB,m,ak+i = kn + t − 1 − (n + 1 − (a + 1)) − (2a + 1)

= (k − 1)n + t − 2 − a. (28)

Thus
∏

x∈Am

(1 + r + αA,m,x + βB,m,x) =

n+1
∏

a=0

(1 + r + αA,m,ak+i + βB,m,ak+i) =

n+1
∏

a=0

(1 + r + (k − 1)n + t − 2 − a) =

(r + (k − 1)n + t − 1) ↓n+1 .

Thus it follows that

n!((k − 1)n + t − 1)!

(

n + 1

s

)(

(k − 1)n + t

n + 1 − s

)

= (29)

((k − 1)n + t − 1)!

s
∑

r=0

(−1)s−r

(

(k − 1)n + t − 1 + r

r

)(

kn + t + 1

s − r

)

(r + (k − 1)n + t − 1) ↓n+1 .
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4 Direction for future research

In this section, we shall describe some problems for further research that naturally arise from
the work in this paper.

There are other statistics which are closely related to the statistics that we consider in
this paper. For example, suppose that X,Y ⊆ N and define

γX,Y (σ) = |{i ∈ X : σi ∈ X} ∪ {i ∈ Y : σi ∈ Y }|.

Let ΓX,Y
n,s = |{σ ∈ Sn : γX,Y (σ) = s}|. Then we have the following theorem.

Theorem 9. For any X and Y such that X ∪ Y = N and X ∩ Y = ∅, we have ΓX,Y
n,s = 0

unless s = 2k + yn − xn for some k, in which case

ΓX,Y
n,2k+yn−xn

= (xn)!(yn)!

(

xn

k

)(

yn

xn − k

)

.

Proof. Suppose we pick k positions in Xn to contain elements in Xn in
(

xn

k

)

ways and we
pick xn − k positions Yn to put the other elements of Xn in

(

yn

xn−k

)

ways. The remaining
positions in the permutation must be filled with elements of Yn. Next arrange elements in
Xn in (xn)! ways and we arrange elements in Yn in (yn)!. Clearly the number of permutations
σ that can be constructed in this way is (xn)!(yn)!

(

xn

k

)(

yn

xn−k

)

. Note that our construction
forces yn − (xn − k) elements of Yn to be in positions in Yn so that for any σ constructed in
this way γX,Y (σ) = 2k + yn − xn.

Note that in the special case where X = E and Y = O, we have that ΓE,O
2s,2n = (n!)2

(

n

s

)2

and ΓE,O
2s+1,2n+1 = n!(n + 1)!

(

n

s

)(

n+1
s+1

)

which agrees with other formulas in our table in these
special cases. However, for general X and Y , we get quite different recursions. For example,
suppose that n+1 ∈ X ∩Y , σ ∈ Sn, i ∈ X −Y , and σi ∈ Y −X. Then it is easy to see that

γX,Y (I
(i)
n+1(σ)) = γX,Y (σ) + 2

so that the value of γX,Y can jump by 2 with a single insertion. This type of phenomenon
does not happen with any of the other statistics studied in this paper. Thus it would be
interesting to further study ΓX,Y

n,s for arbitrary X,Y ⊆ N to see if one can prove explicit
formulas for ΓX,Y

n,s which are similar to the formulas for DX,Y
n,s given in Theorems 4 and 5.

Even though we found solutions to all the bijective questions related to the objects in our
table, in some cases, one should be able to modify our bijections (find new ones) to preserve
more than one statistic.

Recall that the statistic S10 is the number of odd descent-tops, and S12 is the number of
(odd,odd) pairs. In this section, we will use the following statistics as well.

• S17 — the length of the maximal subsequence of the form 12 · · · i in a permutation.
E.g., S17(34152) = 2 while the increasing permutation of length n gives the maximum
value of S17 in Sn. A modification of this statistic was studied by Zeilberger [5] in
connection with 2-stack sortable permutations.
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• T1 = S10 but not S12.

• T2 = S12 but not S10.

• T3 = S10 and S12.

Our first conjecture is the following joint equidistribution:

Conjecture 10. The following should be true: (S10, S12, S17) ∼ (S12, S10, S17).

Notice, that Conjecture 10 suggests existence of an involution turning S10 to S12 and vice
versa. This conjecture can be refined as follows.

Conjecture 11. (T1, T2, T3, S17) ∼ (T2, T1, T3, S17). That is, if the involution mentioned
above exists, it is likely to leave pairs that are both S10 and S12 untouched.

Observe that to preserve statistic S17 in Conjectures 10 and 11, we need to require the
increasing n-permutation to go to itself, and this is the only thing we need to worry about in
our recursive construction of the bijection regarding S17 as otherwise it is not changed and
thus preserved by induction no matter where we stick the largest element. So, it seems like
we should be able to have the increasing permutation as a fixed point.

Here is how a proof of Conjecture 11 could be arranged for even n assuming the rest is
constructed by induction. For odd n’s things seem to be much more complicated.

For n = 1, 1 is mapped to 1. Suppose we have constructed a bijection from Sn−1 to
Sn−1 (n is even) such that it sends k (resp. ℓ, s) occurrences of T1 (resp. T2, T3) to k (resp.
ℓ, s) occurrences of T2 (resp. T1, T3). Inserting n in T1 (resp. T2, T3) pair decreases the
number of T1 (resp. T2, T3) by 1 keeping all other statistics unchanged. Clearly, we can
manage the corresponding insertion on the other side that would decrease by 1 the number
of occurrences of the corresponding statistic. Inserting n at any other position does not

change a thing in either side and can be matched to each other. In particular, inserting n
at the end corresponds to inserting n at the end and this guarantees that the statistic S17

is preserved (either it is unchanged in both cases, or assuming we deal with the increasing
permutation 12 · · · (n − 1) going to itself, S17 is increased by 1 in both cases).
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