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Abstract

In this paper, by using the Lipschitz summation formula, we obtain Fourier expan-

sions and integral representations for the Genocchi polynomials. Some other new and

interesting results are also shown.

1 Introduction

It is well-known that Genocchi polynomials Gn(x) are defined [8] by

2zexz

ez + 1
=

∞∑

n=0

Gn(x)
zn

n!
, |z| < π. (1)

In particular, the quantities Gn , Gn(0) for n ≥ 0 are called Genocchi numbers, with
G2n+1 = 0 for n ≥ 1 and, for example,

G0 = 0, G1 = 1, G2 = −1, G4 = 1, G6 = −3, G8 = 17, G10 = −155, G12 = 2073.
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This is Sloane’s sequence A001469.
The n-th Genocchi function Ĝn(x) may be introduced in the following way: for 0 ≤ x < 1

and n ≥ 0,
Ĝn(x) , Gn(x) and Ĝn(x + 1) = −Ĝn(x); (2)

for x ∈ R and r ∈ Z,

Ĝn(x) = (−1)⌊x⌋Gn({x}) and Ĝn(x + r) = (−1)rĜn(x), (3)

where the symbols {x} and ⌊x⌋ denote the fractional part of x and the greatest integer not

exceeding x respectively. Sometimes we also call Ĝn(x) the periodic Genocchi polynomials.
For convenience, in what follows, we would still employ Gn(x) to stand for the periodic
Genocchi polynomials, when no confusion appears in the context.

It is also well-known that Euler polynomials En(x) for n ≥ 0 may be defined [1, 2] by

2exz

ez + 1
=

∞∑

n=0

En(x)
zn

n!
, |z| < π. (4)

By (1) and (4), we can obtain the following relation between Euler polynomials En(x) and
Genocchi polynomials Gn(x):

Gn(x) = nEn−1(x), (5)

or

En(x) =
1

n + 1
Gn+1(x). (6)

In this paper, by using the Lipschitz summation formula, we establish Fourier expansions
and integral representations for Genocchi polynomials and present an explicit formula for
Genocchi polynomials at rational arguments.

2 Fourier expansions for Genocchi polynomials

Recall [5] that the Lipschitz summation formula states that

∑

n+µ>0

e2πi(n+µ)τ

(n + µ)1−α
=

Γ(α)

(−2πi)α

∑

k∈Z

e−2πikµ

(τ + k)α
, (7)

where α ∈ C, either ℜ(α) > 1 for µ ∈ Z or ℜ(α) > 0 for µ ∈ R \ Z, τ belongs to the upper
half of the complex plane, and Γ is Euler gamma function.

In virtue of the Lipschitz summation formula (7), we obtain Fourier expansions for Genoc-
chi polynomials as follows.

Theorem 1. For either n = 0 and 0 < x < 1 or n > 0 and 0 ≤ x ≤ 1,

Gn(x) =
2 · n!

(πi)n

∑

k∈Z

e(2k−1)πix

(2k − 1)n
(8)

=
4 · n!

πn

∞∑

k=0

cos[(2k + 1)πx − nπ/2]

(2k + 1)n
. (9)
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Proof. For 0 ≤ x ≤ 1, utilization of (1) and the generalized binomial theorem yields

∞∑

k=0

Gk(x)
(2πiτ)k−1

k!
=

2e2πiτx

e2πiτ + 1
= 2

∞∑

k=0

(−1)ke2πi(k+x)τ , |τ | <
1

2
. (10)

Differentiating n − 1 times with respect to the variable τ on both sides of (10) gives

∞∑

k=n

Gk(x)
(2πi)k−1τ k−n

k(k − n)!
= 2(2πi)n−1

∞∑

k=0

(−1)k(k + x)n−1e2πi(k+x)τ . (11)

On the other hand, replacing τ by τ + 1
2

and letting α = n and µ = x in Lipschitz summation
formula (7) lead to

(n − 1)!

(−πi)n

∑

k∈Z

e−(2k+1)πix

(2k + 2τ + 1)n
=

∞∑

k=0

(−1)k(k + x)n−1e2πi(k+x)τ . (12)

Combining (11) and (12) reveals

∞∑

k=n

Gk(x)
(2πi)k−1τ k−n

k(k − n)!
=

(−1)n2n(n − 1)!

πi

∑

k∈Z

e−(2k+1)πix

(2k + 2τ + 1)n
. (13)

Taking τ → 0 in (13) gives the equation (8).

Since i−n = e−
nπi

2 , the equation (9) follows as a direct consequence of (8).

The following corollary is a straightforward consequence of Theorem 1.

Corollary 2. For either n = 0 and 0 < x < 1 or n > 0 and 0 ≤ x ≤ 1,

G2n(x) = (−1)n 4 · (2n)!

π2n

∞∑

k=0

cos[(2k + 1)πx]

(2k + 1)2n
(14)

and

G2n−1(x) = (−1)n−1 4 · (2n − 1)!

π2n−1

∞∑

k=0

sin[(2k + 1)πx]

(2k + 1)2n−1
. (15)

Remark 3. From Fourier expansions of Euler polynomials (see [1, 3, 6]) and the equa-
tion (5), We can directly derive the formula (9) and Corollary 2. Conversely, we can also
recover some known Fourier expansions of Euler polynomials by applying the relation (6),
Theorem 1 and Corollary 2.

3 Integral representations for Genocchi polynomials

Now we are in a position to state and prove the uniform integral representations for Genocchi
polynomials as follows.
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Theorem 4. For n ∈ N and 0 ≤ ℜ(x) ≤ 1,

Gn(x) = 2n

∫ ∞

0

eπt cos(πx − nπ/2) − e−πt cos(πx + nπ/2)

cosh(2πt) − cos(2πx)
tn−1 dt. (16)

Proof. Utilizing

Gn(x) =
4 · n!

πn

∞∑

k=0

cos[(2k + 1)πx − nπ/2]

(2k + 1)n

and
∫ ∞

0

tne−at dt =
n!

an+1
(17)

for n ≥ 0 and ℜ(a) > 0 reveals that

Gn(x) =
4n

πn

∞∑

k=0

cos

[
(2k + 1)πx −

nπ

2

] ∫ ∞

0

tn−1e−(2k+1)t dt

=
4n

πn

∫ ∞

0

tn−1

∞∑

k=0

e−(2k+1)t cos

[
(2k + 1)πx −

nπ

2

]
dt

=
4n

πn

∫ ∞

0

{
cos

(
nπ

2

) ∞∑

k=0

e−(2k+1)t cos[(2k + 1)πx]

+ sin

(
nπ

2

) ∞∑

k=0

e−(2k+1)t sin[(2k + 1)πx]

}
tn−1 dt.

By making use of

∞∑

k=0

e−(2k+1)t sin[(2k + 1)x] =
sin x cosh t

cosh(2t) − cos(2x)

and
∞∑

k=0

e−(2k+1)t cos[(2k + 1)x] =
cos x sinh t

cosh(2t) − cos(2x)
(18)

for t > 0, which may be deduced from

∞∑

k=0

e(xi−t)(2k+1) =
cos x sinh t + i sin x cosh t

cosh(2t) − cos(2x)

for t > 0, and applying the transformation t = πs, the desired formula (16) follows.

It is easy to see that Theorem 4 implies the following integral representations for Genocchi
polynomials.
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Corollary 5. For n ∈ N and 0 ≤ ℜ(x) ≤ 1,

G2n−1(x) = 4(2n − 1)(−1)n−1

∫ ∞

0

sin(πx) cosh(πt)

cosh(2πt) − cos(2πx)
t2n−2 dt (19)

and

G2n(x) = 8n(−1)n

∫ ∞

0

cos(πx) sinh(πt)

cosh(2πt) − cos(2πx)
t2n−1 dt. (20)

Remark 6. The uniform integral representations for Genocchi polynomials are not found
in the classical literatures such as [1, 4, 6]. So the formula (16) is presumably new.

Remark 7. Our method used in this section can also be applied to establish uniform
Fourier expansions and uniform integral representations for both Bernoulli and Euler poly-
nomials.

Remark 8. Please note that Theorem 1 can be derived from Theorem 4.

4 Corollaries of uniform integral representations

Finally, we present some corollaries of Theorem 4.

Corollary 9. For n ∈ N and 0 ≤ ℜ(x) ≤ 1,

Gn(x) = (−1)n−1 4n

πn

∫ 1

0

cos(πx − nπ/2) − t2 cos(πx + nπ/2)

t4 − 2t2 cos(2πx) + 1
(log t)n−1 dt. (21)

Proof. Substituting

cosh(2πt) =
e2πt + e−2πt

2

into (16) gives

Gn(x) = 4n

∫ ∞

0

eπt cos(πx − nπ/2) − e−πt cos(πx + nπ/2)

e2πt + e−2πt − 2 cos(2πx)
tn−1 dt. (22)

Further carrying out the transformation u = e−πt in (22) yields the desired formula (21).

It is easy to see that the following formulas can be deduced from Corollary 9.

Corollary 10. For n ∈ N and 0 ≤ ℜ(x) ≤ 1,

G2n−1(x) = (−1)n−1 4(2n − 1)

π2n−1

∫ 1

0

(1 + t2) sin(πx)

t4 − 2t2 cos(2πx) + 1
(log t)2n−2 dt (23)

and

G2n(x) = (−1)n−1 8n

π2n

∫ 1

0

(1 − t2) cos(πx)

t4 − 2t2 cos(2πx) + 1
(log t)2n−1 dt. (24)
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In [4, p. 35, (21)], it was listed that

ζ(2n) =
(−1)n−1(2π)2n

2(2n)!
B2n, (25)

where ζ(s) is the Riemann zeta function defined by

ζ(s) =
∞∑

n=1

1

ns
, s > 0 (26)

and Bn for n ≥ 0 are Bernoulli numbers defined by

z

ez − 1
=

∞∑

n=0

Bn

zn

n!
, |z| < 2π. (27)

By (25) and
G2n = 2(1 − 22n)B2n, (28)

it follows that

G2n =
(−1)n−122(1 − 22n)(2n)!

(2π)2n
ζ(2n). (29)

Combining the formula ∫ x

a

Gn(t) dt =
Gn+1(x) − Gn+1(a)

n + 1

in [8] and the integral formulas

∫
2t(1 − t2) cos x

t4 − 2t2 cos(2x) + 1
dx = arctan

(
2t sin x

1 − t2

)
+ C,

∫
4t(1 + t2) sin x

t4 − 2t2 cos(2x) + 1
dx = log

(
t2 − 2t cos x + 1

t2 + 2t cos x + 1

)
+ C,

∫ 1

0

log(1 + t)(log t)n−1

t
dt = (−1)n(n − 1)!

(
1

2n
− 1

)
ζ(n + 1),

∫ 1

0

log(1 − t)(log t)n−1

t
dt = (−1)n(n − 1)!ζ(n + 1)

in [7] with (29) and Corollary 10 gives the following corollary.

Corollary 11. For n ∈ N and 0 ≤ ℜ(x) ≤ 1,

G2n+1(x) = (−1)n−1 4n(2n + 1)

π2n+1

∫ 1

0

arctan

[
2t sin(πx)

1 − t2

]
(log t)2n−1

t
dt (30)

and

G2n(x) = (−1)n−1 2n(2n − 1)

π2n

∫ 1

0

log

[
t2 − 2t cos(πx) + 1

t2 + 2t cos(πx) + 1

]
(log t)2n−2

t
dt. (31)
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By (19), (24) and (31), the following integral representations for Genocchi numbers can
be obtained.

Corollary 12. For n ≥ 0,

G2n = (−1)n4n

∫ ∞

0

t2n−1csch(πt) dt

= (−1)n+1 8n

π2n

∫ 1

0

(log t)2n−1

1 − t2
dt

= (−1)n−1 4n(2n − 1)

π2n

∫ 1

0

log

(
1 − t

1 + t

)
(log t)2n−2

t
dt.

Finally, we give an explicit formula for Genocchi polynomials at rational arguments.

Theorem 13. For n, q ∈ N and p ∈ Z,

Gn

(
p

q

)
=

4 · n!

(2qπ)n

q∑

j=1

ζ

(
n,

2j − 1

2q

)
cos

[
(2j − 1)pπ

q
−

nπ

2

]
, (32)

where

ζ(s, a) =
∞∑

n=0

1

(n + a)s
(33)

for R(s) > 1 and a /∈ Z
−
0 is Hurwitz zeta function (see [4, 6]).

Proof. The formula (9) can be rewritten as

Gn(x) =
4 · n!

πn

∞∑

k=1

cos[nπ/2 − (2k − 1)πx]

(2k − 1)n
.

By (33) and the elementary series identity
∞∑

k=1

f(k) =

q∑

j=1

∞∑

k=0

f(qk + j), q ∈ N, (34)

we obtain the desired formula (32) by setting x = p

q
. This completes the proof.

From Theorem 13, we can easily deduce the following corollary.

Corollary 14. For n, q ∈ N and p ∈ Z,

G2n

(
p

q

)
= (−1)n 4 · (2n)!

(2qπ)2n

q∑

j=1

ζ

(
2n,

2j − 1

2q

)
cos

[
(2j − 1)pπ

q

]
(35)

and

G2n−1

(
p

q

)
= (−1)n−1 4 · (2n − 1)!

(2qπ)2n−1

q∑

j=1

ζ

(
2n − 1,

2j − 1

2q

)
sin

[
(2j − 1)pπ

q

]
. (36)

Remark 15. We can directly obtain the formulas (35) and (36) by using the relation (5)
and the formulas (12a) and (12b) in [3]. Similarly, we can also derive the corresponding
formula for Euler polynomials at rational arguments by applying the relation (6), Theorem 13
and Corollary 14.
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