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Abstract

In 1987 Knopfmacher and Knopfmacher published new infinite product expansions

for real numbers 0 < A < 1 and A > 1. They called these Engel product expansions.

At that time they had difficulty finding rational 0 < A < 1 for which the Engel product

expansion is predictable. Later, in 1993, Arnold Knopfmacher presented many such

families of rationals. In this paper we add to Arnold Knopfmacher’s list of such families.

1 Introduction

Knopfmacher and Knopfmacher [1] proved that every positive real number 0 < A < 1 has
an expansion of the form

A =
∞
∏

n=1

(

1 −
1

a1a2 · · · an

)

, (1)

where an is a positive integer for n ≥ 1, a1 ≥ 2, an+1 ≥ an−1 for n ≥ 1, and an ≥ 2 infinitely
often.

These representations were called Engel product expansions. To abbreviate (1), Knopf-
macher and Knopfmacher wrote

A = ((a1, a2, a3, . . .)).

They remarked that there do not appear to be simple cases where the digits {ai} could
be found with explicit formulae. Later, Arnold Knopfmacher [2] gave several families of

1

mailto:ray.melham@uts.edu.au


rationals where, from some point onwards, the digits {ai} in the expansion (1) satisfy the
recurrence

an+1 = (an + 1) an−1 − 1. (2)

To illustrate, one of Knopfmacher’s main results is the following:

Theorem 1. Let a and m be positive integers with a ≥ 3 if m = 1, and a ≥ 2 otherwise.
Then

(a − 1) m − 1

am − 1
= ((a1, a2, a3, . . .)) ,

where a1 = a, a2 = (a − 1)m, a3 = am − 1, a4 = a1a2 − 1, and (2) applies for n ≥ 4.

Knopfmacher and Knopfmacher [1] showed that the expansion (1) is unique if it has
non-decreasing digits. Therefore, in Theorem 1 a unique expansion is guaranteed for every
a provided m ≥ 2.

Knopfmacher [2, page 426] stated that it would be interesting to characterize in some way
which rational numbers have expansions where the digits {ai} ultimately satisfy the nonlinear
recurrence (2). Based on our investigations it seems difficult to resolve this completely. We
have, however, managed to add to Knopfmacher’s collection of such rationals. We present
our results as families of rationals that require two or more parameters to describe them.
Indeed, we have found many one-parameter families, but, to conserve space, we do not
present them here.

In Section 2 we state and prove one of our main results. In Sections 3 and 4 we state
further results.

2 A Result With Sample Proof

Before proceeding we give the greedy-type algorithm from [1] which was used to derive the
expansion (1):

Given any 0 < A < 1, let A1 = A, a1 = 1 +
⌊

1

1−A1

⌋

, where ⌊x⌋ denotes the floor of the real

number x. Then recursively define, for n ≥ 2,

an = 1 +

⌊

1

(1 − An) a1a2 · · · an−1

⌋

,

where

An+1 =
a1a2 · · · an

a1a2 · · · an − 1
An.

The theorem that follows is similar in spirit to Theorem 1 above. The proof we present
proceeds along the same lines as Knopfmacher’s beautiful proof of Theorem 1.
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Theorem 2. Let a and m be positive integers with a ≥ 2 if m = 1, and a ≥ 1 otherwise.
Then

(2a − 1) m − 1

4am − 2
= ((a1, a2, a3, . . .)) ,

where a1 = 2, a2 = a, a3 = (2a − 1)m, a4 = 2am − 1 , a5 = a1a2a3 − 1, and (2) applies for
n ≥ 5.

Proof. With the use of the algorithm above we write down A1, a1, A2, a2, A3, a3, A4, and
a4. We present each Ai in a manner that makes it easy to find ai.

A1 =
(2a − 1)m − 1

4am − 2
= 1 −

(2a + 1)m − 1

2(2am − 1)
,

a1 = 1 +

⌊

1

1 − A1

⌋

= 1 +

⌊

2(2am − 1)

(2a + 1)m − 1

⌋

= 1 +

⌊

2 −
2m

(2a + 1)m − 1

⌋

= 2,

A2 =
a1

a1 − 1
A1 = 2

(

1 −
(2a + 1)m − 1

2(2am − 1)

)

= 1 −
m

2am − 1
,

a2 = 1 +

⌊

1

(1 − A2) a1

⌋

= 1 +

⌊

2am − 1

2m

⌋

= 1 +

⌊

a −
1

2m

⌋

= a,

A3 =
a1a2

a1a2 − 1
A2 =

2a

2a − 1

(

1 −
m

2am − 1

)

= 1 −
1

(2a − 1)(2am − 1)
,

a3 = 1 +

⌊

1

(1 − A3) a1a2

⌋

= 1 +

⌊

(2a − 1)(2am − 1)

2a

⌋

= 1 +

⌊

(2a − 1)m −
2a − 1

2a

⌋

= (2a − 1)m,

A4 =
a1a2a3

a1a2a3 − 1
A3 =

2a(2a − 1)m

2a(2a − 1)m − 1

(

1 −
1

(2a − 1)(2am − 1)

)

= 1 −
1

(2am − 1)(2a(2a − 1)m − 1)
,

a4 = 1 +

⌊

1

(1 − A4) a1a2a3

⌋

= 1 +

⌊

(2am − 1)(2a(2a − 1)m − 1)

2a(2a − 1)m

⌋

= 1 +

⌊

2am − 1 −
2am − 1

2a(2a − 1)m

⌋

= 2am − 1.

We define a sequence {bn} as follows:
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(b1, b2, b3, b4) = (2, a, (2a − 1)m, 2am − 1) , bn+2 = b1 · · · bn − 1, n ≥ 3.

We prove the following assertions for n ≥ 4 with the use of induction.

(i) An = 1 −
1

bnbn+1

(ii) an = bn (iii) bn+2 = (bn+1 + 1) bn − 1.

Firstly, for n = 4

(i) A4 = 1 −
1

a4(a1a2a3 − 1)
= 1 −

1

b4(b1b2b3 − 1)
=

1

b4b5

;

(ii) a4 = b4 by the definition of b4;

(iii) b6 = (b1b2b3)b4 − 1 = (b5 + 1)b4 − 1.

Next we show that the validity of each assertion for n ≥ 4 implies its validity for n + 1.

An+1 =
a1 · · · an

a1 · · · an − 1
An =

(

1 +
1

bn+2

)(

1 −
1

bnbn+1

)

= 1 −
bn+2 − bnbn+1 + 1

bnbn+1bn+2

= 1 −
1

bn+1bn+2

,

where we have used (iii) in the last step. This proves (i).

an+1 = 1 +

⌊

1

(1 − An+1) a1 · · · an

⌋

= 1 +

⌊

bn+1bn+2

bn+2 + 1

⌋

= 1 +

⌊

bn+1 −
bn+1

bn+2 + 1

⌋

= bn+1,

since bn ≥ 0 for all n. This proves (ii).

bn+3 = (b1 · · · bn)bn+1 − 1 = (bn+2 + 1)bn+1 − 1.

This establishes (iii), and the proof is complete.

Note that, according to the discussion in the paragraph that follows the statement of
Theorem 1, a unique expansion is guaranteed in Theorem 2 provided a ≥ 2.
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3 Miscellaneous Results

In this section, and the next, we state our results without proof since all proofs are similar
to that shown above. Knopfmacher [2] took 1a to denote a consecutive occurrences of the
digit 1, and we do the same.

Knopfmacher gave the following theorem with m = 1.

Theorem 3. Let m be a positive integer, and let a ≥ 1 and b ≥ 0 be integers. Then

m

2b (2am + 1)
=

((

2, 1a+b−1, 2a−1m + 1, 2am + 1, 2am + 1, a3, a4, a5, . . .
))

,

where a1 = a2 = 2am + 1, and (2) applies for n ≥ 2.

Due to the presence of a2, the following theorem differs in nature from those above.

Theorem 4. Let a and m be positive integers with a ≥ 2 and m ≥ 1. Then

(a − 1)am − 1

a2m
= ((a1, a2, a3, . . .)) ,

where a1 = a, a2 = (a − 1)m + 1, a3 = (a − 1)m, a4 = a1a2 − 1, and (2) applies for n ≥ 4.

In the next three theorems a1 and a2 immediately precede a3, and (2) applies for n ≥ 2.

Theorem 5. Let a ≥ 1 and k be integers. Then the expansion for
m − 1

2am
is

((

2, 1a−1, k + 1, k, 2k + 1, a3, a4, a5, . . .
))

,m = 2k, k ≥ 1;

((

2, 1a−1, k + 1, 2k + 1, 2k + 1, a3, a4, a5, . . .
))

,m = 2k + 1, k ≥ 1;

Theorem 6. Let a ≥ 3 and k be integers. Then the expansion for
3m − 1

2am
is

((

2, 1a−3, 2, 3k + 1, 3k, 12k + 3, a3, a4, a5, . . .
))

,m = 4k, k ≥ 1;

((

2, 1a−3, 2, 3k + 1, 12k + 3, 12k + 3, a3, a4, a5, . . .
))

,m = 4k + 1, k ≥ 0;

((

2, 1a−3, 2, 3k + 2, 6k + 3, 12k + 7, a3, a4, a5, . . .
))

,m = 4k + 2, k ≥ 0;

((

2, 1a−3, 2, 3k + 3, 4k + 3, 12k + 11, a3, a4, a5, . . .
))

,m = 4k + 3, k ≥ 0;

Theorem 7. Let a ≥ 5 and k be integers. Then the expansion for
9m − 1

2am
is

((

2, 1a−5, 2, 1, 9k + 1, 9k, 36k + 3, a3, a4, a5, . . .
))

,m = 4k, k ≥ 1;

((

2, 1a−5, 2, 1, 9k + 3, 12k + 3, 36k + 11, a3, a4, a5, . . .
))

,m = 4k + 1, k ≥ 0;
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((

2, 1a−5, 2, 1, 9k + 5, 18k + 9, 36k + 19, a3, a4, a5, . . .
))

,m = 4k + 2, k ≥ 0;

((

2, 1a−5, 2, 1, 9k + 7, 36k + 27, 36k + 27, a3, a4, a5, . . .
))

,m = 4k + 3, k ≥ 0;

4 A Host of Results of a Particular Type

Knopfmacher [2], in Theorem 3(iii), gave an expansion for
1

2a (2n + 1)
when a ≥ 0 and

n ≥ 1. Inspired by this, we decided to search for triples of positive integers (b, c, d) such that

the expansion for
1

2a (2bn+c + 2d + 1)
is predictable for all integers a ≥ 0 and n ≥ 0. We

restricted our search to 1 ≤ d ≤ 50, first fixing d and then searching for appropriate pairs
(b, c). Some d are associated with many pairs (b, c). For example, associated with d = 48 are
the following eight pairs (b, c): (48, 24), (48, 27), (240, 121), (336, 172), (336, 173), (528, 270),
(528, 303), and (1200, 602). On the other hand, for some d we could find no pair (b, c).

In total we found one-hundred and five triples as described in the previous paragraph.
For seventy-nine of these triples (b, c, d) we found that the expansion has the form

1

2a (2bn+c + 2d + 1)
=

((

2, 1a+bn+c−1, a1, a2, a3, . . .
))

, (3)

in which

a1 =
(

2bn+c−1 + 2d + 1 + e
)

/ (2d + 1) ,

a2 =
(

2bn+c + 2d + 1
)

/ (2d + 1 + 2e) ,

a3 = 2a1 − 1,

and (2) applies for n ≥ 3. Here e is a relatively small positive integer that depends upon the
triple (b, c, d), and can be found by observation.

In twenty-four of our triples, b = 2c. In these cases it is convenient to write the triples
as (2b, b, d). In all such cases we found that

1

2a (22bn+b + 2d + 1)
=

((

2, 1a+2bn+b−1, a1, a2, a3, a4, . . .
))

, (4)

in which

a1 =
(

22bn+b−1 + d + 1
)

/ (2d + 1) ,

a2 = 22bn+b + 1,

a3 = a2 + 2d,

a4 = 2a1a2 − 1,
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and (2) applies for n ≥ 4.

The reader can now write down the expansion for
1

2a (22bn+b + 2d + 1)
corresponding to

the first of the eight triples mentioned above. For this triple (4) applies. For the remaining
seven triples (3) applies, and the values of e are, respectively, 4, 1, 8, 16, 32, 9, and 2. The
reader can now use (3) to write down the associated expansions.

Interestingly, we found two triples not of the form (2b, b, d), namely (16, 4, 8) and (16, 12, 8),
but where the associated expansions are found with the use of (4). For these two triples we
use (4) and replace each occurrence of 2b by 16.

Some further examples of triples (2b, b, d) where the associated expansions are found
with the use of (4) are (2, 1, 1), (4, 2, 2), (6, 3, 4), (10, 5, 5), (12, 6, 6), and (18, 9, 9). Further
examples of triples (b, c, d) where the associated expansions are found with the use of (3)
are (12, 7, 2), (12, 8, 2), (12, 9, 6), (24, 14, 8), (40, 23, 8), and (40, 24, 8). Here, for these six
triples, the corresponding values of e are, respectively, 1, 2, 4, 2, 4, and 8.
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