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Abstract

We investigate the coefficients generated by expressing the falling factorial (xy)k as
a linear combination of falling factorial products xlym for l, m = 1, . . . , k. Algebraic
and combinatoric properties are discussed, some in relation to Stirling numbers.

1 Introduction

Let xk denote the falling factorial power,

xk = x(x − 1) . . . (x − k + 1) , k ∈ N, k ≥ 1 .

We think of x ∈ R, but the definition can make sense in more general settings. Problems
from discrete Fourier analysis – distant from the topics considered here – led us to falling
factorial powers of products expressed as

(xy)k =
k∑

l,m=1

c
(k)
l,mxlym . (1)

There is the obvious symmetry c
(k)
l,m = c

(k)
m,l. Since c

(1)
1,1 = 1 the interest begins when k ≥ 2.

For example,
(xy)2 = x1y2 + x2y1 + x2y2 ,

(xy)3 = x1y3 + x3y1 + 6x2y2 + 3x2y3 + 3x3y2 + x3y3 .
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Note that
c
(2)
1,1 = 0

c
(3)
1,1 = 0 , c

(3)
1,2 = c

(3)
2,1 = 0 .

and that the coefficients that do appear are positive.
Here are the values for c

(9)
l,m displayed as a symmetric matrix:

















0 0 0 0 0 0 0 0 1
0 0 0 0 15120 40320 24192 4608 255
0 0 10080 544320 1958040 1796760 588168 74124 3025
0 0 544320 6108480 12267360 7988904 2066232 218484 7770
0 15120 1958040 12267360 18329850 9874746 2229402 212436 6951
0 40320 1796760 7988904 9874746 4690350 965790 85680 2646
0 24192 588168 2066232 2229402 965790 185766 15624 462
0 4608 74124 218484 212436 85680 15624 1260 36
1 255 3025 7770 6951 2646 462 36 1

















. (2)

The numbers c
(k)
l,m have a number of interesting properties that are the subject of the

present paper. We found a recurrence relation, several closed-form expressions (which appear
rather different from each other), a natural combinatorial interpretation in terms of conjoint
ranking tables, and we can extend these results to products of more than two variables.

The combinatorics presented here have been considered before in other contexts. To make
the present approach self-contained and more readable we have rederived (briefly) some of
these earlier results, with references. We also mention several questions that we were unable
to answer.

2 Stirling Numbers and Falling Factorial Powers

One can solve for the coefficients c
(k)
l,m in any particular case, but that there should generally

be such an expansion emerges from the connection between falling factorial powers, ordinary
powers, and Stirling numbers; see Knuth [4], whose notation we follow.

In combinatorics one defines the (unsigned) Stirling numbers of the first kind by

[
k
l

]

= the number of permutations of k letters which consist of l disjoint cycles.

In particular [
k
k

]

= 1 ,

[
k
l

]

= 0 if k < l. (3)

For us, the important fact is

xk =
n∑

l=1

(−1)k−l

[
k
l

]

xl . (4)
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Stirling numbers of the second kind, denoted by

{
k
l

}

, are defined by

{
k
l

}

= the number of partitions of a set of k elements into l nonempty subsets.

Here {
k
1

}

=

{
k
k

}

= 1 ,

{
k
l

}

= 0 if k < l. (5)

The special values in (3) and (5) will come up in adjusting summation indices.
Corresponding to (4) one has

xk =
n∑

l=1

{
k
l

}

xl . (6)

We included the phrase ‘Generating Functions’ in the title of the paper because the sequences[
k
l

]

,

{
k
l

}

, and c
(k)
l,m each count something and each appears in an expansion in powers, (4),

(6), and (1), much like classical generating functions.

Proceeding with the derivation of (1), from (4) and (6) we have

(xy)k =
k∑

p=1

(−1)k−p

[
k
p

]

(xy)p =
k∑

p=1

(−1)k−p

[
k
p

]

xpyp

=
k∑

p=1

(−1)k−p

[
k
p

]( p
∑

l=1

{
p
l

}

xl

)(
p
∑

m=1

{
p
m

}

ym

)

=
k∑

p=1

p
∑

l=1

p
∑

m=1

(−1)k−p

[
k
p

]{
p
l

}{
p
m

}

xlym

=
k∑

l=1

k∑

m=1

k∑

p=1

(−1)k−p

[
k
p

]{
p
l

}{
p
m

}

xlym

=
k∑

l,m=1

c
(k)
l,mxlym ,

where the second-to-last equality holds since by convention

{
a
b

}

= 0 when a < b, and

c
(k)
l,m =

k∑

p=1

(−1)k−p

[
k
p

]{
p
l

}{
p
m

}

. (7)

This establishes the expansion (1) and provides a formula for the coefficients. It is
not clear from this expression that the c’s are nonnegative. We will deduce this from a
combinatorial characterization in Section 4.
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When l = k,

c
(k)
k,m =

k∑

p=1

(−1)k−p

[
k
p

]{
p
k

}{
p
m

}

=

[
k
k

]{
k
k

}{
k
m

}

=

{
k
m

}

.

Thus the Stirling numbers of the second kind appear in the last row (or column) of the
matrix of the c’s, as we see in (2).

There are a few more arithmetic properties of the c
(k)
l,m that we wish to note, expressed

most easily in terms of the symmetric matrix C(k) whose (l,m)-entry is c
(k)
l,m. Let Σ(k) be the

k × k diagonal matrix whose entries are

Σ
(k)
lm = (−1)k−l

[
k
l

]

δlm .

Let S
(k)
2 be the upper triangular matrix with nonzero entries

(S
(k)
2 )lm =

{
m
l

}

, l ≤ m .

One can check that
C(k) = S

(k)
2 Σ(k)(S

(k)
2 )T .

In turn it follows that C(k) is invertible and has the same signature as Σ(k). Since the
diagonal entries in Σ(k) alternate sign, C(k) has ⌈k/2⌉ positive eigenvalues and k − ⌈k/2⌉

negative eigenvalues. Moreover, the diagonal entries of S
(k)
2 are 1’s so det S

(k)
2 = 1, and then

det C(k) =
k∏

l=1

(−1)k−l

[
k
l

]

.

For all k, it appears that the rows (columns), the diagonals, and the anti-diagonals of
C(k) are all unimodal; this is quite visible for k = 9 in (2). Stronger than unimodality,
numerical evidence suggests that the rows, diagonals, and anti-diagonals are log-concave. In
fact, numerical evidence suggests that the associated polynomials for these sequences have
negative real roots, satisfying Newton’s sufficient test for log-concavity [7].

3 Recurrence Relation

Falling factorial powers satisfy
∆xn = nxn−1 ,
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where ∆ is the forward difference operator. A little more generally, using the two-variable
analog ∆f(x, y) = f(x + 1, y + 1) − f(x, y), one can verify that

∆(xlym) = (∆xl)ym + xl(∆ym) + (∆xl)(∆ym)

= lxl−1ym + mxlym−1 + lmxl−1ym−1 .

Then, on the one hand,

∆(xy)k =
k∑

l,m=1

c
(k)
l,m(lxl−1ym + mxlym−1 + lmxl−1ym−1)

=
k−1∑

l=0

k∑

m=1

c
(k)
l+1,m(l + 1)xlym +

k∑

l=1

k−1∑

m=0

c
(k)
l,m+1(m + 1)xlym +

k−1∑

l,m=0

c
(k)
l+1,m+1(l + 1)(m + 1)xlym .

On the other hand, apply the identity

vk =
1

v
(vk+1 + kvk)

with v = (x + 1)(y + 1) to write

∆(xy)k = ((x + 1)(y + 1))k − (xy)k

=
1

(x + 1)(y + 1)

(

((x + 1)(y + 1))k+1 + k((x + 1)(y + 1))k
)

− (xy)k ,

and then

∆(xy)k =
k+1∑

l,m=1

c
(k+1)
l,m

(x + 1)l

x + 1

(y + 1)m

y + 1
+ k

k∑

l,m=1

c
(k)
l,m

(x + 1)l

x + 1

(y + 1)m

y + 1
−

k∑

l,m=1

c
(k)
l,mxlym

=
k+1∑

l,m=1

c
(k+1)
l,m xl−1ym−1 + k

k∑

l,m=1

c
(k)
l,mxl−1ym−1 −

k∑

l,m=1

c
(k)
l,mxlym

=
k∑

l,m=0

c
(k+1)
l+1,m+1x

lym + k

k−1∑

l,m=0

c
(k)
l+1,m+1x

lym −

k∑

l,m=1

c
(k)
l,mxlym .

Comparing the two expressions for ∆(xy)k, and rearranging terms, we have shown the
following:

Theorem 1. The coefficients c
(k)
l,m satisfy the recurrence

c
(k+1)
l+1,m+1 = c

(k)
l,m + (l + 1)c

(k)
l+1,m + (m + 1)c

(k)
l,m+1 + ((l + 1)(m + 1) − k)c

(k)
l+1,m+1 .

We remark that while this recurrence generally has four terms, exceptions occur at the
edges of the matrix. Careful bookkeeping shows that in the last row when l = k, the
recurrence reduces to the two term recurrence

c
(k+1)
k+1,m+1 = c

(k)
k,m + (m + 1)c

(k)
k,m+1

which is precisely the recurrence relation describing Stirling numbers of the second kind.
The c

(k)
l,m coefficients can thus be viewed as a generalization of Stirling numbers.

Lastly, we comment that other proofs of the recurrence are possible, for example one that
uses the recurrence relations for Stirling numbers.
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4 Combinatorial Characterizations

Conjoint analysis is a method in marketing that assigns weightings to independent attributes
of a product. It is only the first step that we consider, that of setting up a conjoint ranking
table. Suppose there are l ≥ 1 choices for one attribute (e.g., price) and m ≥ 1 for the other
(e.g., color). Form an l×m table, in which each cell represents the two attributes considered
jointly; hence the contraction ‘conjoint.’ Let k ≤ lm and rank the conjoint preferences from
1 to k. Since we allow k ≤ lm not every pair of attributes need have a ranking, but we
do insist that every individual attribute must enter into the ranking at least once. That is,
every row or column must have at least one ranked cell. In particular k ≥ max{l,m}. One
can consider the remaining cells as left blank or filled in with zeros.

For a given l and m we refer to such an object as a k-conjoint ranking table. This is
quite a general concept and it is easy to imagine many examples. Here is one other. A
graduate student is signing up to take qualifying exams, and is required to fill out an l × m
table indicating preferences. Each of the l rows refers to a subject area, such as algebra,
combinatorics, analysis, etc.. Each of the m columns refers to a particular professor; we
assume that they are all equally capable of asking about any of subjects. The student will
be asked k questions, where k ≤ lm, and may put the numbers 1 through k in any of the
cells, indicating preferences for who asks what kinds of questions. However, the student
is not allowed to avoid any professors, and must put at least one number in each column.
Similarly, the student is not allowed to avoid any subject areas, and must put at least one
number in each row.

For more background on how conjoint analysis is used in marketing, see Green [3].

Theorem 2. The number of k-conjoint ranking tables of size l × m is l! m! c
(k)
l,m.

Proof of Theorem 2. Let d
(k)
l,m be the number of l × m conjoint tables containing k ones.

By definition of c
(k)
l,m, it suffices to show that (xy)k =

∑k

l,m=1 d
(k)
l,m(xl/l!)(ym/m!). It also

suffices to prove this for x and y restricted to the positive integers, since polynomials coin-
ciding on the positive integers are identical.

The number of ways to place the numbers 1, 2, . . . , k into distinct cells of a x×y rectangle
is clearly (xy)k. However, this placement can be done in the following way: choose l rows (in
xl/l! ways), choose m columns (in ym/m! ways), and then place the numbers in the chosen

rows and columns so that every row or column is used (in d
(k)
l,m ways). Summing over l and

m gives the result.

Theorem 2 has the following immediate corollary:

Corollary 3. The c
(k)
lm satisfy

c
(k)
l,m = 0 for lm < k and c

(k)
l,m > 0 for lm ≥ k .

Proof. When lm < k, the conjoint ranking table is too small to fit all k numbers, so c
(k)
l,m = 0.

However, when lm ≥ k, there are enough cells in the table to be ranked from 1 to k.
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Furthermore, there must exist at least one way of placing the numbers that satisfies the row
and column constraints since the conditions 1 ≤ l,m ≤ k imply that k ≥ max(l,m). Thus

c
(k)
l,m > 0.

One can see the pattern of zeros for k = 9 in (2). The hyperbolic shape of the boundary
between the zero and nonzero coefficients becomes more pronounced as k increases.

Here we make contact with earlier work, for the core of the proof above is counting a set
of binary matrices, and these have been counted in other ways; see Chapter 9 in [2]. One
approach is to use the inclusion-exclusion principle. We would like to give this argument to
show how it leads to another expression for c

(k)
l,m (which also appears in older literature, but

not as interpreted here).
Fix l and m, take k ≤ lm, and let O be the set of binary matrices of size l × m with 1’s

in exactly k positions. Then

|O| =

(
lm

k

)

.

Now let k ≥ max{l,m} and let C be the subset of O which have at least one 1 in every row
and in every column. We want to find |C|.

For the index i running from 1 to l let Ai be the subset of O whose i’th row has all 0’s,
and for the index i running from 1 to m let Ai+l be the subset of O whose i’th column has
all 0’s. Then

C = A1 ∩ A2 ∩ · · · ∩ Al+m ,

where
Ai = O \ Ai .

By the inclusion-exclusion principle

|C| = |O|−

l+m∑

i=1

|Ai|+
∑

i1<i2

|Ai1∩Ai2|−
∑

i1<i2<i3

|Ai1∩Ai2∩Ai3|+· · ·+(−1)l+m|A1∩A2∩· · ·∩Al+m| .

To compute the general sum
∑

|Ai1 ∩ · · · ∩ Aih |

we have to have to distinguish the matrices that have zeroed rows from those that have
zeroed columns. Suppose among the h sets Ai1 , . . . ,Aih that p of them have zeroed rows.
Then h − p have zeroed columns. For a fixed p there are

(
l

p

)
ways to select p rows to zero

out and there are
(

m

h−p

)
ways to select h − p columns to zero out. After these choices, there

are (l − p)(m − h + p) cells remaining amongst which we can place k ones. Thus

∑

|Ai1 ∩ · · · ∩ Aih| =
h∑

p=0

(
l

p

)(
m

h − p

)(
(l − p)(m − h + p)

k

)

and

|C| =
l+m∑

h=0

h∑

p=0

(−1)h

(
l

p

)(
m

h − p

)(
(l − p)(m − h + p)

k

)

.
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Multiplying |C| by k! distinguishes the nonzero elements, whether they are k distinguished
balls tossed into bins or the numbers from 1 to k. The end result is evidently the same as
counting the number of k-conjoint ranking tables, and hence

c
(k)
l,m =

1

l!m!
· k!|C| =

k!

l!m!

l+m∑

h=0

h∑

p=0

(−1)h

(
l

p

)(
m

h − p

)(
(l − p)(m − h + p)

k

)

. (8)

There is one more approach and one more formula. The equation (1) can also be written
in the form

(
xy

k

)

=
k∑

l,m=1

b
(k)
l,m

(
x

l

)(
y

m

)

, (9)

where

b
(k)
l,m =

l!m!

k!
c
(k)
l,m .

We understand the binomial coefficient to be defined for nonintegral x by
(

x

k

)

=
Γ(x + 1)

k!Γ(x − k + 1)
,

and we use

x(x − 1) . . . (x − k + 1) =
Γ(x + 1)

Γ(x − k + 1)
.

We see that the b
(k)
l,m give a count of the number of the l×m binary matrices with exactly

k ones such that each row and column has at least one 1. We have a further comment on the
combinatorics of (9) when x and y are integers. The left-hand side,

(
xy

k

)
is just the number

of ways to select k elements from an x × y array. How does this jibe with the right-hand
side?

For any given selection of k cells there is a unique minimal subarray (smallest number
of rows and columns) such that every row and column of that subarray contains a selected
cell. This is illustrated in Figure 1. On the left, the darkened cells correspond to a selection
of k = 8 cells, and the arrows indicate the rows and columns of the subarray in which the
selected cells are contained. On the right we see the subarray extracted, and note that every
row and column contains a selected square. Counting all possible such subarrays thus counts
the ways of choosing k elements from the big array. This is what the right-hand side in
equation (9) does, for

(
x

l

)(
y

m

)
is the number of ways to choose an l × m subarray, and then

for each such subarray we count the number of ways to populate it with k entries such that
no row or column is void. That multiplier is precisely b

(k)
l,m.

From Theorem 1, the b’s satisfy the recurrence

b
(k+1)
l+1,m+1 = (l + 1)(m + 1)(b

(k)
l,m + b

(k)
l,m+1 + b

(k)
l+1,m) + ((l + 1)(m + 1) − k)b

(k)
l+1,m+1 . (10)

But it was noted explicitly by Cameron [1] that Möbius inversion applied to (9) implies

b
(k)
l,m =

k∑

s,t=1

(−1)l+s+m+t

(
l

s

)(
m

t

)(
st

k

)

. (11)
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contains selections 

column

corresponding subarray

row
indices

selection of 8 entries
from 9 x 6 array

3

4

5

7

8

2 5 63

2

in which every row and column

indices

7

1 2 5 6

1

4

5

6

8

9

43

3

2

Figure 1: Combinatorial Interpretation of equation (9).

Furthermore, Maia and Mendez [5] found a similar formula using combinatorial species.
Möbius inversion is kin to matrix inversion and it is interesting to see how the latter can be
used to derive (11).

For k2 pairs (xi, yi), i = 1, . . . , k2, we treat (9) as a system of linear equations for the k2

unknowns b
(k)
l,m. In matrix form, Aβ = ξ where








(
x1

1

)(
y1

1

) (
x1

1

)(
y1

2

)
· · ·

(
x1

1

)(
y1

k

) (
x1

2

)(
y1

1

) (
x1

2

)(
y1

2

)
· · ·

(
x1

k

)(
y1

k

)

(
x2

1

)(
y2

1

) (
x2

1

)(
y2

2

)
· · ·

(
x2

1

)(
y2

k

) (
x2

2

)(
y2

1

) (
x2

2

)(
y2

2

)
· · ·

(
x2

k

)(
y2

k

)

...
... · · ·

...
...

...
...

...
(

x
k2

1

)(
y

k2

1

) (
x

k2

1

)(
y

k2

2

)
· · ·

(
x

k2

1

)(
y

k2

k

) (
x

k2

2

)(
y

k2

1

) (
x

k2

2

)(
y

k2

2

)
· · ·

(
x

k2

k

)(
y

k2

k

)








︸ ︷︷ ︸

A


















b
(k)
1,1

b
(k)
1,2
...

b
(k)
1,k

b
(k)
2,1

b
(k)
2,2
...

b
(k)
k,k


















︸ ︷︷ ︸

β

=












(
x1y1

k

)

(
x2y2

k

)

...
(

xiyi

k

)

...
(

x
k2y

k2

k

)












︸ ︷︷ ︸

ξ

.

Thus if the sequences (xi) and (yi) are chosen such that A is invertible, we will have an
expression for the coefficients in β. The matrix inversion can be done quite simply because
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one can choose sequences that make A the Kronecker product of the Pascal matrix with
itself. Recall that the lower-triangular Pascal matrix P is defined by

Pij =

(
i

j

)

, 1 ≤ i, j ≤ k .

The Kronecker square of P is the k2 × k2 matrix with entries

(P ⊗ P )ij = P⌈ i
k⌉⌈

j

k⌉
· P(i−1)k+1,(j−1)k+1 ,

where ik denotes i mod k. It is easily confirmed that P ⊗ P equals the matrix A when
xi =

⌈
i
k

⌉
and yi = (i − 1)k + 1. Since the inverse of a Kronecker product is the Kronecker

product of the inverses,
A−1 = (P ⊗ P )−1 = P−1 ⊗ P−1 .

Applying the Pascal matrix inverse formula P−1
ij = (−1)i+j

(
i

j

)
,

(P ⊗ P )−1
ij = (−1)⌈

i
k⌉+⌈ j

k⌉+(i−1)k+1+(j−1)k+1

(⌈ i
k

⌉

⌈
j

k

⌉

)(
(i − 1)k + 1

(j − 1)k + 1

)

.

From the formula for A−1 let us derive (11). We have

β = A−1ξ , b
(k)
l,m = βi , where i = k(l − 1) + m,

or

b
(k)
l,m = βi =

k2

∑

j=1

A−1
i,j ξj =

k2

∑

j=1

A−1
i,j

(⌈ j

k

⌉
((j − 1)k + 1)

k

)

=
k2

∑

j=1

(−1)⌈
i
k⌉+⌈ j

k⌉+(i−1)k+1+(j−1)k+1

(⌈ i
k

⌉

⌈
j

k

⌉

)(
(i − 1)k + 1

(j − 1)k + 1

)(⌈ j

k

⌉
((j − 1)k + 1)

k

)

.

Both i and j run from 1 to k2. From the equation i = k(l−1)+m, it follows that
⌈

i
k

⌉
= l and

(i−1)k+1 = m. Similarly, writing j = ks+t where s ∈ {0, 1, . . . , k−1} and t ∈ {1, 2, . . . , k},
it follows that

⌈
j

k

⌉
= s + 1 and (j − 1)k + 1 = t. Thus,

b
(k)
l,m =

k−1∑

s=0

k∑

t=1

(−1)l+s+1+m+t

(
l

s + 1

)(
m

t

)(
(s + 1)t

k

)

=
k∑

s=1

k∑

t=1

(−1)l+s+m+t

(
l

s

)(
m

t

)(
st

k

)

,

which is (11).

We conclude this part of the discussion by noting that we have three different expressions
for the c’s (or the b’s), (7), (8) and (11) – and we do not know algebraically how to derive
one from another!
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5 More Than Two Variables

For an expansion

(x1x2 · · ·xn)k =
∑

L

c
(k)
L x1

l1x2
l2 · · ·xn

ln , L = (l1, l2, . . . , ln) , 1 ≤ li ≤ k ,

of a product of more than two variables all the results in the preceding sections have natural
extensions. Modifications to the earlier arguments are straightforward and so we record the
outcomes with little additional detail – the chief problem is notation. We follow the generally
accepted conventions on multi-indexing. In particular

L! = l1!l2! · · · ln! .

The formula for the c’s in terms of Stirling numbers is

c
(k)
L =

k∑

p=1

(−1)k−p

[
k
p

] n∏

i=1

{
p
li

}

.

or simply

c
(k)
L =

k∑

p=1

(−1)k−p

[
k
p

]{
p
L

}

.

if we allow ourselves the analog to the the multi-indexed case of binomial coefficients and
write {

p
L

}

=
n∏

i=1

{
p
li

}

.

There is a natural extension of the product rule for the forward difference operator and
it can be applied just as before to obtain a recurrence relation. It will pay to invest in a
little extra notation. We write

L + 1 = (li + 1: i = 1, . . . , n)

and for a subset S ⊆ {1, . . . , n} we write

LS = (li : i ∈ S) , LS + 1 = (li + 1: i ∈ S) , LS = (li : i ∈ {1, . . . , n} \ S) .

The result is

c
(k+1)
L+1 = c

(k)
L − kc

(k)
L+1 +

n∑

m=1

∑

|S|=m

(
∏

i∈S

li

)

c
(k)
LS+1,L

S
.

The generalization of a 2-dimensional conjoint ranking table allows for n independent
attributes (color, price, shape, . . . ) with li choices for the i’th attribute. Based on the

recurrence one can then show that L!c
(k)
L is the number of ways to fill in an l1 × l2 × · · · × ln

conjoint ranking table with the numbers 1 through k, insisting, as before, that each attribute

11



must enter into the ranking at least once. Again this implies the nonnegativity of the c’s,
more precisely

c
(k)
L = 0 if

∏

i

li < k and c
(k)
L > 0 if

∏

i

li ≥ k.

Extensions of the alternate formulas (8) and (11) are more complicated to write. For the
former, to keep the final result from being too cluttered we use the notation

‖L‖ =
∑

li∈L

li

and for a multi-index M = (m1,m2, . . . ,mn) with 1 ≤ mi ≤ h and ‖M‖ = h we let

Φ(L,M) =
n∏

i=1

(li − mi).

Then

c
(k)
L =

k!

L!

‖L‖
∑

h=0

(−1)h
∑

M,‖M‖=h

(
Φ(L,M)

k

) n∏

i=1

(
li
mi

)

.

While the derivation of this formula is only an extension of the argument for two variables,
some discussion will help make the form clearer.

Let “slices” refer to the objects of dimension n − 1 in a multidimensional table which
are given by fixing the entry in one coordinate position. (One could say this is the higher-
dimensional generalization of rows and columns for matrices.) As before, we use inclusion-

exclusion to count b
(k)
L , the number of distinct l1×. . .×ln (0, 1)-tables with exactly k ones and

no zeroed slices; that is the formula without the factorials in front. In the outer summation,
the index h is the number of zeroed slices. The inner summation then runs over possible
ways to distribute the h zeroed slices across the n different dimensions.

The number of zeroed slices in dimension i is mi, and
(

li
mi

)
is the number of ways to select

a particular set of mi slices to zero out.
After removing the zeroed slices, the number of remaining cells is given by Φ(L,M), and

(
Φ(L,M)

k

)
is the number of ways to distribute k ones amongst these remaining cells.

Lastly, the analog of formula (11) based on Kronecker products and matrix inversion is

c
(k)
L =

k!

L!

k∑

r1,r2,...,rn=1

(−1)
P

i(ri+li)

(∏

i ri

k

)
∏

i

(
li
ri

)

.
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