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Abstract

We consider a weighted square-and-domino tiling model obtained by assigning real
number weights to the cells and boundaries of an n-board. An important special case
apparently arises when these weights form periodic sequences. When the weights of
an nm-tiling form sequences having period m, it is shown that such a tiling may be
regarded as a meta-tiling of length n whose weights have period 1 except for the first cell
(i.e., are constant). We term such a contraction of the period in going from the longer to
the shorter tiling as “period compression.” It turns out that period compression allows
one to provide combinatorial interpretations for certain identities involving continued
fractions as well as for several identities involving Fibonacci and Lucas numbers (and
their generalizations).
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1 Introduction

In what follows, Z, N, and P denote, respectively, the integers, the nonnegative integers, and
the positive integers. Empty sums take the value 0 and empty products the value 1, with
00 := 1. Let Fn and Ln denote the Fibonacci and Lucas numbers, defined, respectively, by
F0 = 0, F1 = 1 with Fn = Fn−1+Fn−2 if n > 2 and by L0 = 2, L1 = 1 with Ln = Ln−1+Ln−2

if n > 2.
We start with a slight generalization of the weighted tiling model described in Graham,

Knuth and Patashnik [5] where we assign real number weights not only to the cells but also
to the boundaries of an n-board. We then consider the special case when these weights form
periodic sequences. When the weights of an nm-tiling form sequences having period m, it is
shown that such a tiling may be regarded as a meta-tiling of length n whose weights have
period 1 except for the first cell (i.e., are constant). Such a contraction of the period in going
from the longer to the shorter tiling we term as “period compression.”

In the next section, we recall (and slightly generalize) the weighted tiling model described
in [5], and in the third, we establish our three main period compression theorems for tilings
having periodic weights. In the fourth section, we then use these theorems to simplify infinite
periodic continued fractions and to supply a combinatorial interpretation for a certain finite
continued fraction identity involving Fibonacci and Lucas numbers, answering a question
raised by Benjamin and Quinn [2, p. 146]. In the final section, we use the compression
theorems to provide combinatorial arguments of generalizations of several formulas for Fkm

and Lkm which occur in Vajda [11], as requested by Benjamin and Quinn [2, p. 145]. (Taking
all weights to be unity will yield the identities in Vajda [11].)

2 Weighted Tilings

In this section, we recall (and slightly generalize) the weighted tiling model described in
Graham, Knuth, and Patashnik [5, Section 6.7] and review some of its properties. First
consider a board of length n with cells labelled 1 to n from left to right. A tiling of this board
(termed an n-tiling) is an arrangement of indistinguishable squares and indistinguishable
dominos which cover it completely, where pieces do not overlap, a domino is a rectangular
piece covering two cells, and a square is a piece covering a single cell. Let Fn denote the set
of all n-tilings; recall that

|Fn| = Fn+1, n ∈ P. (2.1)

(If we set F0 = {φ}, the “empty tiling,” then (2.1) holds for n = 0 as well.)
Let (ai)i>1 and (bi)i>1 be sequences of real numbers and suppose n ∈ P. Given T ∈ Fn,

assign a weight to each tile of T according to its location as follows: (i) a square covering
cell k receives weight ak, and (ii) a domino covering the kth boundary receives weight bk (by
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the kth boundary, we mean the boundary between cells k and k + 1, 1 6 k 6 n − 1).

a1 a2 a3 · · · an

b1 b2 b3 · · · bn−1

Define the weight w(T ) to be the product of the weights of tiles and define the weighted
sum |1 : n| by

|1 : n| :=
∑

T∈Fn

w(T ). (2.2)

For example, when n = 4, there are the five 4-tilings pictured below,

a1 a2 a3 a4 a1 a2 b3 a1 b2 a4

b1 a3 a4 b1 b3

which implies
|1 : 4| = a1a2a3a4 + a1a2b3 + a1b2a4 + b1a3a4 + b1b3.

If ai = bi = 1 for all i, then each tiling receives unit weight and |1 : n| = Fn+1.

Remarks. If ai = 1 and bi = qit or if ai = qi and bi = t for all i, then one gets, respectively,
the q-Fibonacci polynomials studied by Carlitz [3] and Cigler [4] and by Shattuck and
Wagner [9]. If bi = 1 for all i, then (2.2) reduces to the continuant polynomial described in
Graham, Knuth and Patashnik [5, p. 301–309].

For integers 1 6 i 6 j 6 n, we write |i : j| to mean the sum of weights of tilings
of the sub-board starting at cell i and ending at cell j. For example, |i : i| = ai and
|i : i + 1| = aiai+1 + bi. We’ll take |i : i − 1| = 1 and |i : i − 2| = 0 as conventions.

Considering whether or not the kth boundary of a tiling is covered by a domino yields
the identity

|i : j| = |i : k||k + 1 : j| + bk|i : k − 1||k + 2 : j|, i 6 k 6 j, (2.3)

the k = i and k = j − 1 cases of which give the recurrences

|i : j| = ai|i + 1 : j| + bi|i + 2 : j| (2.4)

and
|i : j| = aj|i : j − 1| + bj−1|i : j − 2|. (2.5)

Let Ln denote the set of n-tilings in which a domino can wrap around from cell n back
to cell 1 (termed Lucas n-tilings or n-bracelets). When a bracelet has a wraparound domino,
it is called out-of-phase; otherwise, it is called in-phase. Recall that

|Ln| = Ln, n ∈ P, (2.6)
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the nth Lucas number (see, e.g., [2, p. 18], [10, p. 246]. If we interpret L0 = 2 to mean that
there are two empty 0-bracelets, one of which is in-phase, the other out-of-phase, then (2.6)
holds for n = 0 as well.

We extend slightly the prior model for n-tilings to n-bracelets by keeping all weights the
same as before and assigning a wraparound domino weight bn. One gets the weighted sum

|1 :: n| :=
∑

T∈Ln

w(T ), (2.7)

which reduces to Ln when ai = bi = 1 for all i.

Remark. If ai = 1 and bi = qit or if ai = qi and bi = t for all i, then one gets, respectively,
the q-Lucas polynomials studied by Carlitz [3] and by Shattuck and Wagner [9].

Considering whether or not a member of Ln contains a wraparound domino gives

|1 :: n| = |1 : n| + bn|2 : n − 1|, n > 1. (2.8)

The |1 :: n| do not appear to satisfy simple two-term recurrences like (2.4) or (2.5).
Given 1 6 i 6 j 6 n, let |i :: j| denote the sum of weights of tilings of the sub-board

starting at cell i and ending at cell j in which a domino can wrap around from cell j back
to cell i. For example, |i :: i| = ai and |i :: i + 1| = aiai+1 + bi + bi+1. By convention, we’ll
take |i :: i − 1| = 2.

3 Periodic Boards

Throughout this section, we consider the important special case of |1 : n| in which the ai and
bi are both periodic sequences. For m > 1, we say that a board has period m if ai+m = ai

and bi+m = bi for all i. It will be convenient to think of such tilings within a rectangular
grid of width m, where a domino’s left half may end one row whenever its right half starts
the next.

a1 a2 · · · anm

b1 b2 · · · bnm−1

=⇒

...
... } n

rows

a1 a2 · · · am

b1 b2 · · · bm−1 bm

Generalizing the tail-swapping technique extends the identity [2, p. 28]

F2m+1 = LmFm+1 + (−1)m+1, m > 0, (3.1)

to
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Proposition 3.1. If a board has period m, then

|1 : 2m| = L|1 : m| + β, m > 0, (3.2)

where
L := |1 :: m| and β := (−1)m+1

∏m

k=1 bk. (3.3)

Proof. If λ ∈ F2m, then arrange λ in two parallel rows of length m, breaking a domino
covering cells m and m + 1 if necessary. Suppose that j is the largest i, 0 6 i 6 m, such
that neither boundary i nor boundary i + m is covered by a domino (in which case, we say
that a fault occurs at i; we’ll assume for now that λ has at least one fault). Exchange the
portion of the first row to the right of boundary j with the portion of the second row to
the right of boundary j + m (i.e., perform a tailswap). This yields a pair of tilings: row 1
is an ordinary m-tiling, but row 2 is a Lucas m-tiling because it can begin and end with a
half-domino. Specifically, this happens if row 1 of the original tiling ends in a half-domino,
because the tailswap in this case moves the half-domino to row 2 where the other half is
located, as illustrated below.

Figure 3.1: Tiling before tailswap, m = 7.

Figure 3.2: Tiling after tailswap.

Observe that tailswapping is its own inverse since it does not change the location of
the last fault. It also preserves weight by m-periodicity, since all tiles stay in their original
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column. There is exactly one fault-free configuration (accounted for by the β term) and it
must consist of all dominos in staggered formation (since any square will necessarily have a
fault line either to its left or to its right). A quick exercise in visualization shows that this
configuration has weight

∏m

k=1 bk and belongs to F2m if m is odd and to Fm × Lm if m is
even, as shown below.

Figure 3.3: The fault-free configuration, m = 7.

Figure 3.4: The fault-free configuration, m = 6.

Arranging a (j + 2m)-tiling in two parallel rows of length j + m and m (flush right) and
applying the preceding argument extends identity (3.2) to

|1 : j + 2m| = L|1 : j + m| + β|1 : j|, j > 0, (3.4)

and starting tilings at cell i gives the further generalization

|i : j + 2m| = L|i : j + m| + β|i : j|, 1 6 i 6 j. (3.5)

(Note that L = |1 :: m| = |i :: i + m − 1| for all i > 1, by m-periodicity.)
Consider the sequence Gn := |1 : nm|, n > 0, where the associated ai and bi both have

period m. Taking j = nm in (3.4) gives a second order recurrence for Gn with constant
coefficients:

Proposition 3.2. If a board has period m, then

Gn+2 = LGn+1 + βGn, n > 0, (3.6)

where G0 = 1 and G1 = |1 : m|.
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When all weights are unity, recurrence (3.6) reduces to

F(n+2)m+1 = LmF(n+1)m+1 + (−1)m+1Fnm+1, (3.7)

which generalizes (3.1). Induction combining (2.5) when i = 1 and j = n with recurrence
(3.6) yields our first period-compression theorem.

Theorem 3.3. If a board has period m, then

|1 : nm| = ‖1 : n‖, n > 0, (3.8)

where ‖1 : n‖ is the sum of weights of n-tilings using the meta-weights

A1 = |1 : m|,
A2 = · · · = An = L = |1 :: m|,

and
B1 = · · · = Bn−1 = β = (−1)m+1

∏m

k=1 bk.

Proof. It is instructive to provide a combinatorial proof of (3.8). Note first that ‖1 : n‖
is a weighted sum of meta-tilings on n cells, where meta-squares are themselves (weighted)
m-bracelets (except for cell 1, which cannot contain an out-of-phase bracelet) and where
meta-dominos each have weight β. First suppose m is odd, and let λ be such a meta-tiling of
length n. We’ll construct, in an inductive manner, an nm-tiling (in rectangular form) with
period m of the same weight. We’ll call meta-squares in-phase or out-of-phase depending on
whether or not they correspond to in-phase or out-of-phase bracelets.

Let ci, i > 1, denote the ith piece of λ (going from left to right). We’ll consider the three
cases:

(i) c1 is an in-phase meta-square and c2 isn’t an out-of-phase meta-square;

(ii) c1 is an in-phase meta-square and c2 is an out-of-phase meta-square;

(iii) c1 is a meta-domino.

For (i), fill out the first row of an n×m rectangle with the (in-phase) m-tiling corresponding
to c1. For (ii), let cℓ, ℓ > 2, be the last out-of-phase square in a run of out-of-phase squares
directly following c1. Swap (right) tails of c1 and cℓ to obtain c′1 and c′ℓ (which can always
be done since m is odd). Note that c′1 ends with a half-domino but doesn’t start with one
and that c′ℓ starts with a half-domino but doesn’t end with one. Fill out the first ℓ rows of
an n × m rectangle with c′1, c2, . . . , cℓ−1, c

′
ℓ.

For (iii), if cℓ again denotes the last square in a run (possibly of length zero, in which
case ℓ = 1) of out-of-phase meta-squares directly following c1, then fill out the first ℓ + 1
rows of the rectangle with d1, c2, . . . , cℓ, d2, where d1 consists of m−1

2
dominos followed by

a half-domino and d2 is a half-domino followed by m−1
2

dominos. Now repeat the above
argument using any remaining pieces of λ.

If m is even, then proceed as in the first two cases above provided that the tails of c1 and
cℓ can be swapped in (ii). The cases in which (I) c1 is a meta-domino, or (II) c1 is an in-
phase meta-square and cℓ is an out-of-phase meta-square, with both tilings consisting solely
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of dominos, conveniently cancel (in general, toggle on the first occurrence of a meta-domino
or a c1/cℓ pair with all staggered dominos) since the meta-domino in (I) contributes β and
the two meta-squares in (II) contribute −β (as m is even) towards the overall weight of a
meta-tiling, which completes the proof.

We call (3.8) a “period-compression” theorem because it allows us to rewrite a period-m
board in terms of a meta-board with period 1 (except for the first cell). It will be immediately
applicable to periodic continued fractions, once we also state the version of the theorem for
|2 : nm|.
Theorem 3.4. For a board with period m,

|2 : nm| = |2 : m| · ‖2 : n‖, n > 0, (3.9)

with meta-weights defined as before.

Proof. Applying (3.5) once with i = 2, j = nm and again with i = 2, j = n, m = 1 yields
(3.9), by induction on n > 0.

Period compression takes an even simpler form for Lucas bracelets.

Theorem 3.5. For a board with period m,

|1 :: nm| = ‖2 :: n + 1‖, n > 0, (3.10)

with meta-weights defined as before.

Proof. Note that both sides of (3.10) are equal when n = 0 and n = 1 and can be expressed,
using (2.8), as linear combinations of terms which satisfy the same recurrence in n, by
(3.5).

We were unable to find a formula comparable to (3.9) for bracelets. Slight modifications of
the combinatorial proof given for (3.8) apply to (3.9) and (3.10). If we take all weights to
be unity, then Theorems 3.4 and 3.5 reduce to

Corollary 3.6. For all n,m ∈ N,

Fnm = Fm‖2 : n‖ (3.11)

and
Lnm = ‖2 :: n + 1‖, (3.12)

where the weighted sums refer to the board with constant weights Ai = Lm and Bi = (−1)m+1

for all i > 2.

Remark. Writing out (3.11) and (3.12) explicitly, one gets the following pair of identities,
the first of which occurs in [6] and [7], the second as (V82) in Benjamin and Quinn [2, p. 145]:

Fnm = Fm

⌊n−1
2

⌋
∑

i=0

(−1)(m+1)i

(

n − 1 − i

i

)

Ln−1−2i
m (3.13)

and

Lnm =

⌊n
2
⌋

∑

i=0

(−1)(m+1)i n

n − i

(

n − i

i

)

Ln−2i
m . (3.14)
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4 Applications to Continued Fractions

The weighted tiling model described in the second section is closely associated with finite
continued fractions. The proposition below, the proof of which we include for completeness, is
a slight generalization of Identity (6.135) of Graham, Knuth, and Patashnik [5] and provides
a simple combinatorial interpretation for the numerator and the denominator of a finite
continued fraction. For other combinatorial interpretations of continued fractions, see [1] as
well as Chapter 4 of [2].

Proposition 4.1. Let a1, b1, a2, b2, . . . , bn−1, an be any real numbers. Then

a1 +
b1

a2 + b2

...+ bn−1
an

=
|1 : n|
|2 : n| , (4.1)

excluding division by zero. Furthermore, if ai ∈ Z and bi ∈ {−1, 1}, then |1:n|
|2:n|

is a fraction
in lowest terms.

Proof. We’ll prove, more generally, that

[i : j] =
|i : j|

|i + 1 : j| , 1 6 i 6 j 6 n, (4.2)

where [i : j] denotes the continued fraction

ai +
bi

ai+1 + bi+1

...+ bj−1
aj

.

Induct on the length, j − i + 1, of the continued fraction, the case in which j = i clear. If
j > i, then

[i : j] = ai +
bi

[i + 1 : j]
= ai +

bi

|i + 1 : j|/|i + 2 : j|

=
ai|i + 1 : j| + bi|i + 2 : j|

|i + 1 : j| =
|i : j|

|i + 1 : j| ,

by recurrence (2.4).
For the second part of the theorem, we’ll show, more generally, that |i : n| and |i + 1 : n|

are relatively prime for all i, 1 6 i 6 n, by induction on i starting with i = n, where n ∈ P

is fixed. If i < n, then by (2.4),

gcd(|i : n|, |i + 1 : n|) = gcd(ai|i + 1 : n| ± |i + 2 : n|, |i + 1 : n|)
= gcd(|i + 2 : n|, |i + 1 : n|) = 1,

completing the proof.
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If bi = 1 for all i, then (4.1) reduces to (6.135) in [5]. Combining (4.1) with the period-
compression theorems provides a way of simplifying infinite periodic continued fractions.

Theorem 4.2. Let a1, a2, . . . and b1, b2, . . . be m-periodic sequences of real numbers. Then

a1 +
b1

a2 + b2

...

=
1

|2 : m|

(

|1 : m| + β

L + β

L+ β

...

)

, (4.3)

provided that the fraction on the left converges, where L and β are as in (3.3).

Proof. Let n > 1. By Theorems 3.3 and 3.4,

|1 : nm|
|2 : nm| =

1

|2 : m|

(‖1 : n‖
‖2 : n‖

)

.

Using (4.1) and taking the limit as n → ∞ then gives (4.3).

Example. Consider a regular periodic continued fraction: bi = 1 for all i and let a1, a2, a3, . . .
be the period-3 sequence 3, 4, 5, 3, 4, 5,. . .. Since bounded, monotonic sequences converge,
all regular continued fractions (i.e., those with bi = 1 and ai > 0 for all i) converge, so we
can use Theorem 4.2 with m = 3. The relevant calculations are |1 : 3| = 68, |2 : 3| = 21,
L = |1 : 3| + |2 : 2| = 72, β = 1. Therefore,

3 +
1

4 + 1
5+ 1

...

=
1

21

(

68 +
1

72 + 1
72+ 1

...

)

.

Observe that the continued fraction on the right side must be the positive solution to
x = 1

72+x
, and the quadratic formula gives x = −36 +

√
1297. Therefore, the original

continued fraction is equal to 1
21

(32 +
√

1297). This method will work with any regular
periodic continued fraction, but note that β = −1 when m is even.

Period compression for periodic tilings can now be used to provide a combinatorial proof
of a finite continued fraction identity involving Fibonacci and Lucas numbers, answering a
question raised by Benjamin and Quinn [2, p. 146].

Theorem 4.3. For all m,n ∈ P,

F(n+1)m

Fnm

= Lm − (−1)m

Lm − (−1)m

...− (−1)m

Lm

, (4.4)

where Lm appears n times in the continued fraction.

Proof. By (3.11),
F(n+1)m

Fnm

=
Fm‖2 : n + 1‖

Fm‖2 : n‖ =
‖2 : n + 1‖
‖3 : n + 1‖ ,

where we have shifted the indices of the denominator in the last step, which can be done
since the weights are constant. Identity (4.4) now follows from (4.2) when ai = Lm and
bi = (−1)m+1 for all i > 2.
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Observe that we have shown that the numerator and denominator of the rational number
given by the algebraically-defined continued fraction in (4.4) are the combinatorially-defined
quantities ‖2 : n + 1‖ and ‖3 : n + 1‖, respectively (they are relatively prime by Proposi-
tion 4.1). Note that (4.4) occurs as (V106) on p. 146 of [2].

5 Fibonacci/Lucas Generalizations

In this section, we use periodic tilings to derive (by combinatorial arguments) generalizations
of identities for Fibonacci and Lucas numbers found in [2, p. 145] and in [11]. Our strategy
will be first to establish identities for tilings in which the weight sequences are constant
and then to generalize them to identities for periodic tilings by applying the compression
theorems of the third section. Our first identity involves relating a weighted tiling of odd
length to shorter sub-tilings of even length.

Identity 5.1. For a board with constant weights ai = A and bi = B,

|1 : 2n + 1| = A

n
∑

k=0

Bk|1 : 2n − 2k|. (5.1)

Proof. The sum of the weights of the (2n + 1)-tilings ending with exactly k dominos is
ABk|1 : 2n − 2k|. Summing over k gives (5.1).

We can generalize this to period-m tilings by “uncompressing” (5.1) :

Theorem 5.2. For a board with period m,

|2 : (2n + 2)m| = L
n

∑

k=0

βk|2 : (2n + 1 − 2k)m|, (5.2)

where L and β are defined by (3.3) above. In particular,

F(2n+2)m = Lm

n
∑

k=0

(−1)(m+1)kF(2n+1−2k)m. (5.3)

Proof. Starting tilings at cell 2 in (5.1) gives, equivalently,

|2 : 2n + 2| = A
n

∑

k=0

Bk|2 : 2n + 1 − 2k| (5.4)

for a board with constant weights ai = A and bi = B, i > 2. Taking A = L and B = β in
(5.4) gives

‖2 : 2n + 2‖ = L
n

∑

k=0

βk‖2 : 2n + 1 − 2k‖. (5.5)
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Multiply both sides of (5.5) by |2 : m|,

|2 : m| · ‖2 : 2n + 2‖ = L

n
∑

k=0

βk|2 : m| · ‖2 : 2n + 1 − 2k‖,

and Theorem 3.4 gives (5.2). To obtain (5.3), set ai = bi = 1 for all i in (5.2).

Our next identity relates tilings of odd length with shorter bracelets.

Identity 5.3. For a board with constant weights A and B,

|1 : 2n + 1| =
n

∑

k=0

(−1)kBk|1 :: 2n + 1 − 2k|. (5.6)

Proof. Let U denote the set of all ordered pairs (C,D), where C is a bracelet (starting at
cell 1) and D is a line of dominos such that the combined length of the pair is 2n+1. Define
the sign of such a pair to be (−1)k, where k is the number of dominos in D, and define the
weight of such a pair to be the product of Bk and the weight of C. Note that the right side
of (5.6) is the sum of the signed weights of the elements of U .

Define a sign-reversing, weight-preserving involution on U as follows: (i) If C is out-of-
phase, then move the domino covering the first and last cells from C to D to get an in-phase
bracelet two units shorter; (ii) If C is in-phase, take a domino from D (provided there is one)
and place it on boundary 0 to get an out-of-phase bracelet two units longer. Observe that if
two elements of U are paired, then their weights are negatives of one another, and that all
elements of U are paired except those for which C is an in-phase (2n + 1)-bracelet and D
contains no dominos; the sum of the signed weight of these elements is |1 : 2n + 1|.
Theorem 5.4. For a board with period m,

|2 : (2n + 2)m| = |2 : m|
n

∑

k=0

(−1)kβk|1 :: (2n + 1 − 2k)m|. (5.7)

In particular,

F(2n+2)m = Fm

n
∑

k=0

(−1)mkL(2n+1−2k)m. (5.8)

Proof. As in the proof of Theorem 5.2, we start our tilings at cell 2. Taking A = L and
B = β in (5.6), multiplying both sides by |2 : m|, and applying Theorems 3.4 and 3.5 yields
(5.7). To obtain (5.8), set ai = bi = 1 in (5.7).

The next identity is like (5.6) except that we will start with an even-length rather than
an odd-length tiling.

Identity 5.5. For a board with constant weights A and B,

|1 : 2n + 2| = (−1)n+1Bn+1 +
n

∑

k=0

(−1)kBk|1 :: 2n + 2 − 2k|. (5.9)
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Proof. Let U denote the set of all ordered pairs (C,D) in which C is a bracelet (starting
at cell 1) and D is a line of dominos such that the combined length of the pair is 2n + 2.
Define the sign and weight of such a pair as in the proof of (5.6). Note that in this case, the
sign-reversing involution in the proof of (5.6) has two types of fixed points: elements of U in
which C is an in-phase (2n + 2)-bracelet and D is empty and the element in which C is an
out-of-phase 0-bracelet and D contains n + 1 dominos. Therefore,

|1 : 2n + 2| + (−1)n+1Bn+1 =
n+1
∑

k=0

(−1)kBk|1 :: 2n + 2 − 2k|, (5.10)

which is equivalent to (5.9).

The same proof as before then gives

Theorem 5.6. For a board with period m,

|2 : (2n + 3)m| = |2 : m|
(

(−1)n+1βn+1 +
n

∑

k=0

(−1)kβk|1 :: (2n + 2 − 2k)m|
)

. (5.11)

In particular,

F(2n+3)m = (−1)(n+1)mFm + Fm

n
∑

k=0

(−1)mkL(2n+2−2k)m. (5.12)

Our final identity relates bracelets of odd length with shorter bracelets of even length.

Identity 5.7. For a board with constant weights A and B,

|1 :: 2n + 3| = ABn+1 + A

n
∑

k=0

Bk|1 :: 2n + 2 − 2k|. (5.13)

Proof. The right side counts (2n + 3)-bracelets according to k, the number of dominos at
the beginning, where we start counting from the domino covering either boundary 1 or
2, depending on whether or not a bracelet is in-phase. For 0 6 k 6 n, we see that the
total weight of all bracelets beginning with exactly k dominos (when counted this way) is
ABk|1 :: 2n+2−2k|, since we can choose any bracelet of length 2n+2−2k with either phase
and then insert k dominos followed by a square at the beginning (where the inserted dominos
start at either cell 1 or 2 depending on whether or not the chosen bracelet is in-phase). For
k = n + 1, we are forced to have an in-phase bracelet consisting of n + 1 dominos followed
by a square.

Letting A = L and B = β, and applying Theorem 3.5 to both sides of (5.13), then gives

Theorem 5.8. For a board with period m,

|1 :: (2n + 3)m| = Lβn+1 + L

n
∑

k=0

βk|1 :: (2n + 2 − 2k)m|. (5.14)

13



In particular,

L(2n+3)m = (−1)(n+1)(m+1)Lm + Lm

n
∑

k=0

(−1)(m+1)kL(2n+2−2k)m. (5.15)

Remarks. Taking A = B = 1 in (5.6) gives Identity 55 in [2] and taking A = B = 1 in
(5.1) and (5.13) gives two special cases of Identity 62 in [2]. Identities (5.3), (5.8), (5.12),
and (5.15) occur as Identities (V88), (V86), (V85), and (V87), respectively, in Benjamin and
Quinn [2, p. 145], which were originally given in Vajda [11], but were lacking combinatorial
proofs. See also Shattuck [8] for shorter, more direct combinatorial proofs and different
generalizations of these identities.

Finally, note that the m = 1 case of (5.3), (5.8), (5.12), and (5.15) is the case A = B = 1
of (5.1), (5.6), (5.9), and (5.13), respectively. The methods of this section then illustrate a
way to generalize certain Fibonacci/Lucas identities. For instance, the well-known identity

F2n+1 = 1 +
n

∑

k=1

F2k (5.16)

is easily generalized to the constant-weight identity

|1 : 2n| = Bn + A
n

∑

k=1

Bn−k|1 : 2k − 1|. (5.17)

Taking A = L, B = β in (5.17), multiplying by |2 : m|, and applying Theorem 3.4 then gives

|2 : (2n + 1)m| = βn|2 : m| + L

n
∑

k=1

βn−k|2 : 2km|, (5.18)

for m-periodic tilings, and, in particular,

F(2n+1)m = (−1)(m+1)nFm + Lm

n
∑

k=1

(−1)(m+1)(n−k)F2km, (5.19)

which generalizes (5.16).
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