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Abstract

We introduce a gcd-sum function involving regular integers (mod n) and prove
results giving its minimal order, maximal order and average order.

1 Introduction

Let n > 1 be an integer with prime factorization n = pν1

1 · · · pνr

r . An integer k is called regular
(mod n) if there exists an integer x such that k2x ≡ k (mod n), i.e., the residue class of k
is a regular element (in the sense of J. von Neumann) of the ring Zn of residue classes (mod
n). In general, an element k of a ring R is said to be (von Neumann) regular if there is an
x ∈ R such that k = kxk. If every k ∈ R has this property, then R is called a von Neumann
regular ring, cf. for example [9, p. 110].

It can be shown that k ≥ 1 is regular (mod n) if and only if for every i ∈ {1, . . . , r} either
pi ∤ k or pνi

i | k. Also, k ≥ 1 is regular (mod n) if and only if gcd(k, n) is a unitary divisor of
n. We recall that d is said to be a unitary divisor of n if d | n and gcd(d, n/d) = 1, and use
the notation d || n. These and other characterizations of regular integers are given in our
paper [15].

Let Regn = {k : 1 ≤ k ≤ n and k is regular (mod n)}, and let ̺(n) = # Regn denote
the number of regular integers k (mod n) such that 1 ≤ k ≤ n. The function ̺(n) was
investigated in paper [15]. It is multiplicative and ̺(pν) = φ(pν) + 1 = pν − pν−1 + 1 for
every prime power pν (ν ≥ 1), where φ is the Euler function. Note that (̺(n) : n ∈ N) is the
sequence A055653 in Sloane’s On-Line Encyclopedia of Integer Sequences.
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In this paper we introduce the function

P̃ (n) :=
∑

k∈Reg
n

gcd(k, n). (1)

This is analogous to the gcd-sum function, called also Pillai’s arithmetical function,

P (n) :=
n∑

k=1

gcd(k, n), (2)

investigated in the recent papers [1, 2, 3, 4, 13] of this journal. This is sequence A018804 in
Sloane’s Encyclopedia.

Note that the function P (n) was introduced by S. S. Pillai [11], showing that

P (n) =
∑

d|n

dφ(n/d),
∑

d|n

P (d) = nτ(n) =
∑

d|n

σ(d)φ(n/d),

where τ(n) and σ(n) denote, as usual, the number and the sum of divisors of n, respectively.
Note also, that for any arithmetical function f ,

Pf (n) :=
n∑

k=1

f(gcd(k, n)) =
∑

d|n

f(d)φ(n/d), (3)

which is a result of E. Cesàro [5]. See also the book [7, p. 127].
O. Bordellès [1] showed that

P = µ ∗ (E · τ), (4)

where ∗ denotes the Dirichlet convolution, where E(n) = n and µ is the Möbius function.
Then, using this representation he proved the following asymptotic formula: for every ε > 0,

∑

n≤x

P (n) =
x2

2ζ(2)

(
log x+ 2γ −

1

2
−
ζ ′(2)

ζ(2)

)
+ O(x1+θ+ε), (5)

where γ is Euler’s constant and θ is the number appearing in Dirichlet’s divisor problem,
that is ∑

n≤x

τ(n) = x log x+ (2γ − 1)x+ O(xθ+ε). (6)

It is known that 1/4 ≤ θ ≤ 131/416 ≈ 0.3149.
Formulae (4) and (5) were obtained, even in a more general form, in the paper [6], where

the authors proved also the following result concerning the maximal order of P (n),

lim sup
n→∞

log(P (n)/n) log log n

log n
= log 2, (7)

which is well known for the function τ(n) instead of P (n)/n.
Asymptotic formulae for generalized gcd-sum functions of type (3), concerning sets of

polynomials with integral coefficients and regular convolutions were given in our paper [14].
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We investigate in what follows arithmetical and asymptotical properties of the function
P̃ (n). We show that it is multiplicative and for every n ≥ 1,

P̃ (n) = n
∏

p|n

(
2 −

1

p

)
. (8)

Further, we show that the result (7) holds also for the function P̃ (n), its minimal order
is 3n/2 and prove an asymptotic formula for its summatory function both without assuming
the Riemann hypothesis and assuming the Riemann hypothesis (RH), based on a convolution
identity analogous to (4).

Our results and proofs involve properties of arithmetical functions defined by unitary
divisors and of the unitary convolution. For background material in this topic we refer to
the book [10].

As an open question we formulate the following: What is the minimal order of the Pillai
function P (n)?

A common generalization of the functions P (n) and P̃ (n) is outlined at the end of Section
2.

2 Arithmetical properties

Let f be an arbitrary arithmetical function and consider the more general function

P̃f (n) :=
∑

k∈Reg
n

f(gcd(k, n)).

Proposition 1. For every n ≥ 1,

P̃f (n) =
∑

d||n

f(d)φ(n/d). (9)

Proof. The integer k ≥ 1 is regular iff gcd(k, n) || n, cf. the Introduction, and obtain

P̃f (n) =
n∑

k=1

∑

d||n

f(d) =
∑

d||n

f(d)
∑

1≤j≤n/d
(j,n/d)=1

1 =
∑

d||n

f(d)φ(n/d).

Corollary 1. If f is multiplicative, then P̃f is also multiplicative and P̃f (p
ν) = f(pν)+ pν −

pν−1 for every prime power pν (ν ≥ 1).

In particular, P̃ is multiplicative and P̃ (pν) = 2pν − pν−1 for every prime power pν

(ν ≥ 1).

Proof. According to (9), P̃f is the unitary convolution of the functions f and φ. It is known
that the unitary convolution preserves the multiplicativity of functions. In particular, for
f(n) = n we obtain that P̃ is multiplicative and the explicit formula (8).
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Let ω(n, k) denote the number of distinct prime factors of n which do not divide k. For
k = 1, ω(n) := ω(n, 1) is the number distinct factors of n. Also, let τ ∗(n, k) denote the
number of unitary divisors of n which are relatively prime to k. Here τ ∗(n) := τ ∗(n, 1) is
the number of unitary divisors of n. We have τ ∗(n, k) = 2ω(n,k) and τ ∗(n) = 2ω(n).

Another representation of P̃ is given by

Proposition 2. For every n ≥ 1,

P̃ (n) =
∑

de=n

µ(d)e · 2ω(e,d).

Proof. By Proposition 1,

P̃ (n) =
∑

de=n
(d,e)=1

dφ(e) =
∑

de=n
(d,e)=1

d
∑

ab=e

µ(a)b =
∑

dab=n
(d,a)=1
(d,b)=1

dµ(a)b

=
∑

ac=n

µ(a)c
∑

bd=c
(b,d)=1
(d,a)=1

1 =
∑

ac=n

µ(a)c τ ∗(c, a).

Proposition 3. For every n ≥ 1 we have P̃ (n) ≤ P (n), with equality iff n is square-free,

and 2ω(n)φ(n) ≤ P̃ (n) ≤ 2ω(n)n, with equality iff n = 1.

Proof. This follows at once by (1), (2) and (8).

Remark 1. Let P̂ (n) :=
∑

k∈Reg
n

lcm[k, n]. Then it follows, similar to the “usual” lcm-sum

function that for every n ≥ 1,

P̂ (n) =
n

2


1 +

∑

d||n

dφ(d)


 .

Remark 2. For every n ∈ N let A(n) be an arbitrary nonempty subset of the set of positive
divisors of n. For the system of divisors A = (A(n) : n ∈ N) and for an arbitrary arithmetical
function f consider the following restricted summation of the gcd’s:

PA,f (n) =
∑

1≤k≤n
gcd(k,n)∈A(n)

f(gcd(k, n)).

It follows, similar to the proof of Proposition 1, that

PA,f (n) =
∑

d∈A(n)

f(d)φ(n/d).
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If A(n) is the set of all (positive) divisors of n, then we have the function (3) and if A(n)
is the set of the unitary divisors of n, then we reobtain (9).

If A is a regular system of divisors of Narkiewicz-type, including the previous two special
cases, then PA,f is the A-convolution of the functions f and φ. It turns out, that PA,f is
multiplicative provided f is multiplicative, cf. [10, Ch. 4].

Other special cases for A can also be considered, for ex. A(n) the set of prime divisors
of n or A(n) the set of exponential divisors of n.

3 Asymptotic properties

Theorem 1. The minimal order of P̃ (n) is 3n/2 and the maximal order of log(P̃ (n)/n) is
log 2 log n/ log log n.

Proof. From (8) we have P̃ (n) ≥ n(3/2)ω(n) ≥ 3n/2 for every n ≥ 1, with equality for n = 2ν

(ν ≥ 1), giving the minimal order of P̃ (n).
For the maximal order take into account (7), where the limsup is attained for a sequence

of square-free integers (more exactly for nk =
∏

k/ log2 k<p≤k p, k → ∞), see [6, Theorem 4.1],

and use P̃ (n) ≤ P (n) for every n ≥ 1, with equality iff n is square-free, by Proposition 3.

In what follows we prove the following asymptotic formula for the function P̃ . Let
ψ(n) = n

∏
p|n(1 + 1/p) denote the Dedekind function,

α(n) :=
∑

p|n

log p

p− 1
, β(n) =

∑

p|n

log p

p2 − 1
,

δ(x) := exp
(
−A(log x)3/5(log log x)−1/5

)
,

η(x) := exp
(
B log x(log log x)−1

)
,

where A and B are positive constants and let θ be the exponent in (6).

Theorem 2. We have

∑

n≤x

P̃ (n) =
x2

2ζ(2)
(K1 log x+K2) + O(x3/2δ(x)), (10)

where the constants K1 and K2 are given by

K1 :=
∞∑

n=1

µ(n)

nψ(n)
=
∏

p

(
1 −

1

p(p+ 1)

)
,

K2 := K1

(
2γ −

1

2
−

2ζ ′(2)

ζ(2)

)
−

∞∑

n=1

µ(n)(log n− α(n) + 2β(n))

nψ(n)
.

If RH is true, then the error term of (10) is O(x(7−5θ)/(5−4θ)η(x)).
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Remark 3. Here K1 ≈ 0.7042. Note that K1 = lim
x→∞

2

x2

∑

n≤x

γ(n), where γ(n) =
∏

p|n p is the

greatest square-free divisor of n. Also, K1/ζ(2) ≈ 0.4282 is the so called “carefree constant”,
cf. [8, Section 2.5.1]. For θ ≈ 0.3149 one has (7 − 5θ)/(5 − 4θ) ≈ 1.4505.

Proof. We need the following auxiliary results. Let σ′
s(n) be the sum of s-th powers of the

square-free divisors of n.

Lemma 1. ([12, Theorems 4.3, 5.2]) If k ≥ 1 is an integer, then for every ε > 0,

∑

n≤x

2ω(n,k) =
kx

ζ(2)ψ(k)

(
log x+ α(k) − 2β(k) + 2γ − 1 −

2ζ ′(2)

ζ(2)

)

+O
(
σ′
−1+ε(k)σ

′
−θ(k)x

1/2δ(x)
)
, (11)

the O estimate being uniform in x and k.
If RH is true, then x1/2δ(x) in the error term of (11) can be replaced by x(2−θ)/(5−4θ)η(x).

Note that
α(n) = O(log n), β(n) = O(1), (12)

since α(n) ≤
∑

p|n

log p = log γ(n) ≤ log n and β(n) ≪
∑

p|n

log p

p2
≤
∑

p

log p

p2
<∞.

Lemma 2. For every ε > 0,

∑

n≤x

2ω(n,k)n =
kx2

2ζ(2)ψ(k)

(
log x+ α(k) − 2β(k) + 2γ −

1

2
−

2ζ ′(2)

ζ(2)

)

+O
(
σ′
−1+ε(k)σ

′
−θ(k)x

3/2δ(x)
)
, (13)

If RH is true, then x3/2δ(x) in the error term of (13) can be replaced by x(7−5θ)/(5−4θ)η(x).

Proof. By partial summation from Lemma 1.

We can now complete the proof of Theorem 2. By Proposition 2 and Lemma 2,

∑

n≤x

P̃ (n) =
∑

d≤x

µ(d)
∑

e≤x/d

2ω(e,d)e

=
x2

2ζ(2)

(
∑

d≤x

µ(d)

dψ(d)

(
log x+ 2γ −

1

2
−

2ζ ′(2)

ζ(2)

)
−
∑

d≤x

µ(d)(log d− α(d) + 2β(d))

dψ(d)

)

+O

(
∑

d≤x

σ′
−1+ε(d)σ

′
−θ(d)(x/d)

3/2δ(x/d)

)
.

For every ε > 0 and x sufficiently large, xεδ(x) is increasing, therefore

(x/d)3/2δ(x/d) = (x/d)3/2−ε(x/d)εδ(x/d) ≤ (x/d)3/2−εxεδ(x) = x3/2δ(x)/d3/2−ε.
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Furthermore, it is enough to use the inequalities σ′
−1+ε(d) ≤ τ(d) (for ε < 1) and σ′

−θ(d) ≤
τ(d) and then obtain the given formula using (12) and the well known estimates

∑

d>x

1

d2
≪

1

x
,
∑

d>x

log d

d2
≪

log x

x
.

If we assume RH and in the error term use the property that η(x) is increasing, so
η(x/d) ≤ η(x) for d ≥ 1.
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[14] L. Tóth, A generalization of Pillai’s arithmetical function involving regular con-
volutions, Acta Math. Inform. Univ. Ostraviensis 6 (1998), 203–217, available at
http://www.ttk.pte.hu/matek/ltoth/TothGeneralizationPillai(1998).pdf
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