Recursive Generation of k-ary Trees

K. Manes, A. Sapounakis, I. Tasoulas and P. Tsikouras
Department of Informatics
University of Piraeus
18534 Piraeus
Greece
kmanes@unipi.gr
arissap@unipi.gr
jtas@unipi.gr
pgtsik@unipi.gr

Abstract

In this paper we present a construction of every k-ary tree using a forest of $(k-1)$ ary trees satisfying a particular condition. We use this method recursively for the construction of the set of k-ary trees from the set of $(k-1)$-Dyck paths, thus obtaining a new bijection ϕ between these two sets. Furthermore, we introduce a new order on $[k]^{*}$ which is used for the full description of this bijection. Finally, we study some new statistics on k-ary trees which are transferred by ϕ to statistics concerning the occurrence of strings in ($k-1$)-Dyck paths.

1 Introduction

The notion of k-ary trees has been studied extensively in the literature. Some authors deal with the generation of k-ary trees using some encoding of them as integer sequences, which are generated in a specific order (see for example [3, 10, 11, 17, 20, 21]). In another direction k-ary trees are related to other k-Catalan structures such as staircase tilings, the tennis ball problem, noncrossing contractions and K-trees (see for example [6, 7, 12, 13, 14]). Finally, there are some papers dealing with the enumeration of k-ary trees according to some parameters (see for example [5, 19, 22]).

A well known procedure for the study of trees contained in a certain set \mathcal{T} is to introduce a decomposition of these trees with respect to the size and then, using this decomposition, to rebuild \mathcal{T} from trees of smaller size.

In this paper, we use a different procedure for the construction of the set \mathcal{T}_{k} of all k ary trees. First, we present a decomposition of each k-ary tree to a forest of $(k-1)$-ary
trees satisfying certain properties and we show how these trees can be reconstructed from the associated forest. Next, by introducing an operation on forests, we present a recursive construction (in terms of k) of \mathcal{T}_{k} using unary trees, thus obtaining a new bijection from k-ary trees to $(k-1)$-Dyck paths.

In Section 2 we give some definitions and preliminary results.
In Section 3 we associate every k-ary tree with a forest of $(k-1)$-ary trees such that the path with ascent sequence consisting of the sizes of the trees in this forest is a Dyck path. Conversely, every such forest generates the tree uniquely; consequently an algorithmic construction is given.

In Section 4, the method used in the previous section is applied recursively for every k-ary tree, and terminates with a forest of unary trees such that the path with ascent sequence consisting of the sizes of the trees in this forest is a $(k-1)$-Dyck path. Conversely, this forest generates the tree uniquely, so that a new bijection ϕ between \mathcal{T}_{k} and the set of all ($k-1$)-Dyck paths is obtained.

In Section 5 we fully describe ϕ, by introducing a new order on the set of maximal paths of the k-ary tree.

Finally, in Section 6 we enumerate the set \mathcal{T}_{k} according to some parameters related to the notions of the previous sections.

2 Preliminaries

A k-ary tree, $k \geq 1$, is either the empty tree \square or a vertex (or internal node), called the root of the tree, with k ordered children which are k-ary trees. We define $\mathcal{T}_{k, n}$ to be the set of all k-ary trees with n vertices, and $\mathcal{T}_{k}=\bigcup_{n \geq 0} \mathcal{T}_{k, n}$. Thus, every $T \in \mathcal{T}_{k}$ can be uniquely decomposed as follows:

$$
\begin{equation*}
T=\square \quad \text { or } \quad T=T_{1} T_{2} \cdots T_{k}, \quad T_{i} \in \mathcal{T}_{k}, \quad i \in[k] \tag{1}
\end{equation*}
$$

(see Figure 1).

Figure 1: The k-ary tree $T=T_{1} T_{2} \cdots T_{k}$.

An empty child of a vertex is called a leaf (or external node) of the tree. The size of a k-ary tree T is the number of its vertices and it is denoted by $s(T)$; (see for example Figure 2).

Clearly, every $T \in \mathcal{T}_{k, n}$ contains $k n+1$ nodes (k children for each of the n internal nodes plus the root of the tree) and $(k-1) n+1$ leaves.

Figure 2: A 3-ary tree of size 8.

It is well known (see for example [8], p.589) that $\left|\mathcal{T}_{k, n}\right|$ is equal to the n-th k-Catalan number

$$
C_{n}^{(k)}=\frac{1}{k n+1}\binom{k n+1}{n}=\frac{1}{(k-1) n+1}\binom{k n}{n} .
$$

We note that $C_{n}^{(2)}$ are the ordinary Catalan numbers $C_{n}([15], \underline{A 000108})$.
Furthermore, the generating function $C_{k}(x)=\sum_{n \geq 0} C_{n}^{(k)} x^{n}$ of the k-Catalan sequence satisfies the equation

$$
C_{k}(x)=1+x\left(C_{k}(x)\right)^{k}
$$

from which it can be easily shown using the Lagrange inversion formula ([2], Appendix A) that the coefficients of $\left(C_{k}(x)\right)^{s}, s \in \mathbb{N}$, are given by the formula

$$
\left[x^{n}\right]\left(C_{k}(x)\right)^{s}=\frac{s}{k n+s}\binom{k n+s}{n} .
$$

Every non-empty $(k-1)$-ary tree can be considered as a k-ary tree which has all its k-th children empty.

A maximal $(k-1)$-ary subtree of a k-ary tree T is any tree obtained by choosing a k-th child in T (or T itself) and by deleting every k-th child in it. Obviously, two maximal $k-1$-ary subtrees of T are disjoint; (see for example Figure 3).

Consequently, if T has n vertices, then it contains $n+1$ maximal $(k-1)$-ary subtrees.
A (totally ordered) forest of k-ary trees is an element \mathcal{F} of the cartesian product $\mathcal{T}_{k}^{\lambda}$, for some $\lambda \in \mathbb{N}^{*}$. We denote, for simplicity, the forest which consists of a single tree T by T. The concatenation of the forests $\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots, \mathcal{F}_{\rho}$ is a new forest which consists of the trees of each $\mathcal{F}_{j}, j \in[\rho]$, ordered by extending the orders of every \mathcal{F}_{j}, preserving at the same time their natural order. The length and the size of a forest $\mathcal{F}=\left(T_{1}, T_{2}, \ldots, T_{\lambda}\right)$ are defined respectively by

$$
|\mathcal{F}|=\lambda \quad \text { and } \quad s(\mathcal{F})=\sum_{i=1}^{\lambda} s\left(T_{i}\right)
$$

A non-empty i-path, $i \in \mathbb{N}^{*}$, is a lattice path starting at the point $(0,0)$ and consisting of steps $u_{i}=(1, i)$ (rises) and $d=(1,-1)$ (falls). The empty path ε is the path with no steps.

Figure 3: The 3-ary tree of Figure 2 and all its binary maximal subtrees.

For every i-path P we denote by $r(P)$ (respectively $f(P)$) the number of rises (respectively falls) of P. An i-Dyck path is an i-path that never falls below the x axis and ends at the x axis. If P is an i-Dyck path, then $f(P)=i \cdot r(P)$ and P ends at the point $((i+1) r(P), 0)$. We will refer to a 1-path (respectively a 1 -Dyck path) as a path (respectively a Dyck path); in this case we write u instead of u_{1}. The set of all i-Dyck paths with n rises is denoted by $\mathcal{D}_{n}^{(i)}$ and $\mathcal{D}^{(i)}=\bigcup_{n \geq 0} \mathcal{D}_{n}^{(i)}$. In particular, we write \mathcal{D} (respectively \mathcal{D}_{n}) instead of $\mathcal{D}^{(1)}$ (respectively $\mathcal{D}_{n}^{(1)}$) for the ordinary Dyck paths.

Every non empty i-Dyck path P is written in the following form, called the first return decomposition (for $i=1$, see [2]):

$$
\begin{equation*}
P=u_{i} Q_{1} d Q_{2} d \cdots Q_{i} d Q_{i+1} \tag{2}
\end{equation*}
$$

where $Q_{j} \in \mathcal{D}^{(i)}, j \in[i+1]$. Using this decomposition and the Lagrange inversion formula, it can be easily obtained that i-Dyck paths with n rises are counted by $C_{n}^{(i+1)}$. A simple bijection θ between the k-ary trees and the $(k-1)$-Dyck paths is given as follows:

$$
\theta(\square)=\varepsilon \quad \text { and } \quad \theta\left(T_{1} T_{2} \cdots T_{k}\right)=u_{k-1} \theta\left(T_{1}\right) d \theta\left(T_{2}\right) d \cdots \theta\left(T_{k-1}\right) d \theta\left(T_{k}\right)
$$

Another well known decomposition of non-empty i-Dyck paths which will be used in this paper is based on the length of the first ascent, i.e.,

$$
\begin{equation*}
P=u_{i}^{\mu} d Q_{1} d Q_{2} d \cdots Q_{\mu i} \tag{3}
\end{equation*}
$$

where $Q_{j} \in \mathcal{D}^{(i)}$ and $j \in[\mu i]$.
Every i-path P is uniquely determined by its sequence of ascents $\left(l_{m}\right)_{m \in[\mu]}, \mu \in \mathbb{N}^{*}$, according to the formula $P=u_{i}^{l_{1}} d u_{i}^{l_{2}} d \cdots u_{i}^{l_{\mu-1}} d u_{i}^{l_{\mu}}$, where $u_{i}^{j}=u_{i} u_{i} \cdots u_{i}$ (j times). Clearly, if P ends at the x axis (as in the case of i-Dyck paths), then $l_{\mu}=0$. The sum of the elements of this sequence equals the number of rises in the path and the number of its elements is one more than the number of falls; (see for example Figure 4).

We note that the path $P=u_{i}^{l_{1}} d u_{i}^{l_{2}} d \cdots u_{i}^{l_{\mu-1}} d u_{i}^{l_{\mu}}$ is an $(i-1)$-Dyck path if and only if

Figure 4: The Dyck path having ascent sequence ($4,0,0,2,0,1,0,1,0$).
the following two conditions hold:

$$
(i-1) \sum_{j=1}^{m} l_{j} \geq m, \text { for all } m \in[\mu-1] \quad \text { and } \quad(i-1) \sum_{j=1}^{\mu} l_{j}=\mu-1 .
$$

For every forest \mathcal{F} we denote by $P_{i}(\mathcal{F})$ the i-path with ascent sequence the sequence of sizes of the trees in \mathcal{F}. If $i=1$ we write $P(\mathcal{F})$ instead of $P_{1}(\mathcal{F})$. It is evident that $r\left(P_{i}(\mathcal{F})\right)=s(\mathcal{F})$ and $f\left(P_{i}(\mathcal{F})\right)=|\mathcal{F}|-1$.

We note that if \mathcal{F} is the concatenation of the forests $\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots, \mathcal{F}_{\rho}$, then

$$
\begin{equation*}
P_{i}(\mathcal{F})=P_{i}\left(\mathcal{F}_{1}\right) d P_{i}\left(\mathcal{F}_{2}\right) d \cdots P_{i}\left(\mathcal{F}_{\rho-1}\right) d P_{i}\left(\mathcal{F}_{\rho}\right) \tag{4}
\end{equation*}
$$

3 Generation of k-ary trees from ($k-1$)-ary trees

For every non-empty $T \in \mathcal{T}_{k}, k \geq 2$, we denote by $\mathcal{F}(T)$ the forest consisting of all maximal ($k-1$)-ary subtrees of T, ordered according to the first time visit (in preorder) of the trees of $\mathcal{F}(T)$ in T and by T^{*} the first component of $\mathcal{F}(T)$; (see for example Figure 5).

Figure 5: The forest $\mathcal{F}(T)$ and its corresponding path $P(\mathcal{F}(T))$ for the tree T of Figure 2.

Clearly, T^{*} is rooted at the root of T and can be obtained by deleting every k-th child of T. If T is empty then T^{*} is empty and $\mathcal{F}(\square)=\square$. It is clear that the last tree of $\mathcal{F}(T)$ is always the empty tree.

Using decomposition (1), we can easily check that $\mathcal{F}(T)$ is the concatenation of T^{*}, $\widetilde{\mathcal{F}}\left(T_{1}\right), \widetilde{\mathcal{F}}\left(T_{2}\right), \ldots, \widetilde{\mathcal{F}}\left(T_{k-1}\right), \mathcal{F}\left(T_{k}\right)$, where $T^{*}=T_{1}^{*} T_{2}^{*} \cdots T_{k-1}^{*}$ and $\widetilde{\mathcal{F}}\left(T_{j}\right), j \in[k-1]$, is $\mathcal{F}\left(T_{j}\right)$ excluding T_{j}^{*}.

We have the following result.

Proposition 1. For every $T=T_{1} T_{2} \cdots T_{k} \in \mathcal{T}_{k}$ we have
i) $s\left(T^{*}\right)=1+\sum_{j=1}^{k-1} s\left(T_{j}^{*}\right)$.
ii) $s(\mathcal{F}(T))=s(T)$.
iii) $|\mathcal{F}(T)|=s(T)+1$.
iv) $P(\mathcal{F}(T))=u^{\nu} d P\left(\widetilde{\mathcal{F}}\left(T_{1}\right)\right) d P\left(\widetilde{\mathcal{F}}\left(T_{2}\right)\right) \cdots d P\left(\widetilde{\mathcal{F}}\left(T_{k-1}\right)\right) d P\left(\mathcal{F}\left(T_{k}\right)\right)$, where $\nu=s\left(T^{*}\right)$.
v) $P(\mathcal{F}(T))$ is a Dyck path.

Proof. The proof of (i) is obvious, whereas the proof of $(i v)$ follows immediately from relation (4). The proofs of $(i i),(i i i)$ and (v) use induction as follows:

$$
\begin{gathered}
s(\mathcal{F}(T))=s\left(T^{*}\right)+\sum_{j=1}^{k-1}\left(s\left(\mathcal{F}\left(T_{j}\right)\right)-s\left(T_{j}^{*}\right)\right)+s\left(\mathcal{F}\left(T_{k}\right)\right) \\
=s\left(T^{*}\right)+\sum_{j=1}^{k}\left(s\left(T_{j}\right)\right)-\sum_{j=1}^{k-1} s\left(T_{j}^{*}\right)=1+\sum_{j=1}^{k} s\left(T_{j}\right)=s(T) . \\
|\mathcal{F}(T)|=1+\sum_{j=1}^{k-1}\left(\left|\mathcal{F}\left(T_{j}\right)\right|-1\right)+\left|\mathcal{F}\left(T_{k}\right)\right|=1+\sum_{j=1}^{k-1} s\left(T_{j}\right)+1+s\left(T_{k}\right)=1+s(T) .
\end{gathered}
$$

Finally, since each $P\left(\mathcal{F}\left(T_{i}\right)\right), i \in[k]$ is a Dyck path, it follows that the path

$$
u P\left(\mathcal{F}\left(T_{1}\right)\right) P\left(\mathcal{F}\left(T_{2}\right)\right) \cdots P\left(\mathcal{F}\left(T_{k-1}\right)\right) d P\left(\mathcal{F}\left(T_{k}\right)\right)
$$

is also a Dyck path and hence, using the equalities $P\left(\mathcal{F}\left(T_{j}\right)\right)=u^{s\left(T_{j}^{*}\right)} d P\left(\widetilde{\mathcal{F}}\left(T_{j}\right)\right), j \in[k-1]$, and $(i),(i v)$, we obtain that $P(\mathcal{F}(T))$ is a Dyck path.

In the sequel we will show that k-ary trees can be generated by certain forests of $(k-1)$ ary trees. For this, we will introduce a new decomposition of k-ary trees. For $T \in \mathcal{T}_{k}$, we denote by Z_{i} the k-th child in T of the i-th (in postorder) vertex of T^{*}. Clearly, T can be uniquely recovered by attaching each Z_{i} as the k-th child to the i-th (in postorder) vertex of T^{*}. The trees $T^{*}, Z_{1}, Z_{2}, \ldots, Z_{\nu}$, where $\nu=s\left(T^{*}\right)$, form a decomposition of T called the first component decomposition; (see for example Figure 6).

Proposition 2. For every $T \in \mathcal{T}_{k}$, the forest $\mathcal{F}(T)$ is the concatenation of the forests $T^{*}, \mathcal{F}\left(Z_{1}\right), \mathcal{F}\left(Z_{2}\right), \ldots, \mathcal{F}\left(Z_{\nu}\right)$.

Figure 6: The first component decomposition of the tree of Figure 2.

Proof. It is enough to show that if X, Y are two trees in $\mathcal{F}\left(Z_{i}\right), \mathcal{F}\left(Z_{j}\right)$ respectively then X precedes Y in $\mathcal{F}(T)$ if and only if $i<j$ or $i=j$ and X precedes Y in $\mathcal{F}\left(Z_{i}\right)$.

We will prove this using induction on the size of the tree T.
If $T=T_{1} T_{2} \cdots T_{k}$, then it is evident that $Z_{\nu}=T_{k}$.
Clearly, each $Z_{i}, i \in[\nu-1]$ is a subtree of a unique $T_{\xi_{i}}, \xi_{i} \in[k-1]$, such that $\xi_{i} \leq \xi_{j}$ whenever $i<j$. Then X, Y belong to $\mathcal{F}\left(T_{\xi_{i}}\right), \mathcal{F}\left(T_{\xi_{j}}\right)$ respectively and $X \neq T_{\xi_{i}}^{*}, Y \neq T_{\xi_{j}}^{*}$. We consider two cases:

1. If $\xi_{i} \neq \xi_{j}$ then X precedes Y in $\mathcal{F}(T)$ if and only if $\xi_{i}<\xi_{j}$ or equivalently $i<j$.
2. If $\xi_{i}=\xi_{j}$ then X precedes Y in $\mathcal{F}(T)$ if and only if X precedes Y in $\mathcal{F}\left(T_{\xi_{i}}\right)$ or equivalently, by the induction hypothesis $i<j$ or $i=j$ and X precedes Y in $\mathcal{F}\left(Z_{i}\right)$.

Hence, in every case X precedes Y in $\mathcal{F}(T)$ if and only if $i<j$ or $i=j$ and X precedes Y in $\mathcal{F}\left(Z_{i}\right)$.

From Proposition 2 and relation (4) we obtain a new, simpler expression for $P(\mathcal{F}(T))$, using the Dyck paths $P\left(\mathcal{F}\left(Z_{j}\right)\right), j \in[\nu]$.

$$
\begin{equation*}
P(\mathcal{F}(T))=u^{\nu} d P\left(\mathcal{F}\left(Z_{1}\right)\right) d P\left(\mathcal{F}\left(Z_{2}\right)\right) \ldots d P\left(\mathcal{F}\left(Z_{\nu}\right)\right), \quad \text { where } \nu=s\left(T^{*}\right) . \tag{5}
\end{equation*}
$$

Proposition 3. The mapping $T \rightarrow \mathcal{F}(T)$ is a size preserving bijection between \mathcal{T}_{k} and the set of forests \mathcal{F} of $(k-1)$-ary trees with $P(\mathcal{F}) \in \mathcal{D}$.

Proof. Given a forest \mathcal{F} of $(k-1)$-ary trees such that $P(\mathcal{F}) \in \mathcal{D}$, we will show by induction that there exists a unique tree $T \in \mathcal{T}_{k}$ such that $\mathcal{F}=\mathcal{F}(T)$.

Using the first ascent decomposition (3) we have $P(\mathcal{F})=u^{\nu} d Q_{1} d Q_{2} \cdots d Q_{\nu}$, where ν is the size of the first element S of \mathcal{F} and $Q_{j} \in \mathcal{D}$, for all $j \in[\nu]$. Since

$$
\sum_{j=1}^{\nu}\left(r\left(Q_{j}\right)+1\right)=\sum_{j=1}^{\nu} r\left(Q_{j}\right)+\nu=r(P(\mathcal{F}))=s(\mathcal{F})=|\mathcal{F}|-1
$$

it follows that there exists a sequence of forests $\left(\mathcal{F}_{j}\right), j \in[\nu]$, such that \mathcal{F} is the concatenation of $S, \mathcal{F}_{1}, \mathcal{F}_{2}, \ldots, F_{\nu}$ and $\left|\mathcal{F}_{j}\right|=r\left(Q_{j}\right)+1$,

It follows from relation (4) that $P\left(\mathcal{F}_{j}\right)=Q_{j}$ and hence it is a Dyck path, for every $j \in[\nu]$. Thus, by the induction hypothesis, there exists $Z_{j} \in \mathcal{T}_{k}, j \in[\nu]$, such that $\mathcal{F}_{j}=\mathcal{F}\left(Z_{j}\right)$. Then T is the tree constructed by attaching Z_{j} to the j-th (in postorder) vertex of S as its k-th child; from Proposition 2 it follows immediately that $\mathcal{F}=\mathcal{F}(T)$.

For the proof of the uniqueness, let $\mathcal{F}(X)=\mathcal{F}(T)$; then $T^{*}=X^{*}$. If $T^{*}, Z_{1}, Z_{2}, \ldots, Z_{\nu}$ and $T^{*}, Y_{1}, Y_{2}, \ldots, Y_{\nu}$ are the first component decompositions of T and X respectively, then since $P(\mathcal{F}(T))=P(\mathcal{F}(X))$, by relation (5) it follows that $P\left(\mathcal{F}\left(Z_{i}\right)\right)=P\left(\mathcal{F}\left(Y_{i}\right)\right)$, for every $i \in[\nu]$. Furthermore, since $\left|\mathcal{F}\left(Z_{i}\right)\right|=f\left(P\left(\mathcal{F}\left(Z_{i}\right)\right)\right)+1=f\left(P\left(\mathcal{F}\left(Y_{i}\right)\right)\right)+1=\left|\mathcal{F}\left(Y_{i}\right)\right|$ for every $i \in[\nu]$, by Proposition 2 we obtain that $\mathcal{F}\left(Z_{i}\right)=\mathcal{F}\left(Y_{i}\right)$, for every $i \in[\nu]$. Thus, by the induction hypothesis, $Z_{i}=Y_{i}$ for each $i \in[\nu]$, so that $T=X$.

We close this section with the following algorithmic construction of the tree $T \in \mathcal{T}_{k}$ such that $\mathcal{F}(T)=\mathcal{F}$, where \mathcal{F} is a given forest of $(k-1)$-ary trees with $P(\mathcal{F}) \in \mathcal{D}$:

We start with the first tree of \mathcal{F}. At each step, we add as the k-th child of the first (in postorder) vertex which does not have a k-th child, the first tree of \mathcal{F} that has not already been used. For example, the tree T of Figure 2 can be constructed from the forest of Figure 5 as shown in Figure 7.

Figure 7: Construction of T from \mathcal{F}.

4 Generation of k-ary trees from unary trees

In this section we show how every k-ary tree can be uniquely decomposed into a forest of unary trees which leads to a new bijection between the sets \mathcal{T}_{k} and $\mathcal{D}^{(k-1)}$. For this, we first introduce a mapping on forests denoted by ($)^{\prime}$.

For every forest $\mathcal{F}=\left(T_{1}, T_{2}, \ldots, T_{\lambda}\right)$ of k-ary trees, we define the forest \mathcal{F}^{\prime} of $(k-1)$-ary trees to be the concatenation of the forests $\mathcal{F}\left(T_{1}\right), \mathcal{F}\left(T_{2}\right), \ldots, \mathcal{F}\left(T_{\lambda}\right)$. Using Proposition 1 (ii), (iii), we deduce the following equalities:

$$
\begin{equation*}
s\left(\mathcal{F}^{\prime}\right)=s(\mathcal{F}) \quad \text { and } \quad\left|\mathcal{F}^{\prime}\right|=s(\mathcal{F})+|\mathcal{F}| \tag{6}
\end{equation*}
$$

Furthermore, it can be easily checked that if \mathcal{F} is the concatenation of the forests $\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots, \mathcal{F}_{\rho}$, then \mathcal{F}^{\prime} is the concatenation of the forests $\mathcal{F}_{1}^{\prime}, \mathcal{F}_{2}^{\prime}, \ldots, \mathcal{F}_{\rho}^{\prime}$.

The following two results establish additional properties of ()$^{\prime}$.
Proposition 4. For any pair of forests \mathcal{F}, \mathcal{G}, we have that if $\mathcal{F}^{\prime}=\mathcal{G}^{\prime}$ then $\mathcal{F}=\mathcal{G}$.
Proof. Since $|\mathcal{F}|=\left|\mathcal{F}^{\prime}\right|-s\left(\mathcal{F}^{\prime}\right)=\left|\mathcal{G}^{\prime}\right|-s\left(\mathcal{G}^{\prime}\right)=|\mathcal{G}|$, we can write

$$
\mathcal{F}=\left(T_{1}, T_{2}, \ldots, T_{\lambda}\right) \quad \text { and } \quad \mathcal{G}=\left(X_{1}, X_{2}, \ldots, X_{\lambda}\right)
$$

We assume that $\mathcal{F} \neq \mathcal{G}$ and we choose ρ to be the least element of $[\lambda]$ such that $T_{\rho} \neq X_{\rho}$. Since $\mathcal{F}^{\prime}=\mathcal{G}^{\prime}$ and $\mathcal{F}\left(T_{\rho}\right) \neq \mathcal{F}\left(X_{\rho}\right)$, it follows that $\left|\mathcal{F}\left(T_{\rho}\right)\right| \neq\left|\mathcal{F}\left(X_{\rho}\right)\right|$; without loss of generality we assume that $\left|\mathcal{F}\left(T_{\rho}\right)\right|<\left|\mathcal{F}\left(X_{\rho}\right)\right|$. Then, there exists a forest \mathcal{H} such that $\mathcal{F}\left(X_{\rho}\right)$ is the concatenation of $\mathcal{F}\left(T_{\rho}\right)$ and \mathcal{H}. It follows that $P\left(\mathcal{F}\left(X_{\rho}\right)\right)=P\left(\mathcal{F}\left(T_{\rho}\right)\right) d P(\mathcal{H})$ which is not a Dyck path, giving the required contradiction.

Proposition 5. For every forest \mathcal{F}, we have that $P_{i-1}(\mathcal{F}) \in \mathcal{D}^{(i-1)}$ if and only if $P_{i}\left(\mathcal{F}^{\prime}\right) \in$ $\mathcal{D}^{(i)}$.

Proof. Let $\mathcal{F}=\left(T_{1}, T_{2}, \ldots, T_{\lambda}\right) ;$ then

$$
P_{i-1}(\mathcal{F})=u_{i-1}^{s\left(T_{1}\right)} d u_{i-1}^{s\left(T_{2}\right)} d \cdots u_{i-1}^{s\left(T_{\lambda-1}\right)} d u_{i-1}^{s\left(T_{\lambda}\right)}
$$

and by relation (4)

$$
P_{i}\left(\mathcal{F}^{\prime}\right)=P_{i}\left(\mathcal{F}\left(T_{1}\right)\right) d P_{i}\left(\mathcal{F}\left(T_{2}\right)\right) d \cdots P_{i}\left(\mathcal{F}\left(T_{\lambda-1}\right)\right) d P_{i}\left(\mathcal{F}\left(T_{\lambda}\right)\right) .
$$

Clearly, since for every $j \in[\lambda]$ the path $P\left(\mathcal{F}\left(T_{j}\right)\right)$ is a Dyck path, the path $P_{i}\left(\mathcal{F}\left(T_{j}\right)\right)$ lies above the x axis and ends at height $(i-1) s\left(T_{j}\right)$. Furthermore, the fall following $P_{i}\left(\mathcal{F}\left(T_{j}\right)\right)$ in the path $P_{i}\left(\mathcal{F}^{\prime}\right)$ is at the same height as the fall following the ascent $u_{i-1}^{s\left(T_{j}\right)}$ in the path $P_{i-1}(\mathcal{F})$, for all $j \in[\lambda-1]$, giving the required result.

We now have the following result.
Proposition 6. For every forest of $(k-1)$-ary trees \mathcal{F} such that $P_{i}(\mathcal{F}) \in \mathcal{D}^{(i)}$, there exists a unique forest \mathcal{G} of k-ary trees such that $\mathcal{G}^{\prime}=\mathcal{F}$ and $|\mathcal{G}|=1+(i-1) s(\mathcal{F})$.

Proof. Clearly, if $\mathcal{F}=\square$, the result holds for $\mathcal{G}=\square$, while, if $i=1$ the result follows from Proposition 3. Otherwise, since $P_{i}(\mathcal{F}) \in \mathcal{D}^{(i)}$, the path $P(\mathcal{F})$ starts at the origin with a rise and ends at a point below the x-axis attaining the least possible height; so, there exists a sequence $\left(Q_{j}\right)_{j \in[\lambda]}$ of Dyck paths, such that

$$
P(\mathcal{F})=Q_{1} d Q_{2} d \cdots Q_{\lambda-1} d Q_{\lambda}
$$

and $Q_{1} \neq \varepsilon$. Then, since

$$
|\mathcal{F}|=1+f(P(\mathcal{F}))=1+\lambda-1+\sum_{j=1}^{\lambda} f\left(Q_{j}\right)=\sum_{j=1}^{\lambda}\left(r\left(Q_{j}\right)+1\right)
$$

there exists a unique sequence $\left(\mathcal{F}_{j}\right)_{j \in[\lambda]}$ of forests of $(k-1)$-ary trees such that $\left|\mathcal{F}_{j}\right|=r\left(Q_{j}\right)+1$, for all $j \in[\lambda]$ and \mathcal{F} is the concatenation of the forests $\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots, \mathcal{F}_{\lambda}$. Then, by relation (4), it follows that

$$
P(\mathcal{F})=P\left(\mathcal{F}_{1}\right) d P\left(\mathcal{F}_{2}\right) d \cdots P\left(\mathcal{F}_{\lambda-1}\right) d P\left(\mathcal{F}_{\lambda}\right)
$$

Since for all $j \in[\lambda]$ we have that $f\left(P\left(\mathcal{F}_{j}\right)\right)=\left|\mathcal{F}_{j}\right|-1=f\left(Q_{j}\right)$, from the above two expressions of $P(\mathcal{F})$ it follows that $P\left(\mathcal{F}_{j}\right)=Q_{j}$. Thus, $P\left(\mathcal{F}_{j}\right)$ is a Dyck path and by Proposition 3 there exists a unique $T_{j} \in \mathcal{T}_{k}$ such that $\mathcal{F}_{j}=\mathcal{F}\left(T_{j}\right)$. Then, for $\mathcal{G}=\left(T_{1}, T_{2}, \ldots, T_{\lambda}\right)$, we obtain $\mathcal{G}^{\prime}=\mathcal{F}$.

Now, since $P_{i}(\mathcal{F}) \in \mathcal{D}^{(i)}$ and $Q_{j} \in \mathcal{D}$ for each $j \in[\lambda]$, we have that
$\operatorname{ir}\left(P_{i}(\mathcal{F})\right)=f\left(P_{i}(\mathcal{F})\right)=f(P(\mathcal{F}))=\lambda-1+\sum_{j=1}^{\lambda} f\left(Q_{j}\right)=\lambda-1+\sum_{j=1}^{\lambda} r\left(Q_{j}\right)=\lambda-1+r(P(\mathcal{F}))$.
Furthermore, since $r\left(P_{i}(\mathcal{F})\right)=r(P(\mathcal{F}))=s(\mathcal{F})$ and $|\mathcal{G}|=\lambda$, it follows that $|\mathcal{G}|=$ $1+(i-1) s(\mathcal{F})$.

The uniqueness of \mathcal{G} follows from Proposition 4.
The next result follows directly from Propositions 5 and 6.
Proposition 7. The mapping () from the set of forests of $(k-i+1)$-ary trees with $P_{i-1}(\mathcal{F}) \in$ $\mathcal{D}^{(i-1)}$ to the set of forests of $(k-i)$-ary trees with $P_{i}(\mathcal{F}) \in \mathcal{D}^{(i)}$ where $i \geq 2$, is a bijection.

Using the mapping ($)^{\prime}$, for every $T \in \mathcal{T}_{k}$ and $i \in[k-1]$, we define recursively the forest $\mathcal{F}^{i}(T)$ by the relations

$$
\mathcal{F}^{0}(T)=T \quad \text { and } \quad \mathcal{F}^{i}(T)=\left(\mathcal{F}^{i-1}(T)\right)^{\prime}
$$

For example, for the tree T of Figure 2 for which $\mathcal{F}(T)$ has been already constructed (see Figure 5), we can easily obtain that $\mathcal{F}^{2}(T)$ is the forest of Figure 8.

Clearly, the forest $\mathcal{F}^{i}(T)$ consists of $(k-i)$-ary trees. Furthermore, from (6) we obtain inductively the following generalization of equalities (ii), (iii) of Proposition 1:

$$
s\left(\mathcal{F}^{i}(T)\right)=s(T) \quad \text { and } \quad\left|\mathcal{F}^{i}(T)\right|=i s(T)+1
$$

Figure 8: The forest $\mathcal{F}^{2}(T)$.

In particular, the second equality for $i=k-1$ shows that we have a $1-1$ correspondence between the leaves of the tree T and the unary trees of $\mathcal{F}^{k-1}(T)$.

Using Propositions 5 and 6 we can easily show by induction that $P_{i}\left(\mathcal{F}^{i}(T)\right) \in \mathcal{D}^{(i)}$, for every $i \in[k-1]$. Furthermore, using Proposition 7 we deduce by induction the following result which is a generalization of Proposition 3.

Proposition 8. For every $i \in[k-1]$, the mapping $T \rightarrow \mathcal{F}^{i}(T)$ is a size preserving bijection between \mathcal{T}_{k} and the set of forests \mathcal{F} of $(k-i)$-ary trees with $P_{i}(\mathcal{F}) \in \mathcal{D}^{(i)}$.

An application of the previous result for $i=k-1$ gives that the mapping $\mathcal{T} \rightarrow \mathcal{F}^{k-1}(\mathcal{T})$ is a size preserving bijection between \mathcal{T}_{k} and the set of forests \mathcal{F} of unary trees with $P_{k-1}(\mathcal{F}) \in$ $\mathcal{D}^{(k-1)}$. Clearly, since any such forest \mathcal{F} can be identified with the associated path $P_{k-1}(\mathcal{F})$, we obtain the following result.

Proposition 9. The mapping $\phi: \mathcal{T}_{k} \rightarrow \mathcal{D}^{(k-1)}$ with $\phi(T)=P_{k-1}\left(\mathcal{F}^{k-1}(T)\right)$ is a bijection such that $s(T)=r(\phi(T))$.

Notice that the classical bijection θ mentioned in Section 2 is different from the bijection ϕ of the previous Proposition. For example, for the tree T of Figure 2 we have

$$
\theta(T)=u_{2} u_{2} d u_{2} d d d d u_{2} d d u_{2} u_{2} d d d d u_{2} d d d u_{2} d d,
$$

whereas

$$
\phi(T)=u_{2} u_{2} d u_{2} d d u_{2} d d d d u_{2} u_{2} d d d d u_{2} d d d u_{2} d d .
$$

Both bijections use recursion, θ with respect to the size, whereas ϕ with respect to k.

5 Maximal paths of k-ary trees

In this section we show that every k-ary tree can be uniquely expressed by the set of its maximal paths. Furthermore, using this expression, we give an equivalent simple formula for the bijection ϕ.

Let \mathcal{A}_{k} be the set of all subsets A of $[k]^{*}$ (the set of all words on the alphabet $[k]$) satisfying the following two conditions:
i) If $x=\rho \alpha \in A$, where $\rho, \alpha \in[k]^{*}$ and $\alpha \neq \varepsilon$, then, for all $i \in[k]$, the set A contains at least one word of the form $\rho i \gamma_{i}$, where $\gamma_{i} \in[k]^{*}$.
ii) If $\rho \in A$ and $\alpha \in[k]^{*}$, then $\rho \alpha \in A$ if and only if $\alpha=\varepsilon$.

From the above two conditions, it follows easily that $\{\varepsilon\} \in \mathcal{A}_{k}$ and $\varepsilon \notin A$ for all $A \in \mathcal{A}_{k}$ with $A \neq\{\varepsilon\}$.

We define recursively the mapping $\psi: \mathcal{T}_{k} \rightarrow \mathcal{A}_{k}$ by

$$
\psi(\square)=\{\varepsilon\} \quad \text { and } \quad \psi\left(T_{1} T_{2} \cdots T_{k}\right)=\left\{i \alpha: \alpha \in \psi\left(T_{i}\right), i \in[k]\right\}
$$

For example, for the tree T of Figure 2 we have

$$
\psi(T)=\{11,121,122,123,13,21,22,2311,2312,2313,232,2331,2332,2333,31,32,33\} .
$$

It is easy to check that ψ is a bijection, such that $|\psi(T)|=(k-1) s(T)+1$, for all $T \in \mathcal{T}_{k}$. Furthermore, the elements of $\psi(T)$ code the maximal paths of T. In fact, the maximal path $S=v_{1} v_{2} \cdots v_{\ell+1}$ of T or, equivalently, its associated leaf $v_{\ell+1}$, is coded by the word $\alpha=a_{1} a_{2} \cdots a_{\ell} \in \psi(T)$ if and only if v_{i+1} is the a_{i}-th child of v_{i}, for all $i \in[\ell]$.

Additionally, since $\left|\mathcal{F}^{k-1}(T)\right|=|\psi(T)|$, there exists a 1-1 correspondence between the sequences of $\psi(T)$ and the trees of $\mathcal{F}^{k-1}(T)$ such that every $x \in \psi(T)$ corresponds to a unique unary tree T_{x} of $\mathcal{F}^{k-1}(T)$, which is the left path of the leaf which is coded by x. For example, the word $x=2311$ of $\psi(T)$ in the tree T of Figure 2 corresponds to the 8 -th element of the forest $\mathcal{F}^{2}(T)$ of Figure 8.

Using the above expression of k-ary trees, we will give a method for the construction of a $(k-1)$-Dyck path from a set $A \in \mathcal{A}_{k}$ endowed with a total order. Firstly, for each $x \in[k]^{*}$, we set $l(x)$ to be the number of trailing 1's of x. Clearly, $l(x)=s\left(T_{x}\right)$, for every $x \in \psi(T)$.

Proposition 10. Let \preceq be a partial order on $[k]^{*}$ satisfying the following conditions:

1. the restriction of \preceq on A is a total order and $\min A$ is the element of A which contains only 1's,
2. $i \alpha \preceq i \beta$ if and only if $\alpha \preceq \beta$, for all $\alpha, \beta \in A$ and $i \in[k]$,
for each $A \in \mathcal{A}_{k}$. Then we have that

$$
u_{k-1}^{l\left(\alpha_{1}\right)} d u_{k-1}^{l\left(\alpha_{2}\right)} d \cdots u_{k-1}^{l\left(\alpha_{\mu-1}\right)} d u_{k-1}^{l\left(\alpha_{\mu}\right)} \in \mathcal{D}^{(k-1)},
$$

for all $A \in \mathcal{A}_{k}$, where $A=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\mu}\right\}$ and $\alpha_{1} \preceq \alpha_{2} \preceq \cdots \preceq \alpha_{\mu}$.
Proof. In order to prove that the above path is a $(k-1)$-Dyck path, it suffices to prove that

$$
(k-1) \sum_{\substack{x \in A \\ x \preceq y}} l(x) \geq|\{x \in A: x \preceq y\}|, \quad \text { and } \quad(k-1) \sum_{x \in A} l(x)=|A|-1,
$$

where $y \in A \backslash\left\{\alpha_{\mu}\right\}$. We will use induction with respect to the cardinality of $A \in \mathcal{A}_{k}$.
For $A=\{\varepsilon\}$, the result is true. For $A \neq\{\varepsilon\}$ we will prove only the inequality, since the equality can be proved analogously.

We define $A_{i}=\left\{\alpha \in[k]^{*}: i \alpha \in A\right\}$, for each $i \in[k]$. It is easy to check that $A_{i} \in \mathcal{A}_{k}$, for every $i \in[k]$. Furthermore, we define $I=\left\{i \in[k]: i \alpha \preceq y\right.$ for some $\left.\alpha \in A_{i}\right\}$. Obviously, $1 \in I$. For each $i \in I$, we denote by α_{i} the maximum element of A_{i} with $i \alpha_{i} \preceq y$. Then, we have

$$
\begin{aligned}
(k-1) \sum_{\substack{x \in A \\
x \preceq y}} l(x) & =(k-1) \sum_{\substack{i \in I}} \sum_{\substack{\alpha \in A_{i} \\
i \alpha \preceq y}} l(i \alpha)=(k-1) \sum_{i \in I} \sum_{\substack{\alpha \in A_{i} \\
\alpha \preceq \alpha_{i}}} l(i \alpha) \\
& =(k-1) \sum_{\substack{i \in I \backslash\{1\}}} \sum_{\substack{\alpha \in A_{i} \\
\alpha \preceq \alpha_{i}}} l(\alpha)+(k-1)\left(1+\sum_{\substack{\alpha \in A_{1} \\
\alpha \preceq \alpha_{1}}} l(\alpha)\right) \\
& =\sum_{i \in I}(k-1) \sum_{\substack{\alpha \in A_{i} \\
\alpha \preceq \alpha_{i}}} l(\alpha)+(k-1) \\
& \geq \sum_{i \in I \backslash\{k\}}\left(\left|\left\{\alpha \in A_{i}: \alpha \preceq \alpha_{i}\right\}\right|-1\right)+\sum_{i \in I \cap\{k\}}\left|\left\{\alpha \in A_{i}: \alpha \preceq \alpha_{i}\right\}\right|+(k-1) \\
& =\sum_{i \in I}\left|\left\{\alpha \in A_{i}: \alpha \preceq \alpha_{i}\right\}\right|-|I \backslash\{k\}|+k-1 \geq|\{x \in A: x \preceq y\}| .
\end{aligned}
$$

From the previous proposition, it follows that given a partial order " \preceq " on $[k]^{*}$ satisfying conditions 1, 2, we have that

$$
(k-1) \sum_{j=1}^{m} l\left(\alpha_{j}\right) \geq m, \quad \text { for every } m \in[\mu-1] \quad \text { and } \quad(k-1) \sum_{j=1}^{\mu} l\left(\alpha_{j}\right)=\mu-1,
$$

for every set $A=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\mu}\right\} \in \mathcal{A}_{k}$ with $\alpha_{t} \preceq \alpha_{s}$ if and only if $t \leq s$. Thus, the mapping χ on \mathcal{A}_{k} defined by

$$
\chi(\{\varepsilon\})=\varepsilon, \quad \chi(A)=u_{k-1}^{l\left(\alpha_{1}\right)} d u_{k-1}^{l\left(\alpha_{2}\right)} d \cdots u_{k-1}^{l\left(\alpha_{\mu-1}\right)} d
$$

takes values in $\mathcal{D}^{(k-1)}$.
Clearly, this mapping depends on the choice of the partial order " \preceq ". If " \preceq " is the lexicographic order on $[k]^{*}$ (which obviously satisfies the conditions of Proposition 10), then the resulting mapping χ may be used in order to give an explicit formula of the bijection θ.

In order to describe the bijection ϕ using the above equivalent expression of k-ary trees, we need an ordering for the elements of each $A \in \mathcal{A}_{k}$. Thus we define a partial order on $[k]^{*}$, denoted by " \preceq ", as follows: If $x=\rho \alpha$ and $y=\rho \beta$, where ρ is the maximal common initial part (possibly empty) of x and y, then

$$
x \preceq y \Leftrightarrow\left\{\begin{array}{l}
\alpha=\beta=\varepsilon, \text { or } \\
\max \alpha<\max \beta, \text { or } \\
\max \alpha=\max \beta \quad \text { and first element of } \alpha<\text { first element of } \beta .
\end{array}\right.
$$

Clearly, from condition ii) in the definition of \mathcal{A}_{k}, it follows that " \preceq " is a total order on each $A \in \mathcal{A}_{k}$.

For example, the elements of $\psi(T)$ for the tree T of Figure 2 are ordered as follows:

$$
\begin{aligned}
11 & \preceq 121 \preceq 122 \preceq 21 \preceq 22 \preceq 123 \preceq 13 \preceq 2311 \\
& \text { } 2312 \preceq 232 \preceq 2313 \preceq 2331 \preceq 2332 \preceq 2333 \preceq 31 \preceq 32 \preceq 33 .
\end{aligned}
$$

So, for the set $A=\psi(T)$, we have the following 2-Dyck path:

$$
\chi(A)=u_{2}^{2} d u_{2} d d u_{2} d d d d u_{2}^{2} d d d d u_{2} d d d u_{2} d d
$$

Proposition 11. For every $k \in \mathbb{N}^{*}$ and $T \in \mathcal{T}_{k}$, we have that

$$
\chi(\psi(T))=\phi(T)
$$

Proof. Using the first component decomposition $T^{*}, Z_{1}, \ldots, Z_{\nu}$, where $\nu=s\left(T^{*}\right)$, of a tree $T \in \mathcal{T}_{k}$, it follows inductively using Proposition 2 that $\mathcal{F}^{k-1}(T)$ is the concatenation of the forests $\mathcal{F}^{k-2}\left(T^{*}\right), \mathcal{F}^{k-1}\left(Z_{1}\right), \ldots, \mathcal{F}^{k-1}\left(Z_{\nu}\right)$. We will show by induction with respect to k and to the size of the tree, that if $x, y \in \psi(T)$ and T_{x}, T_{y} are their associated trees in $\mathcal{F}^{k-1}(T)$, then T_{x} precedes T_{y} in $\mathcal{F}^{k-1}(T)$ if and only if $x \preceq y$.

We consider the following cases:

1. T_{x}, T_{y} are in $\mathcal{F}^{k-2}\left(T^{*}\right)$. Then $x, y \in \psi\left(T^{*}\right)$ and hence, using the induction hypothesis (with respect to k), we deduce that $x \preceq y$.
2. T_{x} is in $\mathcal{F}^{k-2}\left(T^{*}\right)$ and T_{y} is in $\mathcal{F}^{k-1}\left(Z_{i}\right)$, for some $i \in[\nu]$. Then $x \prec y$, since $\max x<$ $k=\max y$.
3. T_{x}, T_{y} are in $\mathcal{F}^{k-1}\left(Z_{i}\right)$, for some $i \in[\nu]$. Then $x=\rho k \alpha$ and $y=\rho k \beta$, where $\rho \in[k-1]^{*}$ and $\alpha, \beta \in[k]^{*}$. It follows that $\alpha, \beta \in \psi\left(Z_{i}\right)$ and hence, using the induction hypothesis (with respect to the size of the tree), we deduce that $\alpha \preceq \beta$ and therefore $x \preceq y$.
4. T_{x} is in $\mathcal{F}^{k-1}\left(Z_{i}\right)$ and T_{y} is in $\mathcal{F}^{k-1}\left(Z_{j}\right)$, where $i, j \in[\nu]$ and $i \neq j$. Then $i<j$, so that the parent of Z_{i} precedes the parent of Z_{j} (in postorder). Thus, $x=\rho \alpha$ and $y=\rho \beta$, $\rho \in[k-1]^{*}$ (where ρ is the initial common part of x and y) and $\alpha, \beta \in[k]^{*}$. It follows that $\max \alpha=\max \beta=k$ and first element of $\alpha<$ first element of β, and hence $x \preceq y$.
This shows that in all cases, $x \preceq y$.
The converse now follows obviously, since $\mathcal{F}^{k-1}(T)$ is totally ordered.
Finally, since $l(x)=s\left(T_{x}\right)$, for every $x \in \psi(T)$, the ($k-1$)-paths $\chi(\psi(T))$ and $\phi(T)$ have the same ascent sequence and therefore they are identical.

6 Enumerations

In this section, we study some statistics on k-ary trees related to the notions studied in the previous sections.

6.1 Enumeration of \mathcal{T}_{k} according to the number of non-empty trees of $\mathcal{F}^{i}(T)$

Given $i, k \in \mathbb{N}^{*}$ with $i \leq k-1$ and $T \in \mathcal{T}_{k}$, we denote by $p_{i, k}(T)$ the number of non-empty trees of $\mathcal{F}^{i}(T)$ and by $F_{i, k}$ the generating function

$$
F_{i, k}(x, y)=\sum_{T \in \mathcal{T}_{k}} x^{s(T)} y^{p_{i, k}(T)}
$$

It follows that

$$
p_{i, k}(\square)=0 \quad \text { and } \quad p_{i, k}\left(T_{1} T_{2} \cdots T_{k}\right)=1+\sum_{j=1}^{k} p_{i, k}\left(T_{j}\right)-\sum_{j=1}^{k-i}\left[T_{j} \neq \square\right]
$$

where $[P]$ is the well known Iverson notation defined by $[P]= \begin{cases}1, & \text { if } P \text { is true; } \\ 0, & \text { if } P \text { is false }\end{cases}$
The above equality can be proved by induction (with respect to k). Indeed, since the forest $\mathcal{F}(T)$ is the concatenation of $T^{*}, \widetilde{\mathcal{F}}\left(T_{1}\right), \widetilde{\mathcal{F}}\left(T_{2}\right), \ldots, \widetilde{\mathcal{F}}\left(T_{k-1}\right), \mathcal{F}\left(T_{k}\right)$, where $T^{*}=$ $T_{1}^{*} T_{2}^{*} \cdots T_{k-1}^{*}$, we can easily check that the forest $\mathcal{F}^{i}(T)$ is the concatenation of

$$
\mathcal{F}^{i-1}\left(T^{*}\right), \widetilde{\mathcal{F}^{i}}\left(T_{1}\right), \widetilde{\mathcal{F}^{i}}\left(T_{2}\right), \ldots, \widetilde{\mathcal{F}^{i}}\left(T_{k-1}\right), \mathcal{F}^{i}\left(T_{k}\right)
$$

Furthermore, using the induction hypothesis for the tree $T^{*} \in \mathcal{T}_{k-1}$, we obtain that

$$
\begin{aligned}
p_{i, k}(T) & =p_{i-1, k-1}\left(T^{*}\right)+\sum_{j=1}^{k-1}\left(p_{i, k}\left(T_{j}\right)-p_{i-1, k-1}\left(T_{j}^{*}\right)\right)+p_{i, k}\left(T_{k}\right) \\
& =1+\sum_{j=1}^{k-1} p_{i-1, k-1}\left(T_{j}^{*}\right)-\sum_{j=1}^{k-1-(i-1)}\left[T_{j}^{*} \neq \square\right]+\sum_{j=1}^{k-1} p_{i, k}\left(T_{j}\right)-\sum_{j=1}^{k-1} p_{i-1, k-1}\left(T_{j}^{*}\right)+p_{i, k}\left(T_{k}\right) \\
& =1+\sum_{j=1}^{k} p_{i, k}\left(T_{j}\right)-\sum_{j=1}^{k-i}\left[T_{j} \neq \square\right] .
\end{aligned}
$$

From the above relation, it follows that the generating function $F_{i, k}(x, y)$ satisfies the following equation:

$$
F_{i, k}(x, y)=1+x y\left(F_{i, k}(x, y)\right)^{i}\left(1+\frac{1}{y}\left(F_{i, k}(x, y)-1\right)\right)^{k-i}
$$

Using the Lagrange inversion formula, we obtain the following result.
Proposition 12. The number of all k-ary trees of size n for which the forest $\mathcal{F}^{i}(T), i \in$ [$k-1$], contains exactly j non-empty trees is equal to

$$
\left[x^{n} y^{j}\right] F_{i, k}=\frac{1}{n}\binom{n i}{j-1}\binom{(k-i) n}{n-j} .
$$

The above result is of special interest for the cases $i=k-1$ and $i=1$. In particular, using the bijection φ, we can easily check that $p_{k-1, k}(T)=N_{u d}(\phi(T))$, where $N_{u d}(\phi(T))$ denotes the number of u 's (peaks) in $\phi(T)$; thus the above two parameters are equidistributed, which implies that the number of $(k-1)$-Dyck paths having n rises and j peaks is equal to $\frac{1}{n}\binom{(k-1) n}{j-1}\binom{n}{j}$.

We note that since the number $p_{k-1, k}(T)-1$, which counts the non-empty trees in $\mathcal{F}^{k-1}(T)$ other than the first one, is equal to $N_{d u}(\phi(T))$ we can easily deduce that the number of $(k-1)$-Dyck paths with n rises and j valleys is equal to $\frac{1}{n}\binom{(k-1) n}{j}\binom{n}{j+1}$.

Furthermore, since $\left|\mathcal{F}^{k-1}(T)\right|=(k-1) s(T)+1$, we obtain that the number of empty trees in $\mathcal{F}^{k-1}(T)$ other than the last one (which is always empty) is equal to $(k-1) s(T)-p_{k-1, k}(T)$. Since we can easily check that this number is equal to $N_{d d}(\phi(T))$, we deduce that the number of $(k-1)$-Dyck paths having n rises and j doublefalls is equal to $\frac{1}{n}\binom{(k-1) n}{j+1}\binom{n}{(k-1) n-j}$.

On the other hand, using a variation θ^{\prime} of θ defined by

$$
\theta^{\prime}(\square)=\varepsilon \quad \text { and } \quad \theta^{\prime}\left(T_{1} T_{2} \cdots T_{k}\right)=u \theta^{\prime}\left(T_{k}\right) d \theta^{\prime}\left(T_{k-1}\right) \cdots d \theta^{\prime}\left(T_{2}\right) d \theta^{\prime}\left(T_{1}\right)
$$

we can easily check by induction that $N_{u u}\left(\theta^{\prime}(T)\right)=p_{1, k}(T)-[T \neq \square]$, for every $T \in \mathcal{T}_{k}$. From this equality, it follows easily that the number of all $(k-1)$-Dyck paths having n rises and j doublerises is equal to $\frac{1}{n}\binom{n}{j}\binom{(k-1) n}{n-j-1}$.
S. Heubach et al. [6] give analogous results on similar generalized Dyck paths.

6.2 Enumeration according to the size of the first element of $\mathcal{F}^{i}(T)$

For every $T \in \mathcal{T}_{k}$ we denote by $q_{i, k}(T), i \in[k-1]$, the size of the first element of $\mathcal{F}^{i}(T)$ and $G_{i, k}(x, y)$ the generating function

$$
G_{i, k}(x, y)=\sum_{T \in \mathcal{T}_{k}} x^{s(T)} y^{q_{i, k}(T)} .
$$

It follows that

$$
q_{i, k}(\square)=0 \quad \text { and } \quad q_{i, k}\left(T_{1} T_{2} \cdots T_{k}\right)=1+\sum_{j=1}^{k-i} q_{i, k}\left(T_{j}\right)
$$

The above equality can be proved easily by induction (with respect to k), using the equality $q_{i, k}(T)=q_{i-1, k-1}\left(T^{*}\right)$.

From the above relation, it follows that the generating function $G_{i, k}(x, y)$ satisfies the following equation:

$$
G_{i, k}(x, y)=1+x y\left(G_{i, k}(x, 1)\right)^{i}\left(G_{i, k}(x, y)\right)^{k-i}=1+x y\left(C_{k}(x)\right)^{i}\left(G_{i, k}(x, y)\right)^{k-i}
$$

Using the Lagrange inversion formula, we obtain the following result.
Proposition 13. The number of all k-ary trees T of size n, for which the first element of $\mathcal{F}^{i}(T), i \in[k-1]$, has size j is equal to

$$
\left[x^{n} y^{j}\right] G_{i, k}(x, y)=\frac{i}{(n-j) k+i j}\binom{(n-j) k+i j}{n-j}\binom{(k-i) j}{j-1} .
$$

For the case $i=k-1$, using the bijection φ, we can easily check that $q_{k-1, k}(T)$ is the length of the first ascent of $\phi(T)$, thus the number of $(k-1)$-Dyck paths having n rises and length of first ascent equal to j is $\frac{(k-1) j}{k n-j}\binom{k n-j}{n-j}$.

References

[1] H. Ahrabian and A. Nowzari-Dalini, Parallel generation of t-ary trees in A-order, Computer J. 50 (2007), 581-588.
[2] E. Deutsch, Dyck path enumeration, Discrete Math. 204 (1999), 167-202.
[3] M. C. Er, Lexicographic listing and ranking of t-ary trees, Computer J. 30 (1987), 569-572.
[4] M. C. Er, Efficient generation of k-ary trees in natural order, Computer J. 35 (1992), 306-308.
[5] I. M. Gessel and S. Seo, A refinement of Cayley's formula for trees, Electron. J. Combin. 11 (2006), \#R2.
[6] S. Heubach, N. Y. Li and T. Mansour, Staircase tilings and k-Catalan structures, Discrete Math. 308 (2008), 5954-5964.
[7] M. Jani, R. G. Rieper, and M. Zeleke, Enumeration of K-trees and applications, Ann. Comb. 6 (2002), 375-382.
[8] D. E. Knuth. The Art of Computer Programming. Fundamental Algorithms, Vol. 1, Addison-Wesley, 3rd edition, 1997.
[9] J. F. Korsh, A-order generation of k-ary trees with $4 k-4$ letter alphabet, J. Inform. Opt. Sci. 16 (1995), 557-567.
[10] J. F. Korsh and P. LaFollette, Loopless generation of Gray codes for k-ary trees, Inform. Process. Lett. 70 (1999), 7-11.
[11] J. F. Korsh and S. Lipschutz, Shifts and loopless generation of k-ary trees, Inform. Process. Lett. 65 (1998), 235-240.
[12] T. Mansour, M. Schork and S. Severini, Noncrossing normal ordering for functions of boson operators, Internat. J. Theoret. Phys. 47 (2008), 832-849.
[13] D. Merlini, R. Sprugnoli and M. C. Verri, The tennis ball problem, J. Combin. Theory Ser. A 99 (2002), 307-344.
[14] A. Mier and M. Noy, A solution to the tennis ball problem, Theoret. Comput. Sci. 346 (2005), 254-264.
[15] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, 2009.
[16] J. Pallo, Generating trees with n nodes and m leaves, Int. J. Comput. Math. 21 (1987), 133-144.
[17] D. Roelants van Baonaigien and F. Ruskey, Generating t-ary trees in A-order, Inform. Process. Lett. 27 (1988), 205-213.
[18] F. Ruskey, Generating t-ary trees lexicographically, SIAM J. Comput. 7 (1978), 424439.
[19] G. Seroussi, On the number of t-ary trees with a given path length, Algorithmica 46 (2006), 557-565.
[20] L. Xiang, K. Ushijima and C. Tang, On generating k-ary trees in computer representation, Inform. Process. Lett. 77 (2001), 231-238.
[21] S. Zaks, Generation and ranking of k-ary trees, Inform. Process. Lett. 14 (1982), 44-48.
[22] M. Zeleke and M. Jani, k-trees and Catalan identities, Congr. Numer. 165 (2003), 39-49.

2000 Mathematics Subject Classification: Primary 05A15; Secondary 05A19.
Keywords: Generalized Dyck words, k-ary trees, k-Catalan numbers.
(Concerned with sequence A000108.)

Received July 14 2009; revised version received November 3 2009. Published in Journal of Integer Sequences, November 42009.

Return to Journal of Integer Sequences home page.

