
23 11

Article 11.1.7
Journal of Integer Sequences, Vol. 14 (2011),2

3

6

1

47

Arithmetic Progressions on Edwards Curves

Dustin Moody
Computer Security Division

National Institute of Standards and Technology (NIST)
100 Bureau Drive

Gaithersburg, MD, 20899-8930
USA

dbmoody25@gmail.com

Abstract

We look at arithmetic progressions on elliptic curves known as Edwards curves.

By an arithmetic progression on an elliptic curve, we mean that the x-coordinates of a

sequence of rational points on the curve form an arithmetic progression. Previous work

has found arithmetic progressions on Weierstrass curves, quartic curves, and genus 2

curves. We find an infinite number of Edwards curves with an arithmetic progression

of length 9.

1 Introduction

Recently, several researchers have looked at arithmetic progressions on elliptic curves. Brem-
ner [3], Campbell [4], Garcia-Selfa and Tornero [7] used elliptic curves given by a Weierstrass
equation, while Campbell [4], MacLeod [10], and Ulas [11] have looked at quartic models.
Alvarado [1], and Ulas [12] have extended similar results to genus 2 curves. The historical
motivation for this problem is discussed in [7].

Weierstrass equations and quartic curves are only two of several possible models for
elliptic curves. H. Edwards recently proposed a new parameterization for elliptic curves [6].
These Edwards curves are of the form

Ed : x2 + y2 = 1 + dx2y2,

with d 6= 1. In this work, we look at arithmetic progressions on Edwards curves. By this
we mean a sequence of rational points (x1, y1), . . . , (xn, yn) on Ed with the xi forming an
arithmetic progression.
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2 Arithmetic Progressions

Unlike other models for elliptic curves, the Edwards curve Ed has only one parameter we
can modify. Still, we are able to prove the following result:

Theorem 1. There are infinitely many choices for d such that the Edwards curve

Ed : x2 + y2 = 1 + dx2y2,

has (at least) 9 points in an arithmetic progression.

Proof. The curve Ed clearly has the points (−1, 0), (0, 1), and (1, 0) for any choice of d. We
seek to find d to extend this arithmetic progression. In order for the curve to have a point
with x-coordinate x = ±2, then we must have 4 + y2 = 1 + 4dy2, or equivalently

y2 =
3

4d − 1
.

For y to be rational, we need 4d − 1 = 3j2, for some rational j. Solving this for d, this is

d =
1 + 3j2

4
. (1)

For the same reason, if we require that Ed has a point with x-coordinate ±3, then we must
have

y2 =
8

9d − 1
.

For y to be rational, we need 9d − 1 = 2k2 for some rational k, or

d =
1 + 2k2

9
. (2)

Equating (1) and (2) yields the conic

Cd : 27j2 − 8k2 + 5 = 0.

By inspection, the point (1, 2) lies on the conic. We can use this point to parameterize all
rational points on the curve Cd:

(j, k) =

(

8m2 − 32m + 27

8m2 − 27
,
−2(8m2 − 27m + 27)

8m2 − 27

)

,

where m is any rational number. By equation (1) (or (2)),

d =
64m4 − 384m3 + 984m2 − 1296m + 729

(8m2 − 27)2
. (3)

For any rational m, we have found an Edwards curve Ed which has rational points with
x-coordinates −3,−2,−1, 0, 1, 2, and 3.
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We now use this to obtain an infinite family of Edwards curves with arithmetic progres-
sions of length (at least) 9. For a rational point to satisfy x = ±4, then we seek a rational
y such that y2 = 15

16d−1
. Substituting in the value of d from equation (3), this is

y2 =
5(8m2 − 27)2

(320m4 − 2048m3 + 5392m2 − 6912m + 3645)
.

Then y will be rational provided that

1

5
(320m4 − 2048m3 + 5392m2 − 6912m + 3645) = t2, (4)

for some rational t. As the discriminant of 320m4 − 2048m3 + 5392m2 − 6912m + 3645 is
non-zero, then (4) is the equation of an elliptic curve. Using MAGMA [2], this curve is found
to be isomorphic to the elliptic curve with Weierstrass equation

E : y2 = x3 − x2 − 19633x − 762863.

The curve E has rank 2, with generators (−99, 448) and (−93, 500). There are thus an
infinite number of rational points on the curve (4). For each such rational point (m, t), if we
substitute this value of m into (3), then we obtain a value of d for which the curve Ed has
an arithmetic progression of length 9. Namely, the progression is -4, -3, -2, -1, 0, 1, 2, 3, and
4.

3 Future Work

It is possible that the family of curves given in the proof of Theorem 1 lead to longer
arithmetic progressions. We performed a computer search to find a rational point (m, t) on
the curve (4), leading to an Ed with points having x-coordinates ±5. Our search has not
found such a rational point, thus it is an open problem to find an Edwards curve with an
arithmetic progression of length 10 or longer.

We remark that it would be interesting to examine other models for elliptic curves for
arithmetic progressions. For example, this could include Jacobi intersections [5] , Hessian
curves [9], or Huff curves [8].
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