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Abstract

Using the theory of exponential Riordan arrays and orthogonal polynomials, we

demonstrate that the general Eulerian polynomials, as defined by Xiong, Tsao and

Hall, are moment sequences for simple families of orthogonal polynomials, which we

characterize in terms of their three-term recurrence. We obtain the generating functions

of this polynomial sequence in terms of continued fractions, and we also calculate

the Hankel transforms of the polynomial sequence. We indicate that the polynomial

sequence can be characterized by the further notion of generalized Eulerian distribution

first introduced by Morisita. We finish with examples of related Pascal-like triangles.

1 Introduction

The triangle of Eulerian numbers























1 0 0 0 0 0 . . .

1 0 0 0 0 0 . . .

1 1 0 0 0 0 . . .

1 4 1 0 0 0 . . .

1 11 11 1 0 0 . . .

1 26 66 26 1 0 . . .
...

...
...

...
...

...
. . .























,
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with its general elements

An,k =
k

∑

i=0

(−1)i
(

n+ 1

i

)

(k − i+ 1)n =
n−k
∑

i=0

(−1)i
(

n+ 1

i

)

(n− k − i)n,

along with its variants, has been studied extensively [1, 10, 14, 15, 17, 18]. It is closely
associated with the family of Eulerian polynomials

En(t) =
∑

k=0

An,kt
k.

The Eulerian polynomials have exponential generating function

∞
∑

n=0

En(t)
xn

n!
=

t− 1

t− ex(t−1)
.

It can be shown that the sequence En(t) is the moment sequence of a family of orthogonal
polynomials [3]. Recently, Xiong, Tsao and Hall have provided an “arithmetical” general-
ization of the Eulerian numbers and Eulerian polynomials [33].

Definition 1. For a given arithmetic progression {a, a + d, a + 2d, a + 3d, . . .}, the general
(arithmetical) Eulerian numbers An,k(a, d) are defined by

An,k(a, d) =
k

∑

i=0

(−1)i
(

n+ 1

i

)

((k + 1− i)d− a)n.

Definition 2. The general (arithmetical) Eulerian polynomials associated to the arithmetic
progression {a, a+ d, a+ 2d, a+ 3d, . . .} are defined by

Pn(t; a, d) =
n

∑

k=0

An,k(a, d)t
k.

It can be shown [33] that the generating function of the family of polynomials Pn(t; a, d)
is given by

∑

n≥0

Pn(t; a, d)
xn

n!
=

(t− 1)eax(t−1)

t− edx(t−1)
.

Note that since (using the language of Riordan arrays)

(t− 1)eax(t−1)

t− edx(t−1)
=

[

eax(t−1), x
]

·
(t− 1)

t− edx(t−1)

we have

Pn(t; a, d) =
n

∑

k=0

(

n

k

)

(a(t− 1))n−kdkEn(t).
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In this paper, we shall assume that the reader is familiar with the basic elements of the
theory of exponential Riordan arrays [2, 11], orthogonal polynomials [9, 16, 31], the links
between exponential Riordan arrays and orthogonal polynomials [5, 6], and such techniques
as that of production matrices [12, 13, 27]. We shall calculate the Hankel transform [21,
22, 23, 28] of many of the sequences that we encounter. This often involves characterising
certain generating functions as continued fractions [32]. Specific examples of the use of these
techniques can be found in [3]. Where sequences encountered are documented in the On-Line
Encyclopedia of Integer Sequences [29, 30] we shall refer to them by their sequence number
Annnnnn. For instance, the binomial matrix (Pascal’s triangle) with general element

(

n

k

)

is
A007318.

2 Main results

The main result of this note is a characterization of the general (arithmetical) Eulerian
polynomials as a family of moments. We have

Theorem 3. The family of general arithmetical Eulerian polynomials Pn(t; a, d) are the
moments of the family of orthogonal polynomials Qn(x) where

Qn(x) = (x− (a(t− 1) + d(n+ (n− 1)t)))Qn−1(x)− (n− 1)2d2tQn−2(x),

where Q0(x) = 1 and Q1(x) = x− (a(t− 1) + d).

This is a consequence of the following proposition.

Proposition 4. The Riordan array
[

(t− 1)ea(t−1)x

t− ed(t−1)x
,

ed(t−1)x − 1

d(t− ed(t−1)x)

]

has a tri-diagonal production matrix.

Proof. We recall that the bivariate generating function of the production matrix of the
exponential Riordan array [g, f ] is given by [12, 13]

exy(Z(x) + A(x)y)

where
A(x) = f ′(f̄(x)),

and

Z(x) =
g′(f̄(x))

g(f̄(x))
.

In our case,

f(x) =
ed(t−1)x − 1

d(t− ed(t−1)x)
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which implies that

f̄(x) =
1

d(t− 1)
ln

(

1 + dtx

1 + dx

)

.

We deduce that
A(x) = f ′(f̄(x)) = (1 + dx)(1 + dtx).

We have

g(x) =
(t− 1)ea(t−1)x

t− ed(t−1)x
,

which implies that

Z(x) =
g′(f̄(x))

g(f̄(x))
= d2tx+ a(t− 1) + d.

The production matrix is then generated by

exy(d2tx+ a(t− 1) + d+ (1 + dx)(1 + dtx)y).

Thus the production matrix is indeed tri-diagonal, beginning













a(t− 1) + d 1 0 0 0 0 . . .

d2t a(t− 1) + d(t+ 2) 1 0 0 0 . . .

0 4d2t a(t− 1) + d(2t+ 3) 1 0 0 . . .

0 0 9d2t a(t− 1) + d(3t+ 4) 1 0 . . .

0 0 0 16d2t a(t− 1) + d(4t+ 5) 1 . . .

0 0 0 0 25d2t a(t− 1) + d(5t+ 6) . . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .













.

The recurrence coefficients for the three-term recurrence that defines the orthogonal poly-
nomials Qn(x) can now be read from the above.

Corollary 5. The Hankel transform of the sequence of polynomials Pn(t; a, d) is given by

hn = (dt2)(
n+1
2 )

n
∏

i=0

(i!)2.

Corollary 6. The family of orthogonal polynomials Qn(t) has coefficient array given by the
exponential Riordan array

[

1

1 + dx

(

1 + dx

1 + dtx

)a
d

,
1

d(t− 1)
ln

(

1 + dtx

1 + dx

)

]

.

Proof. We have

[

(t− 1)ea(t−1)x

t− ed(t−1)x
,

ed(t−1)x − 1

d(t− ed(t−1)x)

]−1

=

[

1

1 + dx

(

1 + dx

1 + dtx

)a
d

,
1

d(t− 1)
ln

(

1 + dtx

1 + dx

)

]

.
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Corollary 7. The generating function g(x) of the sequence of polynomials Pn(t; a, d) can be
expressed as the following continued fraction.

g(x) =
1

1− (a(t− 1) + d)x−
d2tx2

1− (a(t− 1) + d(t+ 2))x−
4d2tx2

1− (a(t− 1) + d(2t+ 3))x−
9d2tx2

1− . . .

.

We note that it is sometimes more convenient to use the polynomials

P̃n(t; a, d) = Pn(t+ 1; a, d).

We then have
∑

n≥0

P̃n(t; a, d)
xn

n!
=

teaxt

t+ 1− edxt
.

Evidently we have

P̃n(t; a, d) =
n

∑

k=0

(

n

k

)

(at)n−kdkEn(t+ 1).

Theorem 8. The family of polynomials P̃n(t; a, d) are the moments of the family of orthog-
onal polynomials Q̃n(x) where

Q̃n(x) = (x− (at+ d(n+ (n− 1)(t+ 1))))Q̃n−1(x)− (n− 1)2d2(t+ 1)Q̃n−2(x).

This is a consequence of the following proposition.

Proposition 9. The Riordan array

[

teatx

t+ 1− edtx
,

edtx − 1

d(t+ 1− edtx)

]

has a tri-diagonal production matrix.

In fact, the production matrix in this case takes the form





































at+ d 1 0 0 0 0 . . .

d2(t+ 1) at+ d(t+ 3) 1 0 0 0 . . .

0 4d2(t+ 1) at+ d(2t+ 5) 1 0 0 . . .

0 0 9d2(t+ 1) at+ d(3t+ 7) 1 0 . . .

0 0 0 16d2(t+ 1) at+ d(4t+ 9) 1 . . .

0 0 0 0 25d2(t+ 1) at+ d(5t+ 11) . . .
...

...
...

...
...

...
. . .





































.
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3 Examples

In this section we look at four examples. We firstly indicate that the generalized Eulerian
polynomials defined by the sequence of odd numbers are associated with a Pascal-like matrix.
We secondly propose a conjecture concerning the values Pn(1; 1, r) and the values of the
permanents of a certain family of matrices. Finally we look at the sequences defined by
Pn(2; 1, 2) and Pn(2; 2, 1), indicating a combinatorial interpretation for each. In large measure
these examples are inspired by entries in the On-Line Encyclopedia of Integer Sequences
[29, 30].

Example 10. The generalized Eulerian polynomials that correspond to the odd numbers
have a = 1 and d = 2. Now the sequence of polynomials Pn(t; 1, 2) begins

1, t+ 1, t2 + 6t+ 1, t3 + 23t2 + 23t+ 1, t4 + 76t3 + 230t2 + 76t+ 1, . . . ,

and has coefficient array A060187






















1 0 0 0 0 0 · · ·
1 1 0 0 0 0 · · ·
1 6 1 0 0 0 · · ·
1 23 23 1 0 0 · · ·
1 76 230 76 1 0 · · ·
1 237 1682 1682 237 1 · · ·
...

...
...

...
...

...
. . .























.

This is the triangle of “midpoint Eulerian numbers” [25]. The row sums are equal to 2nn! =
(2n)!!, or A000165 (this is Pn(1; 2, 2)).

Example 11. Special care must be exercised when t = 1, as in this case
[

(t− 1)ea(t−1)x

t− ed(t−1)x
,

ed(t−1)x − 1

d(t− ed(t−1)x)

]

is apparently undefined. Taking the limit as t → 1, we find that
[

1

1− dx
,

x

1− dx

]

is the correct expression. This is a generalized Laguerre array [4]. Starting from the obser-
vation that the inverse binomial transform of Pn(1; 1, 2), which begins

1, 1, 5, 29, 233, 2329, 27949, 391285 . . . ,

can be interpreted as the sequence of n × n permanents of the matrix with 1’s on the
diagonal and 2 elsewhere (cf. A000354), we can conjecture that the (r−1)-st inverse binomial
transform

per(n, r) :=
n

∑

k=0

(

n

k

)

(−(r − 1))n−kPk(1; 1, r)

6
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of Pn(1; 1, r) is the sequence of n× n permanents of the principal minors of the matrix with
1’s on the diagonal and r elsewhere. The generating function for this is

e−(r−1)x

1− rx
,

and the corresponding moment matrix is the exponential Riordan array

[

e−(r−1)x

1− rx
,

x

1− rx

]

.

This means that the inverse matrix is the coefficient array of a family of orthogonal polyno-
mials, as is evidenced by the form of the production matrix





































1 1 0 0 0 0 . . .

r2 2r + 1 1 0 0 0 . . .

0 4r2 4r + 1 1 0 0 . . .

0 0 9r2 6r + 1 1 0 . . .

0 0 0 16r2 8r + 1 1 . . .

0 0 0 0 25r2 10r + 1 . . .
...

...
...

...
...

...
. . .





































.

The numbers per(n; r) then have generating function

1

1− x−
r2x2

1− (2r + 1)x−
4r2x2

1− (4r + 1)x−
9r2x2

1− · · ·

.

From this or otherwise we can deduce that

per(n; r) =
n

∑

k=0

Tn,n−kr
k

where Tn,k is the (n, k)-th element of the exponential array A008290

[

e−x

1− x
, x

]

of rencontres numbers. We deduce that

per(n; r) =
n

∑

k=0

n!

(n− k)!

k
∑

i=0

(−1)i

i!
rk.
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The Hankel transform of per(n; r) is given by

hn = rn(n+1)

n
∏

k=0

(k!)2.

Example 12. The sequence Pn(2; 1, 2) begins

1, 3, 17, 147, 1697, 24483, 423857, 8560947, . . .

and coincides with A080253, or the number of elements in the Coxeter complex of type Bn

(or Cn). Its generating function is
ex

2− e2x
.

Example 13. The sequence Pn(2; 2, 1) begins

1, 3, 11, 51, 299, 2163, 18731, 189171, 2183339, . . .

and coincides with A007047, or the number of chains in the power set of an n-set. Its
generating function is

e2x

2− ex
.

4 Ant lions and generalized Eulerian polynomials

Morisita proposed a statistical distribution model to explain the habitat choice model of ant
lions, based on the idea of environmental density [26]. Morisita showed that this distribution
is governed by an Eulerian-type recurrence. This work was further refined mathematically
by others [7, 8, 19, 20]. Combining this model and the generalized Eulerian polynomials
discussed above, we obtain the following result.

Theorem 14. The family of generalized Eulerian polynomials Pn(t;α, β, d) with generating
function

(t− 1)α+βeαx(t−1)

(t− edx(t−1))α+β

are the moments of the family of orthogonal polynomials Qn(x) where

Qn(x) = (x− (a(d+ t−1)+βd+(n−1)d(t+1)))Qn−1(x)− (n−1)d2t(α+β+n−2)Qn−2(x),

with Q0(x) = 1 and Q1(x) = x− α(d+ t− 1)− βd.

This is a consequence of the following proposition.
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Proposition 15. The Riordan array

[

(t− 1)α+βeαx(t−1)

(t− edx(t−1))α+β
,

ed(t−1)x − 1

d(t− ed(t−1)x)

]

has a tri-diagonal production matrix.

Proof. We let

f(x) =
ed(t−1)x − 1

d(t− ed(t−1)x)
.

As before, we obtain
A(x) = f ′(f̄(x)) = (1 + dx)(1 + dtx).

Now

g(x) =
(t− 1)α+βeαx(t−1)

(t− edx(t−1))α+β
,

which implies that

Z(x) =
g′(f̄(x))

g(f̄(x))
= d2tx(α + β) + α(d+ t− 1) + βd.

Thus the production matrix sought is tri-diagonal, beginning









α(d + t − 1) + βd 1 0 0 0 0 . . .

d2t(α + β) α(d + t − 1) + βd + d(t + 1) 1 0 0 0 . . .

0 2d2t(α + β + 1) α(d + t − 1) + βd + 2d(t + 1) 1 0 0 . . .

0 0 3d2t(α + β + 2) α(d + t − 1) + βd + 3d(t + 1) 1 0 . . .

0 0 0 4d2t(α + β + 3) α(d + t − 1) + βd + 4d(t + 1) 1 . . .

0 0 0 0 . . . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
. . .









We note that

[

(t− 1)α+βeαx(t−1)

(t− edx(t−1))α+β
,

ed(t−1)x − 1

d(t− ed(t−1)x)

]−1

=

[

1

(1 + dx)(α+β)

(

1 + dx

1 + dtx

)a
d

,
1

d(t− 1)
ln

(

1 + dtx

1 + dx

)

]

gives the coefficient array of the orthogonal polynomials Qn(x) in this case.
Furthermore we have the following relation between the two types of generalized Eulerian

polynomials discussed in this note.

Pn(t; a, d) = Pn(t; a, 1− a, d).

Corollary 16. The Hankel transform of Pn(t;α, β, d) is given by

hn(α, β, d) =
n
∏

k=1

(kd2t(α + β + k − 1))n−k+1 = (td2)(
n+1
2 )

n
∏

k=1

k!(α + β + k − 1)n−k+1.
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Example 17. The polynomials Pn(t; 2, 1, 1) begin

1, 2t+ 1, 4t2 + 7t+ 1, 8t3 + 33t2 + 18t+ 1, 16t4 + 131t3 + 171t2 + 41t+ 1, . . . .

This corresponds to the generating function

(t− 1)3e2x(t−1)

(t− ex(t−1))3
.

Note that the limit of this expression as t goes to 1 is 1
(1−x)3

. This generates the values of
the sequence for t = 1, namely

1, 3, 12, 60, 360, 2520, 20160, 181440, . . . ,

or n!
(

n+2
2

)

(essentially A001710).
The reversal of the coefficient array of these polynomials begins























1 0 0 0 0 0 · · ·
2 1 0 0 0 0 · · ·
4 7 1 0 0 0 · · ·
8 33 18 1 0 0 · · ·
16 131 171 41 1 0 · · ·
32 473 1208 718 88 1 · · ·
...

...
...

...
...

...
. . .























,

and has bivariate generating function

(1− t)3e2x(1−t)

(1− tex(1−t))3
.

The inverse binomial transform of this matrix begins























1 0 0 0 0 0 · · ·
1 1 0 0 0 0 · · ·
1 5 1 0 0 0 · · ·
1 15 15 1 0 0 · · ·
1 37 105 37 1 0 · · ·
1 82 523 523 82 1 · · ·
...

...
...

...
...

...
. . .























,

with bivariate generating function

(1− t)3e−xe2x(1−t)

(1− tex(1−t))3
=

(1− t)3ex(1−2t)

(1− tex(1−t))3
.
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Example 18. In similar fashion, consideration of Pn(t; 3, 1, 1) leads to the matrix























1 0 0 0 0 0 · · ·
1 1 0 0 0 0 · · ·
1 6 1 0 0 0 · · ·
1 19 19 1 0 0 · · ·
1 48 150 48 1 0 · · ·
1 109 794 794 109 1 · · ·
...

...
...

...
...

...
. . .























,

with bivariate generating function

(1− t)4ex(1−3t)

(1− tex(1−t))4
.

We can conjecture that the (r − 1)-st inverse binomial transform of the reversal of the
coefficient array of Pn(t; r, 1, 1) is a Pascal-like matrix with bivariate generating function
given by

(1− t)r+1ex(1−rt)

(1− tex(1−t))r+1
.

The case r = −1 is the binomial (Pascal’s) triangle A007318, r = 0 corresponds to A046802,
while r = 1 is the triangle of Eulerian numbers {An+1,k}.

5 Pascal-like triangles and moments

We have encountered a number of Pascal-like triangles already in this note. We finish with
the following remarks. The generating function

(t− 1)e(2−r)xe(t−1)x

t− er(t−1)x
=

(t− 1)ex(t−r+1)

t− er(t−1)x

generates the sequence of polynomials

1, t+ 1, r2t+ (t+ 1)2, (t+ 1)(r3t+ 3r2t+ (t+ 1)2), . . .

whose coefficient array is the Pascal-like triangle









1 0 0 0 0 0 · · ·

1 1 0 0 0 0 · · ·

1 r2 + 2 1 0 0 0 · · ·

1 r3 + 3r2 + 3 r3 + 3r2 + 3 1 0 0 · · ·

1 r4 + 4r3 + 6r2 + 4 7r4 + 8r3 + 12r2 + 6 r4 + 4r3 + 6r2 + 4 1 0 · · ·

1 r5 + 5r4 + 10r3 + 10r2 + 5 21r5 + 40r4 + 30r3 + 30r2 + 10 21r5 + 40r4 + 30r3 + 30r2 + 10 r5 + 5r4 + 10r3 + 10r2 + 5 1 · · ·

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
. .









.
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For r = 0 . . . 4, we get the matrices























1 0 0 0 0 0 · · ·
1 1 0 0 0 0 · · ·
1 2 1 0 0 0 · · ·
1 3 3 1 0 0 · · ·
1 4 6 4 1 0 · · ·
1 5 10 10 5 1 · · ·
...

...
...

...
...

...
. . .























,























1 0 0 0 0 0 · · ·
1 1 0 0 0 0 · · ·
1 3 1 0 0 0 · · ·
1 7 7 1 0 0 · · ·
1 15 33 15 1 0 · · ·
1 31 131 131 31 1 · · ·
...

...
...

...
...

...
. . .























,























1 0 0 0 0 0 · · ·
1 1 0 0 0 0 · · ·
1 6 1 0 0 0 · · ·
1 23 23 1 0 0 · · ·
1 76 230 76 1 0 · · ·
1 237 1682 1682 237 1 · · ·
...

...
...

...
...

...
. . .























,























1 0 0 0 0 0 · · ·
1 1 0 0 0 0 · · ·
1 11 1 0 0 0 · · ·
1 57 57 1 0 0 · · ·
1 247 897 247 1 0 · · ·
1 1013 9433 9433 1013 1 · · ·
...

...
...

...
...

...
. . .























.

We now show that the sequence of polynomials above, whose coefficient array generate these
Pascal-like matrices, are the moments for a family of orthogonal polynomials.

Theorem 19. The family of polynomials Pn(t) generated by

(t− 1)e(2−r)xe(t−1)x

t− er(t−1)x

are the moments of the family of orthogonal polynomials Qn(x) where

Qn(x) = (x− (t+ 1)((n− 1)r + 1)Qn−1(x)− (n− 1)2r2tQn−2(x),

where Q0(x) = 1 and Q1(x) = x− t− 1.

This is a consequence of the following proposition.

Proposition 20. The Riordan array

[

(t− 1)e(2−r)xe(t−1)x

t− er(t−1)x
,

er(t−1)x − 1

r(t− er(t−1)x)

]

has a tri-diagonal production matrix.

12



Indeed, we find that the production matrix has the following form.























t+ 1 1 0 0 0 0 . . .

r2t (r + 1)(t+ 1) 1 0 0 0 . . .

0 4r2t (t+ 1)(2r + 1) 1 0 0 . . .

0 0 9r2t (t+ 1)(3r + 1) 1 0 . . .

0 0 0 16r2t (t+ 1)(4r + 1) 1 . . .

0 0 0 0 25r2 (t+ 1)(5r + 1) . . .
...

...
...

...
...

...
. . .























.
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