On the Periodicity Problem for Residual r-Fubini Sequences

Amir Abbas Asgari
National Organization for Development of Exceptional Talents (NODET)
Tehran
Iran

asgari@helli.ir

Majid Jahangiri
School of Mathematics
Department of Science
Shahid Rajaee Teacher Training University
P. O. Box 16785-163
Tehran
Iran
jahangiri@ipm.ir

Abstract

For any positive integer r, the r-Fubini number with parameter n, denoted by $F_{n,r}$, is equal to the number of ways that the elements of a set with $n + r$ elements can be weakly ordered such that the r least elements are in distinct orders. In this article we focus on the sequence of residues of the r-Fubini numbers modulo an arbitrary positive integer s and show that this sequence is periodic and then, exhibit how to calculate its period length.

1 Introduction

The Fubini numbers (also known as the ordered Bell numbers) form an integer sequence in which the nth term counts the number of weak orderings of a set with n elements. Weak
ordering means that the elements can be ordered, allowing ties. Cayley [2] studied the Fubini numbers as the number of a certain kind of trees with \(n + 1 \) terminal nodes. The Fubini numbers can also be defined as the sum of the Stirling numbers of the second kind, \(\{n\} \), which counts the number of partitions of an \(n \)-element set into \(k \) non-empty subsets. The sequence of residues of the Fubini numbers modulo a positive integer \(s \) was studied by Poonen [6]. He showed that this sequence is periodic and calculated the period length for each positive integer \(s \).

The \(r \)-Stirling numbers of the second kind are defined as an extension to the Stirling numbers of the second kind, in which the first \(r \) elements contained in distinct subsets. Similarly the \(r \)-Fubini numbers, which are denoted by \(F_{n,r} \), are defined as the number of ways which the elements of a set with \(n + r \) elements can be weakly ordered such that the first \(r \) elements are in distinct places. Consider the sequence of remainders of \(F_{n,r} \) modulo an arbitrary number \(s \in \mathbb{N} \) in which \(r \) is fixed, which is denoted by \(A_{r,s} \). One can study the periodicity problem for this sequence. Mezö [4] investigated this problem for \(s = 10 \). In this article \(\omega(A_{r,s}) \), the period of \(A_{r,s} \), is computed for any positive integer \(s \). Based on the fundamental theorem of arithmetic, \(\omega(A_{r,p}) \) is calculated for powers of odd primes \(p^m \). The cases \(s = 2^m \) are studied separately. Therefore if \(s = 2^m p_1^{m_1} p_2^{m_2} \cdots p_k^{m_k} \) is the prime factorization, then the \(\omega(A_{r,s}) \) is equal to the least common multiple of \(\omega(A_{r,p_i^{m_i}})s \) and \(\omega(A_{r,2^m}) \), for \(i = 1, 2, \ldots, k \).

Section 2 contains the basic definitions and relations. The length of the periods in the case of odd prime powers are computed in the Section 3. The similar results about the 2 powers are stated in the Section 4. The last section contains the final theorem which presents the conclusion of the article.

2 Basic concepts

Let \(\{n\} \) be the Stirling number of the second kind with the parameters \(n \) and \(k \) and let \(\{n\}_r \) be the \(r \)-Stirling number of the second kind with parameters \(n \) and \(k \). It is clear that \(n \geq k \geq r \). Fubini numbers are computed as follows [4]:

\[
F_n = \sum_{k=0}^{n} k! \{n\}.
\]

In a similar way we can evaluate the \(r \)-Fubini number \(F_{n,r} \) by

\[
F_{n,r} = \sum_{k=0}^{n} (k + r)! \{n + r\}_r.
\]
There are simple relations and formulae about \(\binom{n}{k} \), which are listed below. One can find a proof of them in [1, 4, 5] and [3, Thm. 4.5.1, p. 158].

\[
\binom{n}{m}_r = \binom{n}{m}_{r-1} - (r-1)\binom{n-1}{m}_{r-1}, 1 \leq r \leq n \tag{1}
\]

\[
\binom{n}{m}_1 = \binom{n}{m} \tag{2}
\]

\[
\binom{n+r}{r}_r = r^n \tag{3}
\]

\[
\binom{n+r}{r+1}_r = (r+1)^n - r^n \tag{4}
\]

\[
\binom{n}{m} = \frac{1}{m!} \sum_{j=1}^{m} (-1)^{m-j} \binom{m}{j} j^n \tag{5}
\]

\[
\binom{n}{m}_r = \frac{1}{m!} \sum_{j=r}^{m} (-1)^{m-j} \binom{m}{j} j^{n-(r-1)} \binom{(j-1)!(j-r)!}{(j-r)!} \tag{6}
\]

By \(\varphi(n) \) we indicate the number of positive integer numbers less than \(n \) and co-prime to it. It is known as Euler’s totient function. The value of \(\varphi(n) \) can be computed via the following relation [3, Example 4.7.3, p. 167]:

\[
\varphi(n) = n \prod_{p|n} \left(1 - \frac{1}{p}\right).
\]

3 The \(r \)-Fubini residues modulo prime powers

Let \(p \) be a prime number greater than 2 and \(m \) be a positive integer. If \((F_{n,r}) \) denotes the sequence of \(r \)-Fubini numbers for a fixed positive integer \(r \), we indicate by \(A_{r,q} = (F_{n,r} \mod q) \), for \(n \in \mathbb{N} \), the sequence of residues of the \(r \)-Fubini numbers modulo the positive integer \(q \). In this section we try to compute the period length of the sequence \(A_{r,q} \) when \(q = p^m \). This length is denoted by \(\omega(A_{r,q}) \).

Proposition 1. Let \(p \) be an odd prime and let \(q = p^m, m \in \mathbb{N} \). If \(q \leq r \), then \(\omega(A_{r,q}) = 1 \).

Proof. The proof is very simple. Since \(p \leq r \), we can deduce that \(p \mid (k+r)! \), for \(k \geq 0 \), and by the relation \(F_{n,r} = \sum_{k=0}^{n} (k+r)! \binom{n+r}{k+r}_r \), we have \(p \mid F_{n,r} \). Therefore \(\omega(A_{r,p}) = 1 \).

As pointed out in the above proposition, it is sufficient to investigate the period length in the cases of \(q > r \).

Lemma 2. Let \(p \) be an odd prime and \(r, m \in \mathbb{N} \) with \(p \geq r + 1 \). Then

\[
p^m - r \geq m.
\]
Proof. For \(m = 1 \) the result is obvious. Suppose the inequality holds for any \(m \geq 2 \). Since \(p(p + m) > 2(p + m) > 2p + m \), we have
\[
p^2 + pm - p \geq p + m. \tag{7}
\]
Since \(p - 1 \geq r \), the induction hypothesis can be reformulated to \(p^n \geq p - 1 + m \). Multiplication by \(p \) results \(p^{n+1} \geq p^2 + pm - p \). By (7) we have \(p^{n+1} \geq p + (m + 1) - 1 \). \qed

Theorem 3. Let \(p \) be an odd prime and \(q = p^m \). After the \((m - 1)\)th term the sequence \(A_{r,q} \) has a period with length \(\omega(A_{r,q}) = \varphi(q) \). In other words, \(F_{n+\varphi(q),r} \equiv F_{n,r} \) (mod \(q \)), for \(n \geq m - 1 \).

Proof. If \(n \geq q - r - 1 \) we can write
\[
F_{n+\varphi(q),r} - F_{n,r} = \sum_{k=0}^{n+\varphi(q)} (k + r)! \left\{ \binom{n + \varphi(q) + r}{k + r} \right\} - \sum_{k=0}^{n} (k + r)! \left\{ \binom{n + r}{k + r} \right\}.
\]
\[
\equiv \sum_{k=0}^{q-r-1} (k + r)! \left(\left\{ \binom{n + \varphi(q) + r}{k + r} \right\} - \left\{ \binom{n + r}{k + r} \right\} \right)
\]
\[
\equiv \sum_{k=0}^{q-r-1} \sum_{j=r}^{k+r} (-1)^{k+r-j} \binom{k+r}{j} j^{n+1} \binom{(j-1)!}{(j-r)!} (j^{\varphi(q)} - 1) \pmod{q}.
\]

If \(j = cp, c \in \mathbb{N} \), then \(j^{n+1} = (cp)^{q-r+h} \), for some \(h \geq 0 \), so from Lemma 2 it follows that \(j^{n+1} \equiv 0 \pmod{q} \). If \(\gcd(j, q) = 1 \), by Euler’s theorem \(j^{\varphi(q) - 1} \equiv 0 \pmod{q} \), so the right hand side of the above congruence relation vanished and we have
\[
F_{n+\varphi(q),r} \equiv F_{n,r} \pmod{q}, \text{ for } n \geq q - r - 1. \tag{8}
\]

If \(m - 1 \leq n < q - r - 1 \) then
\[
F_{n+\varphi(q),r} - F_{n,r} \equiv \sum_{k=0}^{q-r-1} (k + r)! \left(\left\{ \binom{n + \varphi(q) + r}{k + r} \right\} - \left\{ \binom{n + r}{k + r} \right\} \right)
\]
\[
- \sum_{k=n+\varphi(q)+1}^{q-r-1} (k + r)! \left\{ \binom{n + \varphi(q) + r}{k + r} \right\} + \sum_{k=n+1}^{q-r-1} (k + r)! \left\{ \binom{n + r}{k + r} \right\}
\]
\[
\equiv \sum_{k=0}^{q-r-1} \sum_{j=r}^{k+r} (-1)^{k+r-j} \binom{k+r}{j} j^{n+1} \binom{(j-1)!}{(j-r)!} (j^{\varphi(q)} - 1)
\]
\[
- \sum_{k=n+\varphi(q)+1}^{q-r-1} (k + r)! \left\{ \binom{n + \varphi(q) + r}{k + r} \right\} + \sum_{k=n+1}^{q-r-1} (k + r)! \left\{ \binom{n + r}{k + r} \right\} \pmod{q}.
\]
Since \(n \geq m - 1 \), in the indices where \(j = cp, c \in \mathbb{N} \), we have \(j^{n+1} = (cp)^{m+h} \), for some \(h \geq 0 \), and it is deduced that \(j^{n+1} \equiv 0 \pmod{q} \). When \(\gcd(j, q) = 1 \), again \(j^{r(q)} - 1 \equiv 0 \pmod{q} \) by Euler’s theorem. In the sums \(\sum_{k=0}^{q-r-1} (k + r)!\{n+r\} \) and \(\sum_{k=0}^{q-r-1} (k + r)!\{n+r\} + 2 \), the upper parameter of the \(r \)-Stirling number is less than the lower one, and therefore these two sums are equal to zero. So

\[
F_{n+\varphi(q), r} - F_{n, r} \equiv \sum_{k=0}^{q-r-1} \sum_{j=r}^{k+r} (-1)^{k+r-j} \binom{k+r}{j} \binom{j+1}{j} \binom{j}{j-r} \left(j^{\varphi(q)} - 1 \right) \equiv 0 \pmod{q},
\]
and therefore

\[
F_{n+\varphi(q), r} \equiv F_{n, r} \pmod{q} \text{ for } m - 1 \leq n < q - r - 1. \tag{9}
\]

Combining results (8) and (9) gives \(F_{n+\varphi(q), r} \equiv F_{n, r} \pmod{q} \), for \(n \geq m - 1 \). \(\square \)

4 The \(r \)-Fubini residues modulo powers of 2

As in many other computations in number theory, the case of \(p = 2 \) has its own difficulties that require special attention. In the case of powers of 2, initially we calculate the residues of 2-Fubini numbers and then use the results in the case of the \(r \)-Fubini numbers. We classify the sequence of remainders of 2-Fubini numbers modulo \(2^m, m \geq 7 \), in Theorem 6 and then, work on remainders of the \(r \)-Fubini numbers modulo \(2^m, m \geq 7 \) in Theorem 9. The special cases will be proved in Theorems 4, 7 and 8. The trivial cases in which \(2^m \leq r \) with period length 1 are omitted.

Theorem 4. If \(3 \leq m \leq 6 \), then after the \((m - 1) \)th term the sequence \(A_{2,2^m} \) has a period with length \(\omega(A_{2,2^m}) = 2 \).

Proof. By using the formula \(F_{n,2} = \sum_{k=0}^{n} (k + 2)!\{n+2\} \), we prove that \(F_{n+2,2} - F_{n,2} \equiv 0 \pmod{64} \). Then \(F_{n+2,2} - F_{n,2} \equiv 0 \pmod{2^m} \) for \(3 \leq m \leq 5 \).

\[
F_{n+2,2} - F_{n,2} = \sum_{k=0}^{n+2} (k + 2)!\left\{\binom{n+4}{k+2}\right\} - \sum_{k=0}^{n} (k + 2)!\left\{\binom{n+2}{k+2}\right\}
\]

\[
\equiv \sum_{k=0}^{5} (k + 2)!\left(\binom{n+4}{k+2} - \binom{n+2}{k+2}\right)
\]

\[
\equiv \sum_{k=0}^{5} \sum_{j=2}^{k+2} (-1)^{k+2-j} \binom{k+2}{j} \binom{j+1}{j} (j^2 - 1)(j - 1) \pmod{64}.
\]

In the case \(m = 6 \) then \(n \geq 5 \), so if \(j \) is even, then \(j^{n+1} = (2c)^{6+h} \), for some \(h \geq 0 \) and therefore \(64 \mid j^{n+1} \). For odd \(j \) we have \(\gcd(j, 64) = 1 \), so by Euler’s theorem we have

5
\(j^{32} \equiv 1 \pmod{64}\), and therefore \(j^{n+1+32} \equiv j^{n+1} \pmod{64}\). This implies that

\[
F_{n+2,2} - F_{n,2} \equiv \sum_{k=0}^{\lfloor (k+1)/2 \rfloor} \sum_{l=1}^{5} (-1)^{k+2-(2l+1)} \binom{k + 2}{2l + 1} (2l + 1)^{n+1} ((2l + 1)^2 - 1) \times 2l
\]

\[
\equiv 16 \sum_{k=0}^{\lfloor (k+1)/2 \rfloor} (-1)^{k+1} \sum_{l=1}^{5} \binom{k + 2}{2l + 1} (2l + 1)^{n+1} \left(\frac{l(l+1)}{2}\right) l \pmod{64}.
\]

Enumerating the last summation for \(2 \leq n \leq 33\) shows that it is divisible by 64 and because of periodicity of remainders of \(j^{n+1} \pmod{64}\), the result follows.

Analogous to Lemma 2, it can be easily deduced by induction, showing that for each positive integer \(m > 1\) we have

\[
2^m - 2 \geq m. \tag{10}
\]

This can be shown by using the relation \(2^{m+1} \geq 2m + 4 > m + 3\), for \(m > 1\). The following lemma provides a simple but essential relation used in the next theorem. Its proof is provided in Appendix A.

Lemma 5. For \(m \geq 7\) and \(5 \leq i \leq 2^{m-6}\) we have \(2^{m-6} - i \mid 2^{i-5} \cdot \binom{2^{m-6}-1}{i} \).

Theorem 6. If \(m \geq 7\), after the \((m-1)th\) term, the sequence \(A_{2,2^m}\) has a period with length \(\omega(A_{2,2^m}) = 2^{m-6}\).

Proof. In the case of \(n \geq 2^m - 3\), from (10) we can deduce that \(n \geq 2^m - 3 \geq m - 1\). So we have

\[
F_{n+2^{m-6},2} - F_{n,2} \equiv \sum_{k=0}^{n+2^{m-6}} (k + 2)! \left\{ \binom{n + 2^{m-6} + 2}{k + 2} \right\} - \sum_{k=0}^{n} (k + 2)! \left\{ \binom{n + 2}{k + 2} \right\}
\]

\[
\equiv \sum_{k=0}^{2^m-3} (k + 2)! \left\{ \binom{n + 2^{m-6} + 2}{k + 2} \right\} - \sum_{k=0}^{n} (k + 2)! \left\{ \binom{n + 2}{k + 2} \right\}
\]

\[
\equiv \sum_{k=0}^{2^m-3} \sum_{j=2}^{k+2} (-1)^{k+2-j} \binom{k + 2}{j} j^{n+1} (2^{m-6} - 1)(j - 1) \pmod{2^m}.
\]

When \(j\) is even, then \(j^{n+1} = (2c)^{2^{m-2}+h}\), for some \(h \geq 0\). So by (10), \(2^m \mid j^{n+1}\). For odd \(j\) we have

6
\[F_{n+2^{m-6}, 2} - F_{n, 2} = \sum_{k=0}^{2^{m-3}} \sum_{l=1}^{[k+1]/2} (-1)^{k+2-(2l+1)} \binom{k+2}{2l+1} (2l+1)^{n+1}((2l+1)2^{m-6} - 1) \times 2l \]

\[= 2^{m-4} \sum_{k=0}^{2^{m-3}} (-1)^{k+1} \sum_{l=1}^{[k+1]/2} \binom{k+2}{2l+1} (2l+1)^{n+1} \left(\frac{(2l+1)2^{m-6} - 1}{2^{m-5}} \right) l \]

\[= 2^{m-4} \sum_{k=0}^{2^{m-3}} (-1)^{k+1} \sum_{l=1}^{[k+1]/2} \binom{k+2}{2l+1} (2l+1)^{n+1} \sum_{i=1}^{2^{m-6}} l^{2i-1} \left(\frac{(2^{m-6} - 1)!}{i!(2^{m-6} - i)!} \right) \times l \pmod{2^m}. \]

The last expression contains \(m - 4 \) factors of 2, so it is sufficient to prove that the last summation is divisible by 16. This summation is denoted by \(S \). Simplify the summation \(\sum_{i=1}^{2^{m-6}} l^{i2i-1} \frac{(2^{m-6} - 1)!}{i!(2^{m-6} - i)!} \) and using Lemma 5 gives

\[\sum_{i=1}^{2^{m-6}} l^{i2i-1} \frac{(2^{m-6} - 1)!}{i!(2^{m-6} - i)!} \equiv \sum_{i=1}^{4} l^{i2i-1} \frac{(2^{m-6} - 1)!}{i!(2^{m-6} - i)!} \equiv l + l^2(2^{m-6} - 1) \]

\[+ \frac{l^3 \times 2(2^{m-6} - 1)(2^{m-6} - 2)}{3} + l^4(2^{m-6} - 1)(2^{m-6} - 2)(2^{m-6} - 3) \pmod{16}. \]

Assume \(m \geq 10 \) (the case \(7 \leq m \leq 9 \) is studied at the end of the proof). So \(16 \mid 2^{m-6} \). Let \(3a = 2(2^{m-6} - 1)(2^{m-6} - 2) \) and \(3b = (2^{m-6} - 1)(2^{m-6} - 2)(2^{m-6} - 3) \). Then \(3a \equiv 4 \pmod{16} \) and \(3b \equiv -6 \pmod{16} \). Therefore \(a \equiv -4 \pmod{16} \) and \(b \equiv -2 \pmod{16} \). So the proof continues as follows:

\[S \equiv \sum_{k=0}^{2^{m-3}} (-1)^{k+1} \sum_{l=1}^{[k+1]/2} \binom{k+2}{2l+1} (2l+1)^{n+1}(l - l^2 - 4l^3 - 2l^4) \pmod{16} \]

\[S \equiv \sum_{k=0}^{2^{m-3}} (-1)^{k+1} \binom{k+2}{2l+1} (2l+1)^{n+1} \left(\frac{l(l+1)}{2} \right) (-2l^2 - 2l + 1)l \pmod{8}. \]

Let \(P(l) \) and \(A(k, r, n) \) be the remainder of \(\frac{1}{2}(2l+1)^{n+1}(l(l+1))(-2l^2 - 2l + 1)l \) and \(\sum_{l=-\infty}^{k+1} \frac{k+2}{2l+r} P(l) \) divided by 8, respectively. By Pascal’s identity, we have \(\binom{k+2}{2l+r} = \binom{k+1}{2l+r-1} \) and therefore

\[\sum_{l=-\infty}^{\infty} \binom{k+2}{2l+r} P(l) = \sum_{l=-\infty}^{\infty} \binom{k+1}{2l+r} P(l) + \sum_{l=-\infty}^{\infty} \binom{k+1}{2l+r-1} P(l), \]

so

\[A(k, r, n) = A(k - 1, r, n) + A(k - 1, r - 1, n). \]
We can write

\[A(k, r + 32, n) \equiv \sum_{l=-\infty}^{\infty} \left(\frac{k + 2}{2l + r + 32} \right) P(l) \pmod{8}. \]

The sequence \((P(l))_{l=-\infty}^{\infty}\) has period 16, so \(P(l + 16) = P(l)\). Set \(l' = l + 16\), then

\[A(k, r + 32, n) \equiv \sum_{l'=-\infty}^{\infty} \left(\frac{k + 2}{2l' + r} \right) P(l') \equiv A(k, r, n) \pmod{8}. \]

(12)

Since \(\gcd(2l + 1, 16) = 1\), Euler’s theorem implies \((2l + 1)^8 \equiv 1 \pmod{16}\) and therefore \((2l + 1)^{n+1+8} \equiv (2l + 1)^{n+1} \pmod{16}\). The quantity \(A(6, r, n)\) vanishes for \(1 \leq r \leq 32\) and \(9 \leq n \leq 24\), by enumeration, then by (11) and (12), we deduce that

\[A(k, r, n) = 0, \text{ for } k \geq 6. \]

(13)

Therefore

\[A(k, 1, n) \equiv \sum_{l=-\infty}^{\infty} \left(\frac{k + 2}{2l + 1} \right) (2l + 1)^{n+1} \left(\frac{l(l + 1)}{2} \right) (-2l^2 - 2l + 1)l \]

\[\equiv \sum_{l=1}^{\lfloor (k+1)/2 \rfloor} \left(\frac{k + 2}{2l + 1} \right) (2l + 1)^{n+1} \left(\frac{l(l + 1)}{2} \right) (-2l^2 - 2l + 1)l \equiv 0 \pmod{8}, \]

for \(k \geq 6\). If \(1 \leq k \leq 5\), \(9 \leq n \leq 24\) and \(1 \leq r \leq 32\) we have \(\sum_{k=1}^{5} (-1)^{k+1} A(k, r, n) \equiv 0 \pmod{8}\). The period length of \(A(k, r, n)\) with respect to \(r\) and \(n\) implies that

\[\sum_{k=1}^{5} (-1)^{k+1} A(k, 1, n) \equiv 0 \pmod{8}, \text{ for } n \geq 9. \]

Combining this with (13) we have

\[S \equiv \sum_{k=1}^{2^{m-3}} (-1)^{k+1} A(k, 1, n) \equiv 0 \pmod{8}, \text{ for } n \geq 0. \]
So the result follows in the case of \(n \geq 2^m - 3 \). If \(m - 1 \leq n < 2^m - 3 \) we can write

\[
F_{n+2^m-6,2} - F_{n,2} = \sum_{k=0}^{n+2^m-6} (k+2)! \left\{ \frac{n+2^m-6+2}{k+2} \right\} - \sum_{k=0}^{n} (k+2)! \left\{ \frac{n+2}{k+2} \right\}
\]

\[
= \sum_{k=0}^{2^m-3} (k+2)! \left(\left\{ \frac{n+2^m-6+2}{k+2} \right\} - \left\{ \frac{n+2}{k+2} \right\} \right)
\]

\[
- \sum_{k=n+2^m-6+1}^{2^m-3} (k+2)! \left\{ \frac{n+2^m-6+2}{k+2} \right\} + \sum_{k=n+1}^{2^m-3} (k+2)! \left\{ \frac{n+2}{k+2} \right\}
\]

\[
\equiv \sum_{k=0}^{2^m-3} \sum_{j=1}^{k+2} (-1)^{k+2-j} \binom{k+2}{j} j^{n+1} (j^{2^m-6} - 1)(j - 1) \pmod{2^m}.
\]

When \(j \) is even, then \(j^{n+1} = (2e)^{m+h} \), for some \(h \geq 0 \), so \(2^m \mid j^{n+1} \). Since \(m \geq 10 \), for odd \(j \) we have

\[
\sum_{k=0}^{2^m-3} \sum_{j=1}^{k+2} (-1)^{k+2-j} \binom{k+2}{j} j^{n+1} (j^{2^m-6} - 1)(j - 1)
\]

\[
\equiv 2^{m-4} \sum_{k=0}^{2^m-3} (-1)^{k+1} \sum_{l=1}^{\frac{(k+1)/2}{2l+1}} \binom{k+2}{2l+1} (2l+1)^{n+1}(l - l^2 - 4l^3 - 2l^4)l \pmod{2^m}.
\]

The last summation is exactly the \(S \) and the proof will be similar as above. Combine with the previous case we have the following congruence relation

\[
F_{n+2^m-6,2} \equiv F_{n,2} \pmod{2^m}, \text{ for } m \geq 10. \tag{14}
\]

In the case where \(7 \leq m \leq 9 \), the remainder value of the sum

\[
\sum_{k=0}^{2^m-3} (-1)^{k+1} \sum_{l=1}^{\frac{(k+1)/2}{2l+1}} \binom{k+2}{2l+1} (2l+1)^{n+1} \left(\sum_{i=1}^{4} l^i 2^{i-1} \frac{(2^m-6-1)!}{i!(2^m-6-i)!} \right) l
\]

modulo 16 is computed for \(m - 1 \leq n \leq m + 14 \). Divisibility of all these values by 16 implies that the recent sum is divisible by 16, and therefore

\[
F_{n+2^m-6,2} \equiv F_{n,2} \pmod{2^m}, \text{ for } 7 \leq m \leq 9. \tag{15}
\]

Summing up the congruence relations (14) and (15) gives

\[
\omega(A_{2,2^m}) = 2^{m-6}, \text{ for } m \geq 7.
\]

\[\square\]
Theorem 7. For \(m = 1 \) and \(m = 2 \), the sequence \(A_{r,2^m} \) is periodic from the first term and the period length is \(\omega(A_{r,2^m}) = 1 \).

Proof. The proof of this theorem is divided into three cases. For \(r = 2 \) we have

\[
F_{n+1,2} - F_{n,2} = \sum_{k=0}^{n+1} (k+2)! \binom{n+3}{k+2} - \sum_{k=0}^{n} (k+2)! \binom{n+2}{k+2}
\equiv 2 \left(\binom{n+3}{2} - \binom{n+2}{2} \right) + 6 \left(\binom{n+3}{3} - \binom{n+2}{3} \right) \pmod{4}
\equiv 2 \left(2^{n+1} - 2^n \right) + 6 \left(3^{n+1} - 2^{n+1} - 3^n - 2^n \right)
\equiv 2^{n+1} + 6(2 \times 3^n - 2^n) = 4(2^{n-1} + 3^{n+1} - 3 \times 2^{n-1})
\equiv 0 \pmod{4}.
\]

So we can deduce that \(\omega(A_{2,4}) = 1 \) and obviously \(\omega(A_{2,2}) = 1 \).

For \(r = 3 \) we can write

\[
F_{n+1,3} - F_{n,3} = \sum_{k=0}^{n+1} (k+3)! \binom{n+4}{k+3} - \sum_{k=0}^{n} (k+3)! \binom{n+3}{k+3}
\equiv 6 \left(\binom{n+4}{3} - \binom{n+3}{3} \right) \pmod{4}
\equiv 6(3^{n+1} - 3^n) = 6 \times 2 \times 3^n = 4 \times 3^{n+1} \equiv 0 \pmod{4}.
\]

Therefore we have \(\omega(A_{3,4}) = 1 \) and \(\omega(A_{3,2}) = 1 \).

Finally if \(r \geq 4 \), let \(r = 4 + h \), for some \(h \geq 0 \), then

\[
F_{n+1,r} - F_{n,r} = \sum_{k=0}^{n+1} (k+r)! \binom{n+1+r}{k+r} - \sum_{k=0}^{n} (k+r)! \binom{n+r}{k+r}.
\]

Since \(4 \mid (k+r)! \), for all \(k \geq 0 \), we can write \(F_{n+1,r} - F_{n,r} \equiv 0 \pmod{4} \). Therefore \(\omega(A_{r,4}) = 1 \) and \(\omega(A_{r,2}) = 1 \).

Theorem 8. If \(3 \leq m \leq 6 \), after the \((m - 1) \)th term, the sequence \(A_{r,2^m} \) has a period with length \(\omega(A_{r,2^m}) = 2 \).

Proof. The proof of this theorem is similar to the proof of Theorem 4. It is enough to prove the theorem for \(m = 6 \); then the result follows for \(m = 3, 4 \) and 5. Since \(n \geq m - 1 \), then
for $m = 6$ we have $n \geq 5$. For $3 \leq r \leq 7$ we have

$$F_{n+2,r} - F_{n,r} = \sum_{k=0}^{n+2} (k+r)! \left\{ \binom{n+2+r}{k+r} - \binom{n}{k+r} \binom{n+r}{r} \right\} - \sum_{k=0}^{n} (k+r)! \left\{ \binom{n+r}{k+r} \binom{n+r}{r} \right\}$$

$$\equiv \sum_{k=0}^{7-r} \sum_{j=r}^{k+r} (-1)^{k+r-j} \binom{k+r}{j} j^{n+1} (j^2 - 1) \binom{(j-1)!}{(j-r)!} (j-1)^{n+1} \binom{(j-2)!}{(j-r)!} \pmod{64}.$$

When j is even, then $j^{n+1} = (2c)^{6+h}$, for some $h \geq 0$, and so $64 | j^{n+1}$. For odd j we have $\gcd(j,64) = 1$ and Euler's theorem gives $j^{32} \equiv 1 \pmod{64}$. Therefore $j^{n+1+32} \equiv j^{n+1} \pmod{64}$, and we can write

$$\sum_{k=0}^{7-r} \sum_{j=r}^{k+r} (-1)^{k+r-j} \binom{k+r}{j} j^{n+1} (j^2 - 1) \binom{(j-1)!}{(j-r)!} \equiv 7 - r \sum_{k=0}^{7-r} \sum_{l=\lfloor r/2 \rfloor}^{\lfloor (k+r-1)/2 \rfloor} (-1)^{k+r-2l+1} \binom{k+r}{2l+1} (2l+1)^{n+1} \frac{(2l+1)^2 - 1}{2l} \binom{2l+1-1}{2l+1-r} \pmod{64}.$$

By computation we see that the recent summation is divisible by 4, for $2 \leq n \leq 33$. So the proof for $3 \leq r \leq 7$ is completed.

If $r \geq 8$, since $64 | 8!$, then $64 | (k+r)!$, and

$$F_{n+2,r} - F_{n,r} = \sum_{k=0}^{n+2} (k+r)! \left\{ \binom{n+2+r}{k+r} - \binom{n}{k+r} \binom{n+r}{r} \right\} - \sum_{k=0}^{n} (k+r)! \left\{ \binom{n+r}{k+r} \binom{n+r}{r} \right\} \equiv 0 \pmod{64},$$

so $\omega(A_{r,26}) = 2$, for $r \geq 8$, and the proof is completed.

Theorem 9. If $m \geq 7$, after the $(m-1)\text{th}$ term, the sequence $A_{r,2m}$ has a period with length $\omega(A_{r,2m}) = 2^{m-6}$.

Proof. The proof of this theorem is similar to the proof of Theorem 6. In the case of
\[n \geq 2^m - r - 1 \text{ and } r \geq 8 \text{ we have } \]
\[F_{n+2^{m-6}, r} - F_{n, r} = \sum_{k=0}^{n+2^{m-6}} (k + r)! \left\{ \frac{n + 2^{m-6} + r}{k + r} \right\}_r - \sum_{k=0}^{n} (k + r)! \left\{ \frac{n + r}{k + r} \right\}_r, \]
\[= \sum_{k=0}^{2^m - r - 1} (k + r)! \left(\left\{ \frac{n + 2^{m-6} + r}{k + r} \right\}_r - \left\{ \frac{n + r}{k + r} \right\}_r \right) \]
\[= \sum_{k=0}^{2^m - r - 1} \sum_{j=r}^{k+r} (-1)^{k+r-j} \binom{k + r}{j} j^{n+1} (j^{2^{m-6}} - 1) \frac{(j - 1)!}{(j - r)!} \pmod{2^m}. \]

In the case of \(2^m > r > 2^m - m \), since \(m \geq 7 \) this implies that \(r > 2^m - m \geq 2^{m-1} \), so
\[2^m \mid (2^{m-1})! \mid (k + r)! \text{, for each } k \geq 0. \]

Therefore both summations in the above first equation are zero modulo \(2^m \) and in this case \(\omega(A_{r, 2^m}) = 2^{m-6} \). When \(r \leq 2^m - m \), if \(j \) is even then \(j^{n+1} = (2c)^{2^m - r + h} \), for some \(h \geq 0 \). So \(2^m \mid j^{n+1} \). For odd \(j \) we have \((j, 2^m-5) = 1\), and \(2^m \mid j^{2^{m-6}} - 1 \) by Euler’s theorem. Since \(r \geq 8 \) we can write \((j-1)! \pmod{2^m} = \frac{(j-8)!}{(j-2)!} \sum_{i=1}^{7} (j-i) \). Therefore \(32 \mid \frac{(j-1)!}{(j-2)!} \) and
\[2^m \mid (j^{2^{m-6}} - 1) \left(\frac{(j-1)!}{(j-2)!} \right). \]

In the case of \(m - 1 \leq n < 2^m - r - 1 \) and \(r \geq 8 \) we have
\[F_{n+2^{m-6}, r} - F_{n, r} = \sum_{k=0}^{n+2^{m-6}} (k + r)! \left\{ \frac{n + 2^{m-6} + r}{k + r} \right\}_r - \sum_{k=0}^{n} (k + r)! \left\{ \frac{n + r}{k + r} \right\}_r, \]
\[= \sum_{k=0}^{2^m - r - 1} (k + r)! \left(\left\{ \frac{n + 2^{m-6} + r}{k + r} \right\}_r - \left\{ \frac{n + r}{k + r} \right\}_r \right) \]
\[- \sum_{k=n+2^{m-6}+1}^{2^m - r - 1} (k + r)! \left\{ \frac{n + 2^{m-6} + r}{k + r} \right\}_r + \sum_{k=n+1}^{2^m - r - 1} (k + r)! \left\{ \frac{n + r}{k + r} \right\}_r \pmod{2^m} \]
\[= \sum_{k=0}^{2^m - r - 1} (k + r)! \left(\left\{ \frac{n + 2^{m-6} + r}{k + r} \right\}_r - \left\{ \frac{n + r}{k + r} \right\}_r \right) + 0, \]
and the proof proceeds as in the previous case. In the case of \(3 \leq r \leq 7 \) one can deduce similarly to the proof of Theorem 6 that
\[F_{n+2^{m-6}, r} - F_{n, r} \equiv \sum_{k=0}^{2^m - r - 1} \sum_{j=r}^{k+r} (-1)^{k+r-j} \binom{k + r}{j} j^{n+1} (j^{2^{m-6}} - 1) \frac{(j - 1)!}{(j - r)!} \pmod{2^m}. \]

Exactly the same as Theorem 6, the terms with even \(j \) vanish and only the terms with odd
j remain. So we have
\[F_{n+2^m-6,r} - F_{n,r} = \sum_{k=0}^{2^m-1} \sum_{l=0}^{[k+r-1]/2} (-1)^{k+r-(2l+1)}\left(\frac{k+r}{2l+1}\right)(2l+1)^{n+1}(2l + 1)^{2^m-1} \]
\[\times \left(\frac{(2l+1) - (r)}{(2l+1) - r}\right) \]
\[\equiv 2^{m-5} \sum_{k=0}^{2^m-1} (-1)^{k+r+1} \sum_{l=0}^{[k+r+(1)/2]} \left(\frac{k+r}{2l+1}\right)(2l+1)^{n+1} \]
\[\times \left(\sum_{i=1}^{2^{m-6}} i^2^{i-1} \frac{(2^{m-6} - i)!}{i!(2^{m-6} - i)!}\right) \left(\frac{(2l)!}{(2l - r + 1)!}\right) \pmod{2^m}. \]

Since $\gcd(2l + 1, 16) = 1$, Euler’s theorem shows that $(2l + 1)^{n+1+8} \equiv (2l + 1)^{n+1} \pmod{16}$. If $m \geq 10$, we have
\[F_{n+2^m-6,r} - F_{n,r} = \sum_{k=0}^{2^m-1} (-1)^{k+r+1} \sum_{l=0}^{[k+r+(1)/2]} \left(\frac{k+r}{2l+1}\right)(2l+1)^{n+1} \left(\frac{l l+1}{2}\right) \]
\[\times (-2l^2 - 2l + 1) \left(\frac{(2l)!}{(2l - r + 1)!}\right) \pmod{2^m}. \]

Therefore it is sufficient to compute the above summation (without factor 2^{m-4}) for $3 \leq r \leq 7$ and $9 \leq n \leq 16$ to show that it is divisible by 16.

For $7 \leq m \leq 9$ we evaluate the sum
\[\sum_{k=0}^{2^m-1} (-1)^{k+r+1} \sum_{l=0}^{[k+r+(1)/2]} \left(\frac{k+r}{2l+1}\right)(2l+1)^{n+1} \sum_{i=1}^{2^{m-6}} i^2^{i-1} \frac{(2^{m-6} - i)!}{i!(2^{m-6} - i)!}\left(\frac{(2l)!}{(2l - r + 1)!}\right) \]
for $m-1 \leq n \leq m+6$ to show that it is divisible by 32. Then it follows that $\omega(A_{r,2^m}) = 2^{m-6}$, for all $m \geq 7$.

\[\square \]

5 The conclusion

We now state the final theorem, which shows how to compute $\omega(A_{r,s})$ for any $s \in \mathbb{N}$.

Theorem 10. Let $s \in \mathbb{N}$ and $s > 1$ with the prime factorization $s = 2^m p_1^{m_1} p_2^{m_2} \cdots p_k^{m_k}$ and let $D = \{p_i^{m_i} | p_i^{m_i} > r, 1 \leq i \leq k\}$. Define $E = \{m_i - 1 | p_i^{m_i} \in D\}$, $F = \{\varphi(p_i^{m_i}) | p_i^{m_i} \in D\}$ and $a = \max(E \cup \{m - 1\})$ and let b be the least common multiple (lcm) of the elements of F. Then
\[\omega(A_{r,s}) = \begin{cases} b, & \text{if } 0 \leq m \leq 2 \text{ or } 2^m \leq r; \\ \lcm(2, b), & \text{if } 3 \leq m \leq 6 \text{ and } 2^m > r; \\ \lcm(2^{m-6}, b), & \text{if } m \geq 7 \text{ and } 2^m > r, \end{cases} \] (16)
and periodicity of the sequence $A_{r,s}$ is seen after the a-th term.

Proof. Let l be the right hand side of (16). For each $d \in D \cup \{2^m\}$, $\omega(A_{r,d}) \mid l$ and for each $p_j^{m_j} \not\in D$ such that $1 \leq j \leq k$, we have $1 = \omega(A_{r,p_j^{m_j}}) \mid l$, so

$$F_{n+l,r} \equiv F_{n,r} \pmod{2^m}$$

$$F_{n+l,r} \equiv F_{n,r} \pmod{p_i^{m_i}}, \text{ for } i = 1, 2, \ldots, k.$$

Since $\gcd(2^m, p_1^{m_1}, p_2^{m_2}, \ldots, p_k^{m_k}) = 1$, the multiplication of all above congruence relations gives the required result. \qed

6 Acknowledgments

The authors would like to thank the anonymous referee for his/her valuable comments and guides.

A Proof of Lemma 5

After simplifying the lemma’s relation we have

$$2^{i-5}(\binom{2^m-6}{i} - 1) \cdot \frac{2^{i-5}(2^m-6-1)(2^m-6-2) \cdots (2^m-6-i+1)}{i!}.$$

It is sufficient to show that the right hand side of (17) is integer. We know that $\binom{2^m-6}{i} \in \mathbb{N}$, i.e.,

$$i! \mid 2^{m-6}(2^m-6-1) \cdots (2^m-6-i+1).$$

If O_i denotes the product of the odd factors of $i!$, since $(O_i, 2^{m-6}) = 1$, then $O_i \mid (2^{m-6} - 1) \cdots (2^{m-6} - i + 1)$. So in (17) we only need to prove that

$$\nu_2(2^{i-5}(2^m-6-1)(2^m-6-2) \cdots (2^m-6-i+1)) \geq \nu_2(i!),$$

where by $\nu_2(x)$ we mean that $2^{\nu_2(x)} \mid x$, but $2^{\nu_2(x)+1} \nmid x$. Let $A = \nu_2((2^m-6-1)(2^m-6-2) \cdots (2^m-6-i+1))$ and $B = \nu_2(i!)$. Let e be the unique integer such that $2^e \leq i < 2^{e+1}$. So

$$A = \sum_{k=1}^{e} \left\lfloor \frac{i-1}{2^k} \right\rfloor, \quad B = \sum_{k=1}^{e} \left\lfloor \frac{i}{2^k} \right\rfloor.$$

If we show that

$$B - A \leq e$$

(19)
then the lemma is concluded if it is proved that

$$i + A \geq B + 5.$$ \hspace{1cm} (20)

It can easily be shown that $B = \nu_2(i!)$ and $A = \nu_2((i - 1)!)$, so $B - A = \nu_2(i)$. Since $2^e \leq i < 2^{e+1}$, therefore $\nu_2(i) \leq e$ and (19) follows. For $e = 2$, integer possibilities for inequality (20) are as follows:

<table>
<thead>
<tr>
<th>i</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

For $e \geq 3$ one can deduce by simple induction that

$$2^e \geq e + 5,$$

so $i \geq 2^e \geq e + 5$. Add $B - e$ to these inequalities and use (19) demonstrates (20) for $i \geq 8$.

References

2010 *Mathematics Subject Classification*: Primary 11B50; Secondary 11B75, 05A10, 11B73, 11Y55.

Keywords: residue modulo prime power factors, r-Fubini number, r-Stirling number of the second kind, periodic sequence.

(Concerned with sequences *A000670*, *A008277*, *A143494*, *A143495*, *A143496*, *A232472*, *A232473*, and *A232474*.)