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Abstract

We describe an injection from border-strip decompositions of certain diagrams to

permutations. This allows us to provide enumeration results as well as q-analogues of

enumeration formulas. Finally, we use this injection to prove a connection between the

number of border-strip decompositions of the n× 2n rectangle and the Weil-Petersson

volume of the moduli space of an n-punctured Riemann sphere.

1 Introduction and overview of results

Border-strip tableaux have a rich history, originating with the celebrated Murnaghan-Nakayama
rule [5, 6], which provides a combinatorial formula for computing character values in the
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symmetric group. It is given as a signed sum over border-strip tableaux, but the sign only
depends on the border-strip decomposition, i.e., the “unlabeled version” of the tableaux.
This motivates us to study border-strip decompositions. Note that there is a hook-formula
for enumerating border-strip tableaux given by Fomin and Lulov [2] but less study has been
devoted to enumerating border-strip decompositions. Even determining if a region can be
tiled by n-strips is non-trivial and sometimes NP-complete, see the papers by Beauquier et
al., and Pak [1, 7].

We introduce a family of diagrams called simple diagrams, which have particularly nice
properties with respect to enumeration. These diagrams are parameterized by a binary
sequence and the strip size. In particular, we show that certain normalized enumerations
grow as a polynomial in n — the size of the strips.

We show that border-strip tableaux and border-strip decompositions of simple diagrams
are in bijection with certain classes of permutations, see Proposition 13 and Corollary 19.
This allows us to study a certain q-analogue of border-strip decompositions which generalize
the classical inversion-statistic on permutations. For example, in Corollary 28, we give the
formula

∑

w∈{r,c}k

∑

D∈BSD(w,n)

qinv(D) = [n+ 1]kq [n]q!

where the first sum is over all binary sequences of length k (defining a simple diagram),
and BSD(w, n) is the set of border-strip decompositions with strips of size n and diagram
determined by (w, n).

In Proposition 21 we give an efficient way to compute the number of border-strip decom-
positions of simple diagrams, as a function of n. This allows us to prove that “straighter”
simple diagrams admit a larger number of border-strip decompositions, see Theorem 29
and the maximum is attained for rectangles. In contrast, in Proposition 14 we show that
whenever n ≥ k, all these diagrams admit the same number of border-strip tableaux.

Finally, we give a new interpretation of the sequence A115047 in the OEIS. We show
that these numbers count tilings of a n× 2n-rectangle with strips of size n, thus providing a
new simple combinatorial interpretation of certain Weil-Petersson volumes. We cannot give
an intuitive explanation for this curious connection and it invites for further research.

2 Enumeration of border-strip decomposition

We first give simplified definitions of border strip tableaux and decompositions which are
sufficient for the purpose of this article — for a thorough background see Richard Stanley’s
book [9].

2.1 Preliminaries

A diagram is formally defined as a set of integer coordinates

{(i, j) ∈ N
2 : µi ≤ j ≤ λi},
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where λ and µ are integer partitions such that µi ≤ λi for all i = 1, 2, . . . . We refer the
coordinates in the diagram as boxes. For example, λ = (4, 3, 2, 2, 2), µ = (2, 1, 1) is illustrated
as

13 14

22 23

32

41 42

51 52

where ij is written in the box (i, j). A border-strip or strip for short of a diagram is a subset
of boxes

(a1, b1), (a2, b2), . . . , (an, bn)

such that for every i = 1, . . . , n− 1,

ai = ai+1 and bi − 1 = bi+1 or ai + 1 = ai+1 and bi = bi+1.

A tableau T is map T : D → N from a diagram to the set of natural numbers. A tableau
is illustrated by writing T (i, j) in the box (i, j). A border-strip tableau1 is a tableau T such
that rows and columns are weakly increasing and for all i, the set of boxes T−1(i) is a border-
strip. In this paper, we shall only consider border-strip tableaux such that for some m and
n,

|T−1(1)| = |T−1(2)| = · · · = |T−1(m)| = n and |T−1(j)| = 0 for all j > m.

Hence, each strip of T has size n and T is a border-strip tableau with strip size n. Let
BST(D,n) denote the set of border-strip tableaux with strip size n and underlying diagram
D. For our purposes, D could be any parameterization of a diagram, in our case we are
going to use binary words — see Definition 2 below.

A border-strip decomposition with strip size n is a set-partition of a diagram into border-
strips where all the border-strip are of size n. Analogously, BSD(D,n) denotes the set of
border-strip decompositions of the diagram D. Observe that every border strip tableau
T in BST(D,n) defines a border-strip decomposition in BSD(D,n), as we shall see in the
following example.

Example 1. The following tableau is an element in BST(6 × 5, 5), where 6 × 5 denotes a
rectangle of dimension 6× 5. The corresponding border-strip decomposition with the strips
indicated by the colors is shown on the right.

1 1 1 1 2
1 2 2 2 2
3 3 4 4 6
3 4 4 5 6
3 4 5 5 6
3 5 5 6 6

(1)

1Also known as rim-hook tableau.
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It is straightforward to verify that for each border-strip decomposition there is at least one
border-strip tableau, so we get |BST(D,n)| ≥ |BSD(D,n)| for any diagram D and natural
number n. On the other hand, we obtain a border-strip decomposition from a border-strip
tableau by “forgetting the numbers” so we have that BST(D,n) = ∅ ⇐⇒ BSD(D,n) = ∅.

Let B be a border-strip, which is a subset of boxes (i, j) (row-index, column-index). It
is easy to verify that the set

{j − i : (i, j) ∈ B}

is of the form a, a + 1, . . . , b for some a < b where b − a + 1 is the number of boxes in B.
Define the head, H(B), of a border-strip to be the unique box where j − i is maximal, and
its tail, T (B), to be the unique box which minimizes j − i. In (2), the head and tail boxes
have been marked.

H

T

(2)

2.2 Simple diagrams and permutations

In this subsection, we introduce a natural family of diagrams with particularly nice proper-
ties. We first describe a bijection between border-strip decompositions of simple diagrams
and certain permutations.

Definition 2. A simple diagram is parameterized by (w, n) where w is a finite sequence
of elements in {r, c} and n is a natural number. The family of simple diagrams is defined
recursively as follows:

• If w = ∅, then (w, n) is the n× n-square.

• The diagram (cw, n) is obtained from (w, n) by adding an additional column of size n
on the left, such that the bottom-most square of the new column is in the bottom-most
row of (w, n).

• The diagram (rw, n) is obtained from (w, n) by adding an additional row of size n on
the bottom such that the left-most square of the new row is in the leftmost column of
(w, n).

Let BSD(w, n) denote the set of border-strip decompositions of (w, n) with strips of size
n, and BST(w, n) denote the set of border-strip tableaux of (w, n) with strips of size n.

Example 3. The simple diagram determined by (rcrcc, 2) is the diagram on the left below.
We can see how (rcrcc, 2) is constructed from the 2 × 2 square by adding successively the
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blue, red, green, yellow, and gray boxes to a 2× 2 square.

c c
c c c
c r r
r r

4 5 6
2 3
1

(3)

Given a simple diagram D, the shape (w, n) can be recovered as follows. First, n is given by
the smallest number of boxes in a single row, or column. Secondly, k can be found by using
the fact that n2 + kn is the total number of boxes in the diagram. We then start in the nth
square in the bottom-most row of D and follow the outline of the diagram by going right if
possible and up otherwise, until k + 1 squares have been visited. The path in the example
above is up, right, up right right, which correspond to the word rcrcc.

Definition 4. In a fixed border-strip decomposition, a border-strip Ba is above a border-
strip Bb if there is a box a of Ba, and a box b of Bb such that the column index of a is smaller
or equal to the column index of b, and the row index of a is smaller or equal to the row index
of b. If Ba is above Bb, we say that Bb is below Ba.

A border-stripBa is inner to a border-stripBb if there exists a sequenceBa = B1, B2, . . . , Bk =
Bb such that Bi is above Bi+1 for all i = 1, 2, . . . , k − 1. It means the relation inner is the
transitive closure of the relation above. If Ba is inner to Bb, then Bb is outer to Ba. Two
border strips Ba and Bb are comparable, if Ba is inner or outer to Bb.

Remark 5. If B1 is above B2, it implies B1 must contain a smaller number than B2 in
any border-strip tableau. This observation proves that the transitive closure of “above” is
well-defined.

Example 6. An example of a border-strip decomposition in BSD(ccrcc, 3) is given in (4).
The blue strip is above the red one and the red strip is above the yellow one. Hence the blue
strip is inner to the yellow strip and the blue and yellow strips are comparable. Note that
the blue strip is neither above nor below the yellow strip.

(4)

Definition 7 (Diagonal labeling). For a sequence w of length k, we label the diagonals of
the simple diagram (w, n) from n + k to 1, starting from the top right corner as shown in
the example below for (crrc, 3):

4 5 6 7
3 4 5 6

1 2 3 4 5
1 2 3

1 2
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Lemma 8. Let w be a sequence of length k. Then for any decomposition B ∈ BSD(w, n)
there is a unique head in each diagonal from 1 to n+k and the positions of the heads uniquely
determine B.

Proof. We show that the positions of the heads uniquely determine the decomposition by
processing the diagonals one by one and iteratively prolonging the strips, starting from
diagonal n+ k.

First, the single box in diagonal n + k must be the head of some strip. For diagonal i
with k < i < n+k there is one box more in diagonal i compared to diagonal i+1. All strips
we already encountered have fewer than n boxes and must continue in diagonal i+1. Hence,
there is exactly one head in diagonal i. Moreover, the position of the head H in diagonal i
determines the continuation of the strips encountered as shown in the following figure:

a
b
H c

d
−→

a
b
H c

d
(5)

For i ≤ k there is exactly one strip ending in diagonal i + 1. Furthermore, diagonals i and
i + 1 have the same size, therefore there must be exactly one head in diagonal i. Once the
heads have been placed there are n− 1 boxes left in diagonal i and n− 1 strips which must
have a box in diagonal i. Consequently there is at most one way to extend the strips to
diagonal i.

The diagonals below diagonal 1 decrease in size by one in each step and it is easy to
see that there cannot be any heads below diagonal 1. There is a unique way to extend the
partial border-strip decomposition from diagonal 1 to the entire diagram.

Given a border-strip decomposition of a simple diagram, the unique strip with head in
diagonal i is referred to as strip i.

Proposition 9. Let (w, n) be a simple diagram with w of length k and B ∈ BSD(w, n). If
1 ≤ i < j ≤ n+ k and j − i ≤ n then strip i and strip j in B are comparable.

Proof. The tail of j is at most one diagonal higher than the head of i. From this observation,
it follows that the strips must be comparable.

We notice in Lemma 8 that the positions of the heads of the strips determine the border-
strip decomposition uniquely. The next definition and proposition encodes the placements
of the heads as a permutation with certain restrictions, giving an alternative description of
border-strip tableaux of simple diagrams. Further down, we add additional restrictions so that
the resulting set of permutations is in bijection with the set of border-strip decompositions
of simple diagrams.

Definition 10. Define ψ : BST(w, n) → Sn+k so that ψ(T ) = σ where σ(j) is the diagonal
containing the head of the strip labeled with j. Let BSP(w, n) ⊆ Sn+k denote the image of
BST(w, n) under ψ.
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Example 11. Consider the following T ∈ BST(ccc, n). The strip labeled 1 has its head in
diagonal 3, thus ψ(T )(1) = 3. The strip labeled 2 has its head in diagonal 2, so ψ(T )(2) = 2.

T =
1 1 1 3 3 4
2 2 2 3 4 4
5 5 5 6 6 6

and ψ(T ) = [3, 2, 5, 6, 1, 4] ∈ S6. (6)

Proposition 12. The map ψ is injective. In particular, ψ : BST(w, n) → BSP(w, n) is a
bijection.

Proof. A permutation σ ∈ BSP(w, n) determines the values of the heads, and thus the set
of values of all the boxes in each diagonal. As the entries in diagonals have to be increasing,
σ uniquely determine the corresponding border-strip tableau.

Proposition 13. Let w = (w1, . . . , wk) be a sequence of length k. A permutation σ ∈ Sn+k

is in BSP(w, n) if and only if for all i with 1 ≤ i ≤ k we have

(a) σ−1(i) < σ−1(n+ i) whenever wi = c, and

(b) σ−1(i) > σ−1(n+ i) whenever wi = r.

Proof. We construct the tableau T from σ ∈ BSP(w, n) by starting from the last diagonal.
By definition, the unique head in diagonal i must have value σ−1(i) in T . If k < i ≤ n + k
then diagonal i has one box more than diagonal i+1 and it is always possible to extend the
partial border-strip tableau one diagonal further in a unique fashion as in Lemma 8.

However, when 1 ≤ i ≤ k we need to take wi into consideration. If wi = c then diagonals
i and i+ 1 are arranged as follows.

We observe that the new strip starting in diagonal i must be above the strip ending in
diagonal i + 1 (and starting in diagonal n + i). Hence, it must be filled with a smaller
number in T , so we must have σ−1(i) < σ−1(n+ i).

If wi = r diagonals i and i+ 1 are arranged as follows.

Analogously to the previous argument, the new strip starting in diagonal i must be below
strip n+ i and thus σ−1(i) > σ−1(n+ i).
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2.3 Counting border-strip tableaux and decompositions

We now have the necessary setup to obtain some enumerative results.

Proposition 14. For a sequence w of length k ≤ n,

|BST(w, n)| = 2−k(n+ k)!.

In particular, the number of border-strip tableaux only depends on the length of the sequence
for n ≥ k.

Proof. Recall from Proposition 12 that |BST(w, n)| = |BSP(w, n)|. From conditions (a) and
(b) in Proposition 13 we know that the w determines the relative order of the strips i and
n + i for every i = 1, 2, . . . , k. Whenever n ≥ k, these pairs are disjoint. As there are no
further restrictions on the (n+ k)! possible permutations, |BSP(w, n)| = 2−k(n+ k)!.

Proposition 14 cannot be strengthened to the case k > n, as the count |BST(w, n)| in
this case might depend on w.

Corollary 15. For every permutation σ ∈ Sn+k there is exactly one sequence w of length k
such that σ ∈ BSP(w, n). In particular, ψ determines a bijection between {BST(w, n) : w ∈
{r, c}k} and Sn+k. Consequently,

∑

w∈{r,c}k

|BST(w, n)| = (n+ k)!.

Proof. From Proposition 12 we know ψ restricted to one sequence w is injective. Proposi-
tion 13 shows that a permutation uniquely determines the sequence w, ψ must be injective
over the set of all sequences of length k.

On the other hand for any permutation σ ∈ Sn+k there is always one sequencew ∈ {r, c}k

such that σ ∈ BSP(w, n) as we can find appropriate values for wi from σ−1(i) and σ−1(n+ i)
together with Proposition 13. Hence ψ is also surjective.

Definition 16 (k-descents). Let σ ∈ Sn. We say that i ∈ {1, . . . , n− 1} is a k-descent of σ
if σ(i)− k > σ(i+ 1). Let DESk(σ) denote the set of k-descents of σ and let desk(σ) be the
number of such k-descents. For example, the 3-descents of the permutation

[2, 4,10, 5, 6, 3,8, 1, 7, 9]

are 3 and 7 (marked in bold).

Lemma 17 (Technical lemma). Let T = ψ−1(σ) for some σ ∈ BSP(w, n). The following
three statements are equivalent:

(a) The permutation σ has an n-descent.
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(b) There is an m such that the strips Bm := T−1(m) and Bm+1 := T−1(m + 1) are not
comparable in the sense of Definition 4 and σ(m) > σ(m+ 1).

(c) There are two strips Bx := T−1(x) and By := T−1(y) in T such that Bx is not compa-
rable to By in the sense of Definition 4, where x < y and σ(x) > σ(y).

Proof. Recall that σ(x) is simply the diagonal containing the head of Bx.

Case (a) =⇒ (b). We have that σ(m)−σ(m+1) > n for somem. Since σ(m) > σ(m+1)+n,
we cannot have that Bm is adjacent to Bm+1. Furthermore, there cannot be a longer sequence
of strips Bm = Bi1 , . . . , Biℓ = Bm+1 such that Bij is above Bij+1

as the values of these strips
must then lie strictly between m and m+ 1, which is impossible. Hence, Bm is not inner to
Bm+1 and this implies that they are not comparable.

Case (b) =⇒ (c). Just take x = m and y = m+ 1.

Case (c) =⇒ (a). Consider the interval of values x, x + 1, . . . , y and choose x ≤ m < y
such that σ(m) − σ(m + 1) is maximized. Suppose σ(m) − σ(m + 1) ≤ n. Then there is a
sequence of values i1, . . . , is such that

x = i1 < i2 < · · · < is = y, σ(x) = σ(i1) > σ(i2) > · · · > σ(is) = σ(y),

and for all j we have σ(ij)−σ(ij+1) ≤ n. But Proposition 9 implies that the strip with value
ij is above the strip with value ij+1. By transitivity, Bx must be inner to By which violates
one of the conditions. It follows that σ(m)− σ(m+ 1) > n and σ has an n-descent.

We are now ready to characterize a subset of BSP(w, n) which is in bijection with the
border-strip decomposition BSD(w, n). Let s1, . . . , sn−1 denote the simple transpositions in
Sn.

Proposition 18. Suppose w is a sequence of length k, σ ∈ BSP(w, n), and i ∈ DESn(σ).
Then the border-strip tableaux ψ−1(siσ) and ψ−1(σ) have the same border-strip decomposi-
tion. Moreover, the sets

BSD(w, n) and {σ ∈ BSP(w, n) : desn(σ) = 0}

are in bijection.

Proof. Let τ := siσ, Tσ := ψ−1(σ), and Tτ := ψ−1(τ) be the corresponding border-strip
tableaux. First we need to show that τ ∈ BSP(w, n). The only places where τ−1 differ from
σ−1 are τ(i) and τ(i+ 1). Now, if j ∈ {1, . . . , k} then at most one of σ−1(j) and σ−1(n+ j)
is different from τ−1 and the quantities

τ−1(j)− τ−1(n+ j) and σ−1(j)− σ−1(n+ j) (7)

9



are either the same or differ by 1. In particular, the quantities in (7) cannot have opposite
signs. Since σ ∈ BSP(w, n), the corresponding inequalities in Proposition 13 are also fulfilled
by τ . Hence τ ∈ BSP(w, n) as well.
It remains to show that Tτ and Tσ have the same border-strip decomposition. The only strips
in Tσ and Tτ which have a different number are strip τ(i) and strip τ(i + 1), with a ±1
difference. Therefore, the only pair of strips that has a different relative ordering in Tτ is
the pair (τ(i), τ(i+ 1)). However, since i is an n-descent it does not affect the construction
in the proof of Proposition 13 and it follows that Tσ and Tτ have the same border-strip
decomposition.

For the second statement, we use Lemma 17. In order for σ to be free of n-descents, the
relative order of the values of all pairs of non-comparable strips is uniquely determined. On
the other hand, the relative order of pairs of comparable strips is determined by the shape
of the diagram. Since a permutation is uniquely determined by the relative order of all pairs
of entries, there is at most one permutation without n-descents in BSP(w, n) with a given
border-strip decomposition.

On the other hand, we can always find such a σ by starting from any permutation in
BSP(w, n) and repeatedly decrease the number of n-descents until a permutation without
n-descents is obtained. This is done by interchanging the values in the non-comparable strips
Bm and Bm+1 in Lemma 17 (b).

Corollary 19. Let w ∈ {c, r}k. The set of border-strip decompositions of the simple diagram
(w, n) is in bijection with the set of permutations in Sn+k such that for each i ∈ [k]

• wi = c =⇒ σ−1(i) < σ−1(n+ i),

• wi = r =⇒ σ−1(i) > σ−1(n+ i) and

• σ(j)− σ(j + 1) ≤ n for all j ∈ [n+ k − 1].

Let BSP∗(w, n) be the subset of permutations in Sn+k that fulfill the three conditions in
Corollary 19. Hence,

BSP∗(w, n) = {σ ∈ BSP(w, n) : desn(σ) = 0}.

Note that ψ−1 gives a bijection from BSP∗(w, n) to BSD(w, n).

Definition 20. For a sequence w ∈ {r, c}k let

f̂
w
(n) := |BSD(w, n)|

(2k)!

(n− k)!
. (8)

Proposition 21. Whenever n ≥ 2k, the function f̂
w
(n) is equal to

f
w
(n) :=

∑

τ∈BSP(w,k)

(n+ k − desk(τ))2k. (9)

As a consequence, f̂
w
(n) is a polynomial in n of degree 2k with integer coefficients when

restricted to values n ≥ 2k. Moreover, f
w
(n) is divisible by the falling factorial (n+ 1)k+1.
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Proof. We start by assuming that n ≥ 2k. Interpreting permutations in Sn+k as sequences
of n + k numbers, we note that the first two conditions in Corollary 19 only apply to the
relative order of the first and last k elements. Thus, in order to construct a permutation σ
in Sn+k satisfying the three conditions in Corollary 19, we proceed in three steps.

1. Choose an ordering of the entries {1, 2, . . . , k} ∪ {n+ 1, n+ 2, . . . , n+ k}.

2. Choose the positions of the entries {1, 2, . . . , k} ∪ {n+ 1, n+ 2, . . . , n+ k}.

3. Choose an ordering of the entries {k + 1, . . . , n}.

Note that as n ≥ 2k, the unions in the first two steps above are disjoint. Not every choice
here will fulfill the conditions in Corollary 19 — we shall see below which ones are valid. For
a choice in the first step, two things might happen.

a) There is some pair (i, i + n) in the wrong order — violating one of the first two
conditions. In this case we do not have a border-strip tableau, and thus no border-
strip composition for this choice.

b) All pairs (i, i+ n) have the correct order. In this case, the ordering of the 2k entries

{1, 2, . . . , k} ∪ {n+ 1, n+ 2, . . . , n+ k}

fulfills the conditions (after standardization!) of being a permutation τ ∈ BSP(w, k).
Notice the use of k and not n here as strip-size.

Now we need to ensure that there are no n-descents in the final permutation. If there are
no k-descents in τ in step b) above, then there are no n-descents either. Otherwise, we need
to insert another number after every k-descent of τ . This means we only have

(

n+k−desk(τ)
2k

)

valid choices in step (2). The last step always has (n − k)! valid choices as the order on
{k+1, . . . , n} does not matter. It follows that whenever n ≥ 2k, the function f̂

w
(n) is given

by

f̂
w
(n) =

(2k)!

(n− k)!

∑

τ∈BSP(w,k)

(

n+ k − desk(τ)

2k

)

(n− k)!

=
∑

τ∈BSP(w,k)

(n+ k − desk(τ))2k.

This function is obviously a polynomial of degree 2k. Furthermore, since desk(τ) is between
0 and k − 1 it follows that (n+ k − desk(τ))2k is divisible by (n+ 1)k+1.

Corollary 22. We have the enumeration

|BSD(rc, n)| = (n+ 1)!(3n+ 2)/12 whenever n ≥ 2.
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Proof. Using Proposition 21, we know that |BSD(rc, n)| can be expressed as (n−2)!f̂
rc
(n)/4!.

Since we know that f̂
rc
(n) is a polynomial in n for n ≥ 4, it suffices to verify the formula for

the first few values of n.

The sequence an+1 = (n+ 1)!(3n+ 2)/12 appears A227404 in the OEIS, where an count
the total number of inversions in all permutations in Sn consisting of a single cycle. For
example, the permutations (123) and (132) have four inversions in total, giving a3 = 4. We
have not managed to find an explicit bijection that shows this correspondence.

2.4 Inversions and q-analogues

Definition 23 (Inversions). Two border strips B1 and B2 in a decomposition form an
inversion if and only if the following three conditions are fulfilled:

• The intersection
{j − i : (i, j) ∈ B1} ∩ {j − i : (i, j) ∈ B2}

is non-empty. Equivalently, there is a diagonal as in Definition 7 that intersects both
B1 and B2.

• B1 is inner to B2, and

• H(B1) > H(B2).

We prove in Corollary 25 that this definition generalizes the notion of inversions of per-
mutations in a natural manner.

Lemma 24. Let σ ∈ BSP∗(w, n), with Bσ := ψ−1(σ) being the corresponding border-strip
decomposition. Then the strips i and j in Bσ with i < j form an inversion if and only if
j − i < n and σ−1(i) > σ−1(j).

Proof. If j − i ≥ n they do not have an element on the same diagonal, and by definition
do not form an inversion. If j − i < n they share an element on the same diagonal and if
σ−1(i) > σ−1(j) then strip j is above strip i and they form an inversion.

Given a border-strip decomposition B, let inv(B) denote the total number of inversions
in B. Furthermore, for σ ∈ Sn+k let

invn(σ) := {(i, j) : 0 < j − i < n and σ−1(i) > σ−1(j)}.

The q-analogue of BSD(w, n) is defined as

|BSD(w, n)|q :=
∑

B∈BSD(w,n)

qinv(B) (10)

and by Lemma 24 we have that

|BSD(w, n)|q =
∑

σ∈BSP∗(w,n)

qinvn(σ). (11)

12
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Corollary 25. The q-analogue of the n× n-square, |BSD(∅, n)|q, satisfies the identity

∑

B∈BSD(∅,n)

qinv(B) = [n]q!.

Proof. From Proposition 13 we know every permutation in Sn is in BSP∗(∅, n). From Propo-
sition 18, we know every border-strip tableau correspond to a unique border-strip decompo-
sition. From Lemma 24 we can then deduce that the q-analogue is given by [n]q!.

Corollary 26. We have the following q-analogue for BSD(c, n):

∑

B∈BSD(c,n)

qinv(B) = [n− 1]q!
n
∑

i=1

iqi−1.

Proof. We get a permutation corresponding to a decomposition by placing 1 and n+1 (i.e.,
choose σ−1(1) and σ−1(n + 1)), and then choose the order of 2, . . . , n. This choice gives
[n− 1]q! and the possible positions of 1 and n+1 give

∑n

i=1 iq
i−1, as 1 has to be before n+1

for it to be a border-strip tableau. Note that there cannot be any n-descents and therefore
the number of border-strip tableaux is equal to the number of decompositions.

Proposition 27. If w is a sequence of a simple diagram, then

|BSD(cw, n)|+ |BSD(rw, n)| = (n+ 1)|BSD(w)|.

Furthermore, this relation extends to the following q-analogue:

|BSD(cw, n)|q + |BSD(rw, n)|q = [n+ 1]q|BSD(w)|q.

Proof. If we fix the positions of the heads in (w, n), the new head in (cw, n) must be above
the strip it replaces, where as in (rw, n) it must be below. Together, this gives n+1 choices
to complete the partial decomposition to a BSD of (w, n). If, in (cw, n) or in (rw, n), we
place the new head in position i of the diagonal, the new strip forms an inversion with all
i− 1 strips above it. This proves the q-analogue.

Corollary 28. We can enumerate the total number of border-strip decompositions for all
sequences of length k:

∑

w∈{r,c}k

|BSD(w, n)| = (n+ 1)kn!

and this relation extends to the q-analogue

∑

w∈{r,c}k

∑

B∈BSD(w,n)

qinv(B) = [n+ 1]kq [n]q!. (12)
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Proof. It suffices to show the q-analogue. We proceed by induction over k. The base case
k = 0 is given by Corollary 25. We then have

∑

w∈{r,c}k

|BSD(w, n)|q =
∑

w∈{r,c}k−1

|BSD(rw, n)|q +
∑

w∈{r,c}k−1

|BSD(cw, n)|q

= [n+ 1]q
∑

w∈{r,c}k−1

|BSD(w, n)|q

= [n+ 1]q
(

[n+ 1]k−1
q [n]q!

)

= [n+ 1]kq [n]q!

where the second equality is due to Proposition 27, and the third equality is our induction
hypothesis. This completes the proof.

For n = k − 1, (12) gives the sequence a(n) = (n + 1)n−1n!, which is A066319. This
sequence also show up in the work of Weist [10, Thm. 5.4]. Let Kn,n+1 be the complete
bipartite graph with n sources and n + 1 sinks. There are a(n) spanning trees such that
every source has exactly 2 incident edges. As a(n) is also related to computing the Euler
characteristic of certain moduli spaces, we ask if it perhaps is related to what we discuss in
Section 3 below.

For a sequence w, let C
w
be the total number of c’s in w, R

w
be the total number of r’s

in w and hor(w) := C
w
−R

w
. For example,

C
rcrcc

= 3, R
rcrcc

= 1 and hor(rcrcc) = 3− 2 = 1.

Intuitively, hor(w) measures how “horizontal” the diagram is, and | hor(w)| is smaller for
“straigher” shapes. The following theorem shows that straighter diagrams admit a larger
number of decompositions, in a precise sense:

Theorem 29. If v and w are sequences of length k and | hor(v)| < | hor(w)|, then

|BSD(v, n)| < |BSD(w, n)| for n sufficiently large.

In fact,
|BSD(w, n)| − |BSD(v, n)|

(n− k)!
= O(n2k−1).

Proof. From Proposition 21, we know that for sufficiently large n, we have that

f̂
v
(n) := |BSD(w, n)|

(2k)!

(n− k)!
=

∑

σ∈BSP(v,k)

(n+ k − desk(σ))2k.

From Proposition 14 we know that |BSP(v, k)| = (2k)!/22k. It then follows that

f̂
v
(n) =

(2k)!

2k
n2k + αn2k−1 + l.o.t and f̂

w
(n) =

(2k)!

2k
n2k + βn2k−1 + l.o.t.
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Our goal is to prove that α < β. For a fixed permutation σ ∈ BSP(v, k), its contribution to
α is given by

2k−1
∑

i=0

(k − desk(σ)− i) = 2k2 − k(2k − 1)− 2k desk(σ) = k − 2k desk(σ).

Hence, by summing over all permutations,

α = k|BSP(v, k)| − 2k
∑

σ∈BSP(v,k)

desk(σ).

As |BSP(v, k)| does not depend on v, the only part depending on v is

J
v
:=

∑

σ∈BSP(v,k)

desk(σ),

and it suffices to prove that J
v
increases as | hor(v)| decreases.

To do this, we count the number of permutations where b+ k is a k−descent with a, for
1 ≤ a < b ≤ k fixed (i.e., we have . . . , b + k, a, . . . in the permutation). To create such a
permutation, we can choose the order of all elements different from a, b, a + k, b + k in any
way respecting the orders of pairs σ(i), σ(i+k), which gives (2k−4)!/2k−2 choices. Then we
must choose the order of the three blocks a + k, (b + k)a, b. If a + k and b are on the same
side of (b + k)a, this gives two possibilities, otherwise there is only one way. We observe
a+ k and b are on the same side if and only if va 6= vb. Finally, we can chose the position of
the three blocks a+ k, b, (b + k)a, which gives

(

2k
3

)

choices. So the number of permutations
where b+ k is a k-descent with a is exactly

{

2
(

2k
3

)

(2k − 4)!/2k−2, if va 6= vb;
(

2k
3

)

(2k − 4)!/2k−2, otherwise.

Recall C
v
is the number of c’s in v and R

v
is the number of r’s in v. The previous argument

implies

J
v
=

(

2k

3

)

(2k − 4)!

2k−2

[(

C
v

2

)

+ 2C
v
R

v
+

(

R
v

2

)]

.

Since R
v
= k − C

v
it follows that

(

C
v

2

)

+ 2C
v
R

v
+

(

R
v

2

)

=

(

k

2

)

+ C
v
R

v

which increases as | hor(v)| decreases. This implies the theorem.

Conjecture 30. The function f
w
(n) uniquely determines w up to isometry of the diagram

w, i.e., up to exchanging r and c and reversing the sequence.
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Note that for fixed k, the polynomials (in n) {(n+ k − i)2k}
k−1
i=0 are linearly independent.

They span the same space as

{

(n+ i)2k
(2k)!

}k

i=1

=

{(

n+ i

2k

)}k

i=1

and the latter collection of polynomials can be seen to be linearly independent.
As a consequence, given f

w
(n), which is a sum over permutations in BSP(w, k), for any

i we can extract the number of permutations σ ∈ BSP(w, k) with desk(σ) = i. Hence,
the conjecture is reduced to determining if the multi-set of desk-values of the elements in
BSP(w, k) uniquely determines w up to isometry.

In particular, if the number of terms without k-descents is different, the polynomial is also
different, so we can formulate the stronger conjecture that |BSD(w, k)| uniquely determines
a sequence w of length k up to isometry.

3 A connection with the Weil-Petersson volume

We let cn denote the simple shape which is a rectangle of width 2n and height n. It fol-
lows from Corollary 19 that the set BSD(cn, n) is in bijection with the set of permuta-
tions of {x1, . . . , xn, y1, . . . , yn} such that xi appears before yi for all i, and we do not have
. . . , xi, yj, . . . (consecutive), such that i > j.

Lemma 31 (Adaptation of Xiang [11]). The cardinality of BSD(cn, n) is given by the formula

|BSD(cn, n)| =
∑

p⊢n

(−1)|p−1| 1

m!

(

|p|

p

)(

|p+ 1|

p+ 1

)

, (13)

where m = (m1,m2, . . . ,mk) and mi is the multiplicity of i in p, and we use the notation
p±1 := (p1±1, . . . , pk±1) and |p| = p1+ · · ·+pk. Note that

(

|p|
p

)

and
(

|p+1|
p+1

)

are multinomial
coefficients.

Proof. For a permutation σ ∈ S2n corresponding to a border-strip tableau, let Γσ be the
graph on the vertex set [n] with edge set

{(σ(i)− n, σ(i+ 1)) : σ(i)− n > σ(i+ 1)}.

Let G be the set of graphs obtained from such border-strip tableaux. Let E be
(

[n]
2

)

, that
is, the set of all possible edges on the vertex set [n] and let G(e1, . . . , er) ⊆ G be the set of
graphs that include the edges {e1, . . . , er} ⊆ E. We have that elements in BSP∗(cn, n) are
in bijection with G(∅), and Proposition 18 tells us that

|BSD(cn, n)| = G \

(

n
⋃

r=1

⋃

e1,...,er∈E

G(e1, . . . , er)

)

.
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Using the inclusion-exclusion principle, it follows that

|BSD(cn, n)| = |BST(cn, n)| −
∑

e1∈E

|G(e1)|+
∑

e1,e2∈E

|G(e1, e2)| − · · · .

We then observe that these graphs are characterized by the connected components induced
by the forced edges e1, . . . , er, determining an integer partition p of n. Furthermore, the sign
in the above formula only depends on the number of forced edges, which is equal to |p− 1|,
so we can transform this into a sum over all partitions of n. Given a partition p ⊢ n, the
number of graphs with component sizes p1, p2, . . . , pk is given by 1

m!

(

|p|
p

)

, with m given as
above.
Claim: Let e1, e2, . . . , er be fixed edges such that the component sizes are given by p. Then

G(e1, . . . , er) =

(

|p+ 1|

p+ 1

)

.

Proof: Suppose Γσ ∈ G(e1, . . . , er) has a component (i1, i2, . . . , ij), in increasing order. From
Proposition 13, we know σ−1(is) < σ−1(is + n) for all 1 ≤ s ≤ j, and for (i1, i2, . . . , ij)
to be connected, we need is + n to form an n-descent with is−1 for all 1 < s ≤ j i.e.,
σ−1(is + n) = σ−1(is−1)− 1.

Together these two statements imply that σ, has the following structure:

σ−1(ij) < σ−1(ij + n)⋖ σ−1(ij−1) < σ−1(ij−1 + n)⋖ · · ·

· · · < σ−1(i3 + n)⋖ σ−1(i2) < σ−1(i2 + n)⋖ σ−1(i1) < σ−1(i1 + n)

where a⋖ b means that a+ 1 = b. Thus, we have j + 1 blocks,

[σ−1(ij)], [σ
−1(is+1 + n)⋖ σ−1(is)] for s = 1, . . . , j − 1 and [σ−1(i1 + n)]

which need to appear in order, but there is no further restriction. The number of Γσ with
component sizes determined by p is therefore

(

|p+1|
p+1

)

, which concludes the proof.

Let us now dive into a completely different part of mathematics. We shall not use the
following definition and we omit many details. The important part is Theorem 32 further
down.

The Weil-Petersson volume, VolWP (·), is defined as

VolWP (M) :=
1

(n− 3)!

∫

M

∧n−3(ωM),

where ωM is the Weil-Petersson symplectic form on the manifold M . A special type of
manifold is M0,n, which denotes the moduli space of an n-punctured Riemann sphere, that
is

M0,n := {(z1, . . . , zn) ∈ Ĉ
n : zi 6= zj}/Sn × PSL(2,C)

and Sn acts by permuting variables, and PSL(2,C) acts as a linear fractional transformation.
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Theorem 32 (Zograf [12]). The Weil-Petersson volume of the moduli space of an n-punctured
Riemann sphere M0,n is given by the formula

VolWP (M0,n) =
π2(n−3)vn
n!(n− 3)!

, for n ≥ 4,

where the sequence (vn)
∞
n=3 is defined via the recursion

v3 = 1, vn =
1

2

n−3
∑

i=1

i(n− i− 2)

n− 1

(

n− 4

i− 1

)(

n

i+ 1

)

vi+2vn−i, n ≥ 4. (14)

This sequence shows up as A115047 in the OEIS [8], see Kaufmann, Manin, and Zagier
[3] and Matone [4] for more background. In the paper by Kauffman et al., [3] the following
relationship is shown.

Proposition 33. Let the sequence vn be defined as in (14). Then

vn =
n−3
∑

k=1

(−1)n−3−k

k!

∑

m1,...,mk>0
m1+···+mk=n−3

(

n− 3

m1, . . . ,mk

)(

n− 3 + k

m1 + 1, . . . ,mk + 1

)

.

We are now ready to prove the following connection between the sequence v(n) and
border-strip decompositions.

Theorem 34. Let a(n) be defined inductively by a(0) = 1 and

a(n) =
1

2

n
∑

i=1

i(n− i+ 1)

(n+ 2)

(

n− 1

i− 1

)(

n+ 3

i+ 1

)

a(i− 1)a(n− i) (15)

and let vn be given as in (14). Then a(n) = vn+3 = |BSD(cn, n)|.

Proof. The first equality, vn+3 = a(n) follows from comparing (14) and (15). It is a straight-
forward calculation to verify that they are equal. To get the second identity, note that we
can get the formula in Proposition 33 from Equation (13) by replacing integer partitions
with integer compositions, and then refining the sum over the number of parts, denoted by
k in Proposition 33.

4 Further directions

Given the connection with Euler characteristics of moduli spaces mentioned after Corol-
lary 28, and the connection with moduli spaces in Theorem 34, is there a generalization of
this mysterious connection? For example, there are formula for the volumes of surfaces of
other genus; see Matone [4].

Another interesting direction is to consider the q-analogue of border-strip tableaux rather
than decompositions.
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