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Abstract

A simple permutation is one which maps no proper non-singleton interval onto an

interval. We consider the enumeration of simple permutations from several aspects.

Our results include a straightforward relationship between the ordinary generating

function for simple permutations and that for all permutations, that the coefficients

of this series are not P -recursive, an asymptotic expansion for these coefficients, and

a number of congruence results for the coefficients of the functional inverse of the

ordinary generating function for all permutations.

1 Introduction and definitions

The permutation 2647513 maps the interval 2..5 onto the interval 4..7. In other words, it
has a segment (set of consecutive positions) whose values form a range (set of consecutive
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values). Such a segment is called a block of the permutation. Every permutation has singleton
blocks, together with the block 1..n. If these are the only blocks the permutation is called
simple. For example, 58317462 is simple and the simple permutations of length up to 5 are
as follows:.

Length Simple permutations

1 1
2 12, 21
3 None
4 2413, 3142
5 24153, 25314, 31524, 35142, 41352, 42513

Simple permutations have recently had important applications in the study of pattern
closed classes of permutations [1, 10]. Specifically, if such a class contains only finitely many
simple permutations then it is finitely based (determined by a finite number of pattern
restrictions), and its generating function is algebraic. In general it appears that there is
a close connection between understanding the structure of the simple permutations in a
pattern closed class and being able to describe the structure of arbitrary permutations in
the class.

Let sn denote the number of simple permutations of length n. We shall be concerned
with properties of the sequence (sn). Consider the ordinary generating functions:

F (x) =
∞
∑

k=1

k!xk;

S(x) =
∞
∑

k=4

skx
k.

We start S(x) from x4 because simple permutations of length 1 and 2 need special treat-
ment. Later in this section we will see that the coefficients of S differ from those of −F 〈−1〉

(functional inverse, not reciprocal) alternately by 2 and −2. The coefficients of F 〈−1〉(x) were
considered by Comtet [4, p. 171] without any combinatorial interpretation. The sequence of
absolute values of these coefficients appears as sequence A059372 of [12], and the first few
terms are:

1, 2, 2, 4, 4, 48, 336, 2928, 28144, 298528, 3454432, 43286528.

So we shall see that the numbers sn are:

1, 2, 0, 2, 6, 46, 338, 2926, 28146, 298526, 3454434, 43286526.

In section 2 we shall prove that (sn) is not P-recursive (it cannot be defined by a linear
recurrence with polynomial coefficients). In section 3 we derive the asymptotic behaviour of
sn (the main term is n!/e2) and section 4 gives various congruences satisfied by the numbers
sn.

In the remainder of this section we derive a structure theorem that shows how arbitrary
permutations are built from simple ones, and read off from it equations satisfied by generating
functions. We begin with some terminology and notation that will be used throughout.
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Figure 1: A block decomposition of 67183524 represented on the graph of σ. The pattern of
the block decomposition is the permutation whose graph is defined by the occupied cells of
the graphical block decomposition, namely 3142. Within each occupied cell, the individual
blocks also define permutations namely 12, 1, 1, and 2413.

A block decomposition of a permutation σ is a partition of σ into blocks. Of course, if σ is
simple there will only be the two trivial block decompositions. An example of a non-trivial
decomposition is σ = 67183524 with blocks (67)(1)(8)(3524).

Given a block decomposition of σ, its pattern is the permutation defined by the rela-
tive order of the blocks. In the example above, the pattern of the block decomposition
(67)(1)(8)(3524) is 3142. We may think of the permutation 67183524 as being constructed
from the permutation 3142 by inflating each of the elements into a block, in this case the
blocks 12, 1, 1, and 2413 (we view each block as a permutation in its own right). We write:

67183524 = (3142)[12, 1, 1, 2413].

This example is further illustrated in Figure 1. The inflation procedure is an instance of the
wreath product for permutations [2].

A permutation which cannot be written in the form (12)[α, β] is called plus indecompos-
able, and one which cannot be written in the form (21)[α, β] is called minus indecomposable.
Let in denote the number of plus indecomposable permutations of length n. The number
of minus indecomposable permutations of length n is also in as is easily seen by considering
the bijection on permutations of length n which sends π to π ′ where π′(t) = n+ 1− π(t).

Theorem 1 For every non-singleton permutation π there exists a unique simple non-singleton
permutation σ, and permutations α1, α2, . . . , αk such that

π = σ[α1, α2, . . . , αk].

Moreover, if σ 6= 12, 21 then α1, α2, . . . , αk are also uniquely determined. If σ = 12 (respec-
tively 21) then α1 and α2 are uniquely determined subject to the additional condition that α1

be plus (respectively minus) indecomposable.

The caveat added for the case where σ = 12 (or 21) is necessary, as is easily seen by
considering π = 123. This can be decomposed as (12)[1, 12] or as (12)[12, 1]. However, only
the former decomposition has a plus indecomposable first part.

Proof: We first of all suppose that π has two distinct maximal proper blocks A and B
that have a non-empty intersection. Then, as the union of intersecting segments is a segment
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and the union of intersecting ranges is a range, A∪B is a block. Because of the maximality,
A∪B = [n]. But it is also clear that A cannot be an interior segment of [n] nor can it define
an interior range. In other words we have

π = σ[α, β]

where σ = 12 or σ = 21. These two possibilities are obviously mutually exclusive. In either
case consider all decompositions of π as σ[γ, δ]. The intersection of their γ parts is also the γ
part of a decomposition of this type. So there is a unique such decomposition with smallest γ
part. Clearly, this part is plus indecomposable in the case σ = 12 and minus indecomposable
if σ = 21.

We next suppose that every pair of distinct maximal proper blocks has empty intersection.
Obviously, then the maximal blocks form a block decomposition of π and this decomposi-
tion must be coarser than every other nontrivial block decomposition of π. It follows that
this decomposition is the only one whose pattern σ is simple and so we obtain the unique
representation claimed for π.

We shall shortly see that this theorem gives relations between the following three gener-
ating functions:

F (x) =
∞
∑

k=1

k!xk;

I(x) =
∞
∑

k=1

ikx
k;

S(x) =
∞
∑

k=4

skx
k.

Note that our generating functions are all taken to have zero constant term. This slightly
unconventional choice turns out to be algebraically convenient at several points.

From Theorem 1 it is easy to see that there is a one to one correspondence between the
collection of all permutations with length at least 2 and the collection of sequences:

(σ, α1, α2, . . . , αk).

Here σ may be any simple permutation of length k ≥ 2, and if σ 6= 12, 21 then α1 through
αk are arbitrary permutations, while if σ = 12 (respectively 21), α1 is plus-indecomposable
(respectively minus indecomposable) and α2 is arbitrary.

This correspondence, together with the earlier observation that the numbers of plus and
minus indecomposable permutations of length n are the same, translates naturally into the
following equation:

F (x) = x+ 2I(x)F (x) + (S ◦ F )(x). (1)

However, since a plus indecomposable permutation cannot correspond to a sequence begin-
ning with 12, while all other sequences do represent plus indecomposables, it is also clear
from the correspondence that

I(x) = x+ I(x)F (x) + (S ◦ F )(x).
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Solving this latter equation for I, and then substituting in equation (1) before solving for
S ◦ F gives:

(S ◦ F )(x) =
F (x)− F (x)2

1 + F (x)
− x.

Now letting t = F (x) we obtain:

S(t) = t−
2t2

1 + t
− F 〈−1〉(t). (2)

We can also obtain an equation for the ordinary generating function of plus indecomposable
permutations through the observation that every permutation decomposes into a sequence
of plus indecomposable permutations so

F (x) =
I(x)

1− I(x)

or equivalently

I(x) =
F (x)

1 + F (x)
. (3)

Denoting the coefficient of tn in F 〈−1〉(t) by Comn (in reference to Comtet who initiated
the consideration of this sequence in an exercise of [4]) we obtain directly from equation (2)
the simple relationship that for n ≥ 4:

sn = −Comn + (−1)n+1 · 2.

2 Non P-recursiveness

A sequence of numbers (an) is called P-recursive if it satisfies a linear recurrence with poly-
nomial coefficients. If an = n! then an−nan−1 = 0, and thus the sequence (n!) is P-recursive.
A power series is called D-finite if it satisfies a linear differential equation with polynomial
coefficients. A sequence (an) is P-recursive if and only if its ordinary generating function
A(x) =

∑

n anx
n is D-finite. More information on D-finiteness and P-recursiveness can be

found in Stanley [13, Chapter 6]. We show that on the other hand neither sequence (in) nor
(sn) is P-recursive. By (2), instead of the latter sequence we can work with (Comn).

Proposition 2 The power series I(x) and C(x) = F 〈−1〉(x) =
∑∞

k=1 Comkx
k satisfy the

differential equations

I ′ = −x−2I2 + (x−2 + x−1)I − x−1;

C ′ =
C2

x− (1 + x)C
.

Proof: It follows from the recurrence for n! that F (x) satisfies x + xF + x2F ′ = F .
Thus F ′ = ((1− x)F − x)/x2. Combining this with F = I/(1− I) we obtain the differential
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equation for I(x). Similarly, C ′ = 1/F ′(C) = C2/((1 − C)x − C) which is the differential
equation for C(x).

Klazar [8] used the following method to show that a sequence (an) is not P-recursive.
Suppose that the ordinary generating function A(x) is non-analytic and satisfies a first order
differential equation A′ = R(x,A) where R is some expression. Differentiating this relation-
ship and replacing A′ by R(x,A), the derivatives of A are expressed as A(k) = Rk(x,A);
R0(x,A) = A and R1(x,A) = R(x,A). Substituting Rk(x,A) in the equation of D-finiteness

b0A+ b1A
′ + b2A

′′ + · · ·+ bsA
(s) = 0,

where s ≥ 1, bi ∈ C(x) and bs 6= 0, we get a non-differential equation
∑s

k=0 bkRk(x,A) = 0.
If R is such that the expressions R0, R1, R2, . . . are (i) analytic or even algebraic and (ii)
linearly independent over C(x), we have a nontrivial analytic equation for A. This implies
that A is analytic (see Klazar’s paper [8] for more details) which is a contradiction. So A
cannot be D-finite and the sequence of its coefficients cannot be P-recursive.

To state the result of [8] precisely, we remind the reader that a power series R(x, y) ∈
C[[x, y]] is analytic if it absolutely converges in a neighborhood of the origin and that
R(x, y) ∈ C((x, y)) is an analytic Laurent series if, for some positive integer k, (xy)kR(x, y) ∈
C[[x, y]] is analytic. Theorem 1 of [8] says that if A ∈ C[[x]] is non-analytic, R(x, y) ∈
C((x, y)) is analytic, A′ = R(x,A), and R contains at least one monomial axiyj, a 6= 0,
with j < 0, then A is not D-finite. This result applies directly neither to I(x) nor C(x) (see
Proposition 2) because in the case of I(x) the last condition on R is not satisfied and in the
case of C(x) the right hand side R cannot even be expanded as a Laurent series.

However, the substitution x − (1 + x)C(x) = θ(x) transforms the second differential
equation of Proposition 2 into

θ′ = −
x2

1 + x
·
1

θ
+

1 + 2x

1 + x
.

Now all conditions are satisfied (F (x) is clearly non-analytic which implies that C(x) and
θ(x) are non-analytic) and thus θ(x) is not D-finite by Theorem 1 of [8]. The dependence
of C(x) and S(x) on θ(x) and the fact that D-finite power series form a C(x)-algebra ([13,
Theorem 6.4.9]) shows that neither C(x) nor S(x) is D-finite.

In order to deal with the case of I(x), we use this opportunity to complement Theorem
1 of [8] in which R ∈ C((x, y)) by the following theorem which treats the case R ∈ C(x, y).
Neither of the theorems subsumes the other because not every rational function in x and y
can be represented by an element of C((x, y)) (as we have seen) and, of course, not every
Laurent series sums up to a rational function. However, the next theorem seems to be more
useful because in both examples in [8] and both examples here the right hand side R(x, y)
is, in fact, a rational function.

Theorem 3 Let P,Q ∈ C[x, y] be two nonzero coprime polynomials and A ∈ C[[x]] be a
non-analytic power series which satisfies the differential equation

A′ =
P (x,A)

Q(x,A)
.
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If degy Q = 0 and degy P ≤ 1 then A is, trivially, D-finite. In all remaining cases A is not
D-finite.

Proof: The first claim is clear. If degy Q = 0 and r = degy P ≥ 2 then A′ = a0 + a1A+
· · ·+ arA

r where ai ∈ C(x), r ≥ 2, and ar 6= 0. Differentiation by x gives

A(k) = Rk(x,A) = a0,k + a1,kA+ · · ·+ akr−k+1,kA
kr−k+1

where ai,j ∈ C(x) and

akr−k+1,k = r(2r − 1)(3r − 2) . . . ((k − 1)r − k + 2)akr 6= 0.

Thus Rk(x, y) ∈ C(x)[y] have y-degrees kr − k + 1, k = 0, 1, 2, . . . , which is for r ≥ 2 a
strictly increasing sequence. Therefore R0, R1, R2, . . . are linearly independent over C(x)
and, by the above discussion, A is not D-finite.

In the remaining case degyQ ≥ 1. Differentiation of A′ = R(x,A) = P (x,A)/Q(x,A) by

x gives A(k) = Rk(x,A) where Rk(x, y) ∈ C(x, y). For example,

R2 =
(Px + PyR1)Q− P (Qx +QyR1)

Q2

=
PxQ− PQx

Q2
+
P (PyQ− PQy)

Q3
.

Let α, Q(x, α) = 0, be a pole of R1(x, y) of order ordα(R1) = ordα(P/Q) = −ordα(Q) = l ≥
1. We have ordα((PxQ− PQx)Q

−2) ≤ 2l and ordα(P (PyQ− PQy)Q
−3) = 3l + ordα(PyQ−

PQy) = 2l+1 since ordα(P ) = 0, ordα(PyQ) ≤ −l, and ordα(PQy) = −l+1. So ordα(R2) =
2l + 1. In general, the same argument shows that ordα(Rk+1) = 2 · ordα(Rk) + 1. Hence
ordα(Rk) = 2k−1l + 2k−1 − 1, k = 1, 2, . . . . This is a strictly increasing sequence and we
conclude again, since R0, R1, R2, . . . are linearly independent over C(x), that A is not D-
finite.

Proposition 2 and Theorem 3 show that I(x) is not D-finite and we can summarize the
results of this section in the following corollary.

Corollary 4 The sequences (in), (Comn), and (sn) are not P-recursive.

3 Asymptotics

We turn now to the computation of an asymptotic expansion for the numbers sn. We will
prove that:

Theorem 5

sn =
n!

e2

(

1−
4

n
+

2

n(n− 1)
+O(n−3)

)

.
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Our methods are such that, in principle, higher order terms could be obtained as a
matter of brute force computation. In order to carry out this expansion we will first consider
permutations which may not be simple, but whose non-trivial blocks all have length greater
than some fixed value m. We will apply inclusion-exclusion arguments (dressed in the form
of generating functions [5, 6]), an argument which allows us to reduce the number of terms
considered, and a bootstrapping approach.

The case m = 2, was already considered by Kaplansky [7]. Permutations of this type are
those in which no two elements consecutive in position are also consecutive in value (in either
order). These were called irreducible permutations by Atkinson and Stitt [2], but there is
no standard terminology in the field. Indeed the permutations that we have referred to as
plus and minus indecomposable have also been called irreducible in other contexts.

An amusing equivalent form for the casem = 2 is that the number of such permutations is
also the number of ways of placing n mutually non-attacking krooks on an n×n chessboard.
A krook is a piece which can move either like a king, or a rook in chess. Kaplansky’s
expansion is:

n!

e2

(

1−
2

n(n− 1)
+O(n−3)

)

.

In fact he derives asymptotic forms for the number of permutations containing exactly r
blocks of length 2 for any r. Our methods parallel his, and could also be used to derive such
detailed information.

The decomposition provided by Theorem 1 of a permutation into its maximal proper
blocks represents a top down view of how non-simple permutations are constructed from
simple ones. There is a corresponding bottom-up view that focuses on minimal non-singleton
blocks, put together in an arbitrary order. By a minimal block in π we mean a non-singleton
block in π minimal with respect to inclusion. The reader should carefully note that the term
“minimal block” includes the non-singleton condition. Note also that the pattern of each
minimal block is that of a simple permutation. Any permutation can be decomposed into
minimal blocks and singletons, e.g., 3524716 = (3524)(7)(1)(6). However, this decomposition
is not unique, for two essentially different reasons. The first one is that decompositions
π = σ[α1, α2, . . . , αk], where σ is arbitrary and αi are simple, are not unique because it may
be possible to coalesce singletons into simple blocks, or vice versa. Thus besides 3524716 =
2413[2413, 1, 1, 1] we also have 3524716 = 3524716[1, 1, 1, 1, 1, 1, 1]. The second problem is
that we require any two minimal blocks to be disjoint. While this is necessarily true whenever
either of them has length more than 2, two minimal blocks of length 2 may intersect, as in
123. Thus we consider decompositions π = σ[α1, α2, . . . , αk] where σ is arbitrary and each αi
is either 1, a simple permutation of length at least 4, or the identity permutation of length
at least 2 or its reverse. We refer to blocks of the latter type as clusters in π.

By using clusters we have solved the second problem but the non-uniqueness remains
and, moreover, we have introduced another source of it: consecutive (reversed) identity
permutations may coalesce into longer (reversed) identity permutations, as in 345612 =
21[1234, 12] = 231[12, 12, 12]. To remedy the non-uniqueness we introduce the notion of
marking a permutation. A marked permutation (π,M) consists of a permutation π and a
collection M of minimal blocks of π. A marked cluster in (π,M) is a maximal chain of
marked overlapping minimal blocks of length 2 (a marked cluster may be a proper subset
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of a maximal cluster). Let B1 denote the set of all simple permutations of length at least 4
and B2 denote the set of all identity permutations of length at least 2 and their reversals.
Marking makes our decomposition unique:

Theorem 6 Let X be the set of all marked permutations (π,M) and Y be the set of all
sequences (σ;α1, α2, . . . , αk) where σ is any permutation of length k ≥ 1 and αi ∈ {1}∪B1 ∪
B2. There is a bijection between the sets X and Y such that if (π,M) 7→ (σ;α1, α2, . . . , αk),
where r of the αi belong to B1 and s of them to B2, then

π = σ[α1, α2, . . . , αk]

and |M | = r + l − s where l is the total length of the αi belonging to B2.

Proof: Given a marked permutation, collapse its marked minimal blocks of length at
least 4 and its marked clusters into singletons. This gives the permutation σ. If the i-th
term of σ was not obtained by collapse then αi = 1, otherwise αi equals the corresponding
element of B1 ∪ B2. Since each αi ∈ B1 contributes 1 to |M | and each αi ∈ B2 of length m
contributes m − 1, we have |M | = r + l − s. It is clear that π = σ[α1, α2, . . . , αk] and that
(π,M) can be uniquely recovered from (σ;α1, α2, . . . , αk).

Now suppose m to be some fixed value (we will later make choices of m suitable for our
purposes, but will always assume that m ≥ 2 since smaller values of m are trivial). Each
permutation π has an associated collection Bm(π) consisting of the minimal blocks of π
whose length is less than or equal to m. So, if π is simple and of length greater than m,
Bm(π) is empty, while for π = 5672413, B2(π) = {56, 67}, and B4(π) = {56, 67, 2413}. An
m-marking of π is simply a subset of Bm(π). Let |π| denote the length of a permutation π.
We consider the generating function:

Fm(x, v) =
∑

π

x|π|
∑

M⊆Bm(π)

v|M | =
∑

π

x|π|(1 + v)|Bm(π)|.

Then of course Fm(x,−1) is the ordinary generating function for permutations all of whose
non-singleton blocks have length greater than m.

We remark that Fm(x, t − 1) is the generating function where the coefficient of xntk is
precisely the number of permutations of length n with k minimal blocks of length less than
or equal to m.

Let

Sm(x) =
m
∑

j=4

sjx
j.

We wish to determine the consequences of the bijection of Theorem 6 with respect to marked
permutations which contain no marked minimal blocks of length more than m. The gener-
ating function of the permutations α ∈ {1} ∪ B1 ∪ B2, in which x counts the length and v
the contribution to |M |, is

x+ vSm(x) +
2vx2

1− vx
.
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So, from Theorem 6:

Fm(x, v) =
∑

k≥1

k!

(

x+
2vx2

1− vx
+ vSm(x)

)k

from which it follows that:

fm(x) := Fm(x,−1) =
∑

k≥1

k!

(

x−
2x2

1 + x
− Sm(x)

)k

. (4)

Before using this equation to derive asymptotic information about sn we digress briefly to
show how it can be used to obtain an alternative derivation of (2). Instead of using Sm(x) in
(4), use S(x). This gives us f∞(x), an ordinary generating function for permutations having
no minimal block. The only such permutation is 1 so f∞(x) = x. That is:

x = F (x−
2x2

1 + x
− S(x))

which yields (2) after applying F 〈−1〉 to both sides.
Now recall that fm(x) is the generating function for permutations all of whose blocks

have length greater than m. In order to make use of these generating functions in the
asymptotic computation of sn we must determine a suitable value of m so that fm provides
useful information about sn. To that end the following lemma is useful.

Lemma 7 If pn,k denotes the number of permutations of length n which contain a minimal
block of length k then for any fixed positive integer c:

n−c
∑

k=c+2

pn,k
n!

= O(n−c).

Proof: First observe that

pn,k ≤ sk(n− k + 1)(n− k + 1)!

since the right hand side counts the number of ways to choose the structure of a minimal
block of length k, to choose its minimal element, and to arrange it with other elements, so
it overcounts permutations with more than one such block.

The estimate given then follows directly by using the fact that sk ≤ k!. Only the two
extreme terms in the sum can have magnitude as large as O(n−c), and the remaining terms
have magnitude O(n−c−1). Since there are fewer than n terms, the result follows.

So when seeking an asymptotic expansion of sn/n! with an error term of O(n−c−1) we
may count instead the permutations which contain no blocks of length less than or equal to
c+ 2, or greater than or equal to n− c. In particular, as a direct consequence of the result
quoted above due to Kaplansky [7] we obtain:

Observation 8
sn
n!

=
1

e2
+O(n−1).
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An alternative proof of this result follows from a more general theorem of Bender and
Richmond [3] which provides the first order asymptotics of a class of series which include
the inverse series of F (x).

We will set as our goal to obtain the asymptotics of sn/n! with error term O(n−3).
However, the technique we use is completely general, and could be applied, at the expense of
a great deal of tedious computation, to any fixed error bound of this type. By the remarks
above, we may ignore minimal block sizes between 5 and n − 3 inclusive. We first consider
f4(x) which enumerates permutations having no minimal blocks of size less than or equal to
4. Recall that:

f4(x) =
∑

k≥1

k!

(

x−
2x2

1 + x
− 2x4

)k

.

So, for n ≥ 1:

1

n!
[tn]f4(t) =

1

n!

∞
∑

k=0

k! [tn]

(

t−
2t2

1 + t
− 2t4

)k

=
1

n!

∞
∑

k=0

k! [tn−k]

(

1−
2t

1 + t
− 2t3

)k

=
1

n!

n
∑

l=0

(n− l)! [tl]

(

1−
2t

1 + t
− 2t3

)n−l

=
1

n!

n
∑

l=0

(n− l)!
l
∑

i=0

(−2)i
(

n− l

i

)

[tl]

(

t

1 + t
+ t3

)i

=
1

n!

n
∑

l=0

(n− l)!
l
∑

i=0

(−2)i
(

n− l

i

)

[tl−i]

(

1

1 + t
+ t2

)i

. (5)

Consider now any fixed value of l in equation (5). In order to obtain terms whose order
in n is n−2 or more, we need only consider the values l− 2 ≤ i ≤ l. Despite the fact that we
sum over values of l running from 0 through n, we may safely ignore the other terms. As we
shall see in computing the three significant terms the summation over l does not affect the
order of the terms.

So, the three terms that we need to consider are:

(n−l)!
n!

(−2)l
(

n−l
l

)

+
(n−l)!
n!

(

(−2)l−1
(

n−l
l−1

)

(−l + 1)
)

+
(n−l)!
n!

(

(−2)l−2
(

n−l
l−2

)

((−l + 2)(−l + 1)/2 + l − 2)
)

.

(6)

Each of these terms will be converted to the form:

(−2)l

l!
(an asymptotic expansion in n) .

Since the first two and the first part of the third, are the same as those arising in the m = 2
case, we can make use of their known form, that is, use the asymptotics from Kaplansky’s

11



result, leaving only the term

(n− l)!(−2)l−2(l − 2)

n!

(

n− l

l − 2

)

=
(−2)l

l!

(

l(l − 1)(l − 2)

4

(n− l)!(n− l)!

n!(n− 2l + 2)!

)

=
(−2)l

l!

(

l(l − 1)(l − 2)

4n(n− 1)
+O(n−3)

)

Summing this expression over l gives −2e−2/n(n− 1) +O(n−3).
Now we combine this additional term with Kaplansky’s results to give the asymptotic

expansion of [tn]f4(t) through three terms as:

[tn]f4(t) =
n!

e2

(

1−
4

n(n− 1)
+O(n−3)

)

.

Finally we use this in establishing the second order asymptotics of sn. From Observation
8 applied to sn−1 we obtain:

sn−1 =
n!

e2

(

1

n
+O(n−2)

)

.

Furthermore, the number of permutations of length n containing a simple block of length
n − 1 is precisely 4sn−1. Since, in computing the 1/n term in the expansion of sn we can
ignore contributions arising from blocks of length n − 2, and since the events of having a
simple block of length from 2 to 4, and having a simple block of length (n− 1) are disjoint:

sn = [tn]f4(t)− 4sn−1 +O(n−2n!);

=
n!

e2

(

1−
4

n
+O(n−2)

)

.

We apply this bootstrap approach once more to get the second order behaviour. We now
know that:

sn−1 =
n!

e2

(

1

n
−

4

n(n− 1)
+O(n−3)

)

sn−2 =
n!

e2

(

1

n(n− 1)
+O(n−3)

)

.

Furthermore there are 18sn−2 permutations of length n containing a simple block of length
n− 2. However, of these 8sn−2 also contain a simple block of length 2. So:

sn = [tn]f4(t)− 4sn−1 − 10sn−2 +O(n−3n!)

=
n!

e2

(

1−
4

n
+

2

n(n− 1)
+O(n−3)

)

,

as we claimed at the beginning of this section.
Finally, in this section we note that the asymptotic estimate of sn is, as might be expected,

a poor approximation. For example, s20 = 264111424634864638 and our asymptotic estimate
has a relative error of about 3.89× 10−3.

12



4 Congruences

In this section we derive congruence properties of the numbers Comn for the moduli 2a and
3 (from which follow similar congruences for sn). Our main tool is the following result that
follows immediately from the Lagrange inversion formula.

Lemma 9

n · Comn = [xn−1]

(

∑

k≥0

(−1)k(2!x+ 3!x2 + · · · )k

)n

.

For a prime p, let ordp(n) denote the largest integer m such that pm divides n. As the
following table shows, ord2(Comn) is unexpectedly large:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ord2(Comn) 0 1 1 2 2 4 4 4 4 5 5 15 13 12 12

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
8 8 9 9 10 10 12 12 14 14 15 15 17 17 22

In Theorem 11 we give a lower bound on ord2(Comn) which is tight for infinitely many n
and we completely characterize the values of n for which the equality is attained.

For convenience we note the following result that follows directly from the well-known
formula

ordp(m!) =

⌊

m

p

⌋

+

⌊

m

p2

⌋

+ · · ·

Lemma 10 For all m, ord2((m + 1)!) ≥
⌈

m
2

⌉

where equality holds if and only if m = 1 or
2. Also, ord3(m!) ≤ m− 1 for all m.

Theorem 11

ord2(Comn) ≥

⌈

n− 1

2

⌉

Let m = bn/2c. Then equality holds if and only if
(

3m
m

)

is odd and this happens if and only
if the binary expansion of m has no two consecutive unit digits.

Proof: Let the numbers bk, k ≥ 0, be defined by

∑

k≥0

bkx
k =

∑

k≥0

(−1)k(2!x+ 3!x2 + · · · )k.

Thus b0 = 1 and for k ≥ 1,

bk =
∑

c1,c2,...,cs≥1
c1+c2+···+cs=k

(−1)s · (c1 + 1)! · (c2 + 1)! · · · · · (cs + 1)!.

13



By Lemma 9,

n · Comn =
∑

k1,k2,...,kn≥0
k1+k2+···+kn=n−1

bk1
bk2

. . . bkn
.

By Lemma 10, ord2((c+ 1)!) ≥ c/2 for all c. Hence, for all k and n,

ord2(bk) ≥
k

2
and ord2(n · Comn) ≥

n− 1

2
.

In particular, for odd n we have ord2(Comn) = ord2(n · Comn) ≥ (n− 1)/2.
To obtain the more exact result of the theorem we need the following better estimates

for ord2(bk):

ord2(bk)







= k/2 for even k;
= (k + 1)/2 for k ≡ 1 mod 4;
> (k + 1)/2 for k ≡ 3 mod 4.

To prove them we look more closely at the sum for bk. Suppose first that k is even. Then
the sum has exactly one summand with ord2 equal to k/2, namely that with c1 = c2 =
· · · = ck/2 = 2 (by Lemma 10, ord2((c + 1)!) = c/2 only if c = 2), and the other summands
have ord2 bigger than k/2. Hence ord2(bk) = k/2. Now suppose that k is odd. Then each
summand has an odd number of odd ci’s. The summands t with three and more odd ci’s
satisfy ord2(t) ≥ (k + 3)/2 (each odd ci contributes 1/2 to k/2). The same is true if t has
only one odd ci but that ci is not 1 (by Lemma 10, ord2((c+1)!) ≥ (c+3)/2 for odd c > 1),
or if some even ci is not 2 (Lemma 10). The remaining summands t, in which ci = 2 with
multiplicity (k − 1)/2 and once ci = 1, satisfy ord2(t) = (k + 1)/2. We see that, for odd
k, ord2(bk) = (k + 1)/2 if and only if the number of the remaining summands is odd. This
number equals (k− 1)/2+1 = (k+1)/2. So ord2(bk) = (k+1)/2 if and only if k ≡ 1 mod 4.

Let n = 2m+1 be odd. If s is a summand of the above sum for n ·Comn, then ord2(s) =
(n− 1)/2 if and only if all ki in s are even; other summands t have ord2(t) > (n− 1)/2. It
follows that ord2(Comn) = (n− 1)/2 if and only if the number of the former summands s is
odd. This number equals

[xn−1]

(

∑

r≥0

x2r

)n

= [xn−1]
1

(1− x2)n
= [xn−1]

∑

r≥0

(

n+ r − 1

r

)

x2r =

(

3m

m

)

.

Let n = 2m be even. We know that ord2(bk) = k/2 for even k and ord2(bk) ≥ (k + 1)/2
for odd k. In the sum for n · Comn, every composition k1 + k2 + · · · + kn = n − 1 of n − 1
has an odd number of odd parts. For any t-tuple l1, l2, . . . , lt, where t and all li are odd
and l1 + · · · + lt ≤ n − 1, we let S(l1, l2, . . . , lt) denote the sum of those bk1

bk2
. . . bkn

with
k1 + k2 + · · ·+ kn = n− 1 in which ki = li, 1 ≤ i ≤ t, and ki is even for i > t. It follows that

n · Comn =
∑

(

n

t

)

S(l1, l2, . . . , lt)

where we sum over all mentioned t-tuples l1, l2, . . . , lt. By the properties of ord2 and of the
numbers bk, ord2(S(l1, l2, . . . , lt)) ≥ (n + t − 1)/2. Also, for odd t we have ord2(

(

n
t

)

) =

14



ord2(
n
t

(

n−1
t−1

)

) = ord2(n) − ord2(t) + ord2(
(

n−1
t−1

)

) ≥ ord2(n), and ord2(
(

n
1

)

) = ord2(n). It
follows that ord2(Comn) ≥ n/2 and, moreover, ord2(Comn) = n/2 if and only if

ord2

(

∑

l≤n, l odd

S(l)

)

= n/2.

In the last sum many summands still have ord2 bigger than n/2: if l is congruent to 3 modulo
4 then ord(S(l)) > n/2. On the other hand, if l is congruent to 1 modulo 4 then each
summand blbk2

. . . bkn
in S(l) has ord2(blbk2

. . . bkn
) = n/2. We conclude that ord2(Comn) =

n/2 if and only if the number c(n) of compositions of n− 1 into n parts, where the first part
is ≡ 1 mod 4 and the remaining n − 1 parts are even (zero parts are allowed), is odd. We
have

c(n) = [xn−1]
x

1− x4
·

1

(1− x2)n−1
= [xn−1]

x

1 + x2
·

1

(1− x2)n

≡ [xn−1]
x

1− x2
·

1

(1− x2)n
= [xn−1]

x

(1− x2)n+1
mod 2

=

(

3m− 1

m− 1

)

≡
3m

m

(

3m− 1

m− 1

)

mod 2

=

(

3m

m

)

.

It was noted by Kummer [9], see also Singmaster [11], that ordp(
(

a+b
b

)

) is equal to the number
of carries required when adding a and b in the p-ary notation. Applying this for p = 2, a = m,
and b = 2m, we get the stated criterion.

Corollary 12 For all n ≥ 3,

sn ≡

{

2 mod 2(n−1)/2 for odd n;
−2 mod 2n/2 for even n.

Let

Cn =
1

n+ 1

(

2n

n

)

be the nth Catalan number.

Proposition 13 For all n, Comn ≡ Cn−1 mod 3.

Proof: We have, for every non-negative integer k,

(2!x+ 3!x2 + · · · )k = (2x)k + 3ak(x)

with ak(x) ∈ Z[[x]]. Thus

∑

k≥0

(−1)k(2!x+ 3!x2 + · · · )k =
1

1 + 2x
+ 3

∑

k≥0

(−1)kak(x)

=
1

1 + 2x
+ 3b(x)

15



with b(x) ∈ Z[[x]]. Let m = ord3(n). Since ord3(k!) ≤ k − 1 for every k (Lemma 10), we
have

ord3

(

3k
(

n
k

)

)

≥ m+ 1 for k = 1, 2, . . . , n.

By Lemma 9,

n · Comn = [xn−1]

(

1

1 + 2x
+ 3b(x)

)n

≡ [xn−1]
1

(1 + 2x)n
mod 3m+1

= (−2)n−1

(

2n− 2

n− 1

)

.

Canceling in the last congruence the common factor 3m, we get

n

3m
· Comn ≡

(−2)n−1

3m

(

2n− 2

n− 1

)

≡
1

3m

(

2n− 2

n− 1

)

mod 3.

Since n/3m 6≡ 0 mod 3, we can divide by it and get

Comn ≡
1

n

(

2n− 2

n− 1

)

mod 3.

Corollary 14 For all n > 2,

sn ≡ −Cn−1 + (−1)n mod 3.

5 Concluding remarks

The simplicity property for permutations does not seem to have been studied until very
recently [10, 1]. We have begun the study of the numbers sn by showing that they are not
P-recursive, giving the first few terms of their asymptotic expansion, and showing that they
satisfy some unexpected congruence properties.

These results suggest a number of natural continuations. Although, in principle, we could
obtain more terms of the asymptotic expansion the entire expansion remains elusive, and
computing it seems to be rather a difficult problem. On the other hand we have some com-
putational evidence to suggest that the sequence Comn has additional congruence properties,
particularly with respect to odd primes.

We suggest also some algorithmic problems that are natural counterparts to the enumer-
ative results:

• How can one efficiently generate simple permutations in lexicographic order?

• Is it possible to generate simple permutations uniformly at random in worst-case linear
time per permutation?

• How efficiently can one recognise a simple permutation?

16



With regards to the final question, there is a natural dynamic programming algorithm
that achieves the task in O(n2) time. Namely, for a permutation π of length n we can
compute the values:

mπ(i, j) = min{πt : i ≤ t ≤ j}

Mπ(i, j) = max{πt : i ≤ t ≤ j}

for 1 ≤ i ≤ j ≤ n in time O(n2) using the facts that

mπ(i, j) = min(mπ(i, j), πj+1)

Mπ(i, j) = max(Mπ(i, j), πj+1).

Then we can test for each i < j whether Mπ(i, j) − mπ(i, j) = j − i. If this never occurs
then π is simple, if it does, then it is not. So in this instance the question is whether or not
one can do better than this.

We would like to thank an anonymous referee for a number of helpful comments.
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