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Abstract

We consider a class of binary sequences that generalize the Thue-Morse sequence.
In particular, we investigate the occurrences of palindromes in such sequences. We
also introduce the notion of the first difference of a binary sequence and characterize
first differences of our class of Thue-Morse type sequences. Finally, we define the
concept of a “change sequence” of a given binary sequence, a sequence which encodes
the positions at which a binary sequence changes values. We characterize the change
sequences corresponding to our class of Thue-Morse type sequences.

1 Introduction

The Thue-Morse sequence

{t(n)}∞n=0 = 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, . . .

is defined by t(n) = 0 if n has an even sum of binary digits, and t(n) = 1 otherwise. This
sequence has attracted much attention since its discovery by Axel Thue in the early 1900’s,
and is still the focus of much study. The Thue-Morse sequence can be constructed in a
surprising variety of ways and has numerous applications in diverse fields such as differential
geometry, algebra, number theory, and physics; see, for example, [3].

The Thue-Morse sequence can be generalized as follows: For k ≥ 2, define sk(n) as
the sum of digits in the base-k representation of a nonnegative integer n, and let tk(n) =
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sk(n) mod 2. The sequence {tk(n)}
∞

n=0 is thus a binary sequence, and the special case k = 2
yields the Thue-Morse sequence t2(n) = t(n).

In a recent paper, Allouche and Shallit [4] investigated palindromes in the sequences
{tk(n)}. Here a palindrome is defined in the usual sense: a sequence digits is a palindrome
if it reads the same forward and backward. For example, in the Thue-Morse sequence, the
first four terms 0,1,1,0 form a palindrome, as do the first 16 terms. Allouche and Shallit
proved the following result:

Theorem A (Allouche and Shallit [4]). For all k ≥ 2, the sequence {tk(n)}
∞

n=0 contains
palindromes of arbitrary length.

In our main result, Theorem 5.1, we generalize this result to a larger class of binary
sequences (which contains the sequences {tk(n)}). These sequences also can be defined as
fixed points of a class of mappings on binary words.

In the course of proving this result, we introduce the concept of the first difference of a
binary sequence. In Theorem 4.1 we characterize the first differences of our class of Thue-
Morse type sequences. The characterization involves another class of maps, so-called Toeplitz
maps, which we study in Section 2.

We relate the first difference to another concept, that of a change sequence of a binary
sequence. This is a sequence which encodes the positions at which the sequence changes
values. In a recent paper, Allouche et al. [1] determined the change sequence of the Thue-
Morse sequence and proved the following result:

Theorem B (Allouche et al. [1]). Let S be the set of integers n such that t2(n−1) 6= t2(n),
i.e.,

S = {1, 3, 4, 5, 7, 9, 11, 12, 13, 15, . . .}.

Then S is the set of integers n such that an even power of 2 exactly divides n.

In Theorem 3.1 we generalize this result to our class of Thue-Morse type sequences.

2 Notation and Preliminaries

We consider the set Σ∗ of finite words over the alphabet Σ = {0, 1}. We also consider the
set Σ∞ of infinite and finite words over Σ. For a finite word w we let |w| denote the length
of w, and we set |w| =∞ if w is an infinite word. We denote the ith letter of w by w(i), i.e.,
w(i) = ti if w = t1t2 . . . tb, where tk ∈ Σ for all k. Given two words w1 and w2, we let w1w2
denote the word obtained by the concatenation of w2 to the right of w1. The concatenation
of an arbitrary finite or infinite sequence of words is denoted analogously. We define the
complement of w to be the word obtained by interchanging the letters 0 and 1 in w, or
equivalently, by adding 1 modulo 2 to each letter of w. We denote the complement of w by
w.

We next define two morphisms, φw and ψw, on Σ∞.
Let w be a word with |w| ≥ 2. We let φw : Σ∞ → Σ∞ be the morphism defined by

φw(0) = w,

φw(1) = w.
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It is not hard to see that if |w| ≥ 2 and w(1) = 0, then there exists a unique fixed point
beginning with 0 of the morphism φw; i.e., there is a unique infinite word w beginning with
0 such that

w = φw(w).

Furthermore, w can be obtained by iterating φw:

w = φ∞w (0) := lim
n→∞

φnw(0).

For example, if w = 01, then w is the Thue-Morse sequence mentioned in the introduction.
The morphisms φw are special cases of so-called symmetric morphisms; see [7].

We also consider a second morphism ψw : Σ∞ → Σ∞ defined by

ψw(a) = wa,

where a ∈ Σ. Such a morphism is a special case of the Toeplitz morphisms (see [2, 5]). It is
not hard to see that there is a unique fixed point of ψw beginning with w(1); i.e., there is a
unique infinite word w∗ with w∗(1) = w(1) such that

w∗ = ψw(w∗),

and we can obtain w∗ by iterating ψw:

w∗ = ψ∞

w (w(1)) := lim
n→∞

ψnw(w(1)).

The fixed point w∗ is of the form

w∗ = w w∗(1) w w∗(2) w w∗(3) · · · .

This allows one to construct w∗ by starting with a sequence of the form

w w w · · ·

and successively filling in the “holes” with the terms of this sequence.
Allouche et al. [1, pp. 456–458] showed that if w = 101, then w∗ encodes the places at

which the Thue-Morse sequence changes values, i.e., w∗(n) = 1 if and only if t(n) 6= t(n−1).
In Sections 4 and 5 we shall need an operation ⊕ on the set Σ∗ that is defined as follows:

Let w and v be binary words of the same length b. Then

w1 ⊕ w2 = (w1(1) + w2(1))(w1(2) + w2(2)) · · · (w1(b) + w2(b)),

where addition is taken modulo 2.
To conclude this section, we define a product operation × on Σ∗ as follows: For any

words w, v ∈ Σ∗ with |v| = c, set

w × 0 = w, w × 1 = w, (2.1)

and
w × v = (w × v(1))(w × v(2)) · · · (w × v(c)). (2.2)

This operation was introduced by Jacobs in [11] and was generalized by Hoit [9, 10] to words
over alphabets {0, 1, . . . ,m}. This product is closely related to the morphisms φw defined
above; indeed, it is clear that w × v = φw(v).
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3 Change Sequences

Let C be the set of indices n such that t2(n− 1) 6= t2(n), where

{t2(n)}
∞

n=0 = {0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, . . .}

is the Thue-Morse sequence. As stated in the Introduction (see Theorem B), the set C is
characterized by the property that n ∈ C if and only if an even power of 2 exactly divides
n. In this section we generalize this result to the class of all fixed points of the morphisms
φw. To this end, we introduce the concept of a change sequence of a word as follows:

Definition 3.1. Let w be a finite or infinite word with |w| ≥ 2. We define the change
sequence Cw of w as the sequence of n ∈ {1, 2, . . . , |w| − 1} such that w(n) 6= w(n+ 1).

For example, if w = 0010 and w is the associated infinite word, i.e.,

w = 0010001011010010 · · · ,

then Cw = {2, 3} and Cw = {2, 3, 6, 7, 8, 10, 11, 12, . . .}.
In the following theorem we give a general method for determining Cw for an arbitrary

fixed points w.

Theorem 3.1. Let w be a word with |w| = b ≥ 2 such that w(1) = w(b) = 0, let w = φ∞

w (0),
and let Cw be the change sequence of w. Then Cw = {n ∈ N : db(n) ∈ Cw}, where db(n) is
the last non-zero digit in the base-b representation of n.

Proof. Let w = t1t2 · · · tb. Since for 1 ≤ r ≤ b − 1 we have db(n) = r if and only if
n = bi(bk + r) for some i, k ≥ 0, it suffices to show that

Cw = {bi(bk + r) : i, k ≥ 0, r ∈ Cw}. (3.1)

To prove this, it suffices to show the following two equivalences:

r ∈ Cw ⇐⇒ bk + r ∈ Cw (k ≥ 0, 1 ≤ r ≤ b− 1). (3.2)

m ∈ Cw ⇐⇒ bm ∈ Cw (m ≥ 1). (3.3)

To prove (3.2), notice that w = w0w1w2w3 . . . with wk ∈ {w,w} for all k. Clearly we
have Cw = Cwk

for all k. Since the words wk all have length b, for 1 ≤ r ≤ b the (bk + r)th
letter in w is equal to the rth letter in wk. Hence, for 1 ≤ r ≤ b − 1 and all k, we have
w(bk + r) 6= w(bk + r + 1) if and only if wk(r) 6= wk(r + 1); i.e., bk + r ∈ Cw if and only if
r ∈ Cwk

= Cw. This proves (3.2).
To show that (3.3) holds, fix m ≥ 1 and choose j ≥ 1 such that 1 ≤ m ≤ bj. We set

v = φjw(t1) = t1t2 · · · tbj

and note that m ∈ Cw if and only if m ∈ Cv. By definition, m ∈ Cv if and only if tm 6= tm+1,
which is equivalent to

φw(tm) = φw(tm+1).
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Now consider

φw(v) = φj+1w (t1)

= φw(t1)φw(t2) · · ·φw(tm)φw(tm+1) · · ·φw(tbj)

= φw(t1)φw(t2) · · ·φw(tm)φw(tm) · · ·φw(tbj).

Since |φw(ti)| = b for all i and φw(tm) begins and ends with the same letter, it follows that
m ∈ Cw is equivalent to bm ∈ Cφw(v) ⊂ Cw.

Remark. Theorem 3.1 requires that w begins and ends with a 0. However, it is easy to
check that for any word w with w(1) = 0, the word v = φw(w) = φw(φw(0)) both begins and
ends with a 0. Thus we can find the change sequence of w by applying Theorem 3.1 to the
word v and noting that v = limn→∞ φnv (0) = limn→∞ φnw(0) = w.

By the result of Allouche et al. quoted in the Introduction (Theorem B), the change
sequence of 01 is given by

C01 = {n = 22im : i ≥ 0, m odd}. (3.4)

We now verify this with Theorem 3.1. Since w = 01 ends in a 1, we must apply the theorem
to v = φ01(01) = 0110. We have |v| = 4 and Cv = {1, 3}, and so by Theorem 3.1 it follows
that

C01 = {n = 4i(4k + r) : i, k ≥ 0, r ∈ {1, 3}}

= {n = 4im : i ≥ 0, m odd}

= {n = 22im : i ≥ 0, m odd},

which proves (3.4).

4 First Differences

In this section we define the concept of the first difference of a word, and we determine
the first differences of words φ∞w (0) for w(1) = 0. First Differences of words over a general
alphabet have been used implicitly in a recent paper of Frid [7, pp. 359–360]. For first
differences of infinite integer sequences in a different context, see Chalice [6].

Definition 4.1. We define the first difference of a finite or infinite word w to be the word

∆w = (w1(2)− w1(1))(w1(3)− w1(2)) · · · ,

where subtraction is interpreted modulo 2.

Note that |∆w| = |w| − 1 for w of finite length. The following lemma relates the concept
of a first difference to that of the change sequence introduced in Section 3. The proof is
trivial.
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Lemma 4.1. Let w be a word. Then ∆w(i) = 1 if and only if i ∈ Cw.

Recall the sum operator ⊕, defined in Section 2 as the term-wise addition of two words
modulo 2. The next lemma states the relationship between the first difference of a sum and
the sum of the first differences:

Lemma 4.2. Let w1 and w2 be finite words. Then ∆(w1 ⊕ w2) = ∆w1 ⊕∆w2.

We now turn to the first differences of fixed points w. Notice, for example, that if
w = 011010, then ∆w = 10111. Now consider

φw(w) = 011010 100101 100101 011010 100101 011010.

Computing the first difference of φw(w), we obtain

∆(φw(w)) = 10111 1 10111 0 10111 1 10111 1 10111 1 10111

= ∆w ∆w(1) ∆w ∆w(2) ∆w ∆w(3) ∆w ∆w(4) ∆w ∆w(5) ∆w

= ψ∆w(∆w)∆w,

where ψ∆w is the map introduced in Section 2. It is not hard to see that the latter word
ψ∆w(∆w)∆w agrees with the word ψ∆w(ψ∆w(∆w(1))) in all but the rightmost position.
Since φ∞w (0) = w and ψ∞

∆w(∆w(1)) = (∆w)∗, this suggests the following connection between
∆w and (∆w)∗:

Theorem 4.1. Let w be a word with |w| = b ≥ 2 and w(1) = w(b) = 0. Then the
first difference of the fixed point of the morphism φw is exactly the fixed point of ψ∆w, i.e.,
∆w = (∆w)∗.

Proof. It is sufficient to show that ∆w(i) = 1 if and only if (∆w)∗(i) = 1.
Case 1. i 6≡ 0 (mod b). Then we have i = bk+ r, where k ≥ 0 and 1 ≤ r ≤ b− 1. By the

construction of (∆w)∗ we have (∆w)∗(i) = 1 if and only if ∆w(r) = 1. By Lemma 4.1 this
holds if and only if r ∈ Cw. As in the proof of Theorem 3.1, we see that r ∈ Cw holds if and
only if i = bk + r ∈ Cw. Hence, (∆w)∗(i) = 1 holds if and only if i ∈ Cw, which by Lemma
4.1 is equivalent to ∆w(i) = 1.

Case 2. i ≡ 0 (mod b). Then i = bjm for some j ≥ 0, with m 6≡ 0 (mod b). Now as in
the proof of Theorem 3.1 we see that bjm ∈ Cw (i.e., ∆w(bjm) = 1) if and only if m ∈ Cw.
Since m 6≡ 0 (mod b), by Case 1 we have m ∈ Cw if and only if (∆w)∗(m) = 1. By the
construction of (∆w)∗ we see that the latter is equivalent to (∆w)∗(i) = 1.

5 Palindromes

We now turn our attention to palindromes. Recall that the complement w is the word
obtained by interchanging 0 and 1 in w. If |w| is finite, then we define the reversal wR to
be the word w written “backwards”; that is, for |w| = b,

wR = w(b)w(b− 1) · · ·w(2)w(1).

The complement and reversal operations have the following properties, whose proofs are
immediate from the definitions.
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Proposition 5.1.

(i) (w)R = wR.

(ii) (wR)R = w = w.

(iii) (∆w)R = ∆(wR) .

(iv) (w1w2 · · ·wn)
R = wR

nw
R
n−1 · · ·w

R
1 .

Definition 5.1. A palindrome is a word w such that wR = w. A skew-palindrome is a
word v such that vR = v. If a word is either a palindrome or a skew-palindrome, then it is
said to be a quasi-palindrome. We denote the sets of palindromes, skew-palindromes, and
quasi-palindromes by P , S, and Q, respectively.

For example, the words 0110110 and 011001 are both quasi-palindromes. Specifically,
the word 0110110 is a palindrome and the word 011001 is a skew-palindrome.

Proposition 5.2. Let w and v be words of lengths b and c, respectively. Then:

(i) w ∈ P if and only if w(i) = w(b− i+ 1) for 1 ≤ i ≤ b.

(ii) v ∈ S if and only if v(j) 6= v(c− j + 1) for 1 ≤ j ≤ c.

(iii) v ∈ S implies that |v| is even.

(iv) w ∈ P if and only if w ⊕ wR = 00 · · · 0; v ∈ S if and only if w ⊕ wR = 11 · · · 1.

(v) P ∩ S = ∅.

Proof. (i) and (ii) follow from Definition 5.1. To prove (iii), observe that if |v| = c were odd,
then v(j) = v(c − j + 1) for j = dc/2e, which violates (ii). The last two properties follow
from (i) and (ii).

Recall that the product of two words w and v is defined by

w × v = φw(v).

Given two sets of words U and V , we let U × V denote the set of all words u × v, with
u ∈ U and v ∈ V . We show that quasi-palindromes are closed with respect to this product
operation.

Proposition 5.3. Let w and v be finite words. Then w,v ∈ Q if and only if w × v ∈ Q.
Moreover, we have the following containment relations:

P × P ⊂ P , (5.1)

P × S ⊂ S, (5.2)

S × P ⊂ S, (5.3)

S × S ⊂ P . (5.4)
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Proof. Suppose first that w,v ∈ P with |w| = b and |v| = c. Then

w × v = φw(v) = w1w2 · · ·wc,

with wi = φw(v(i)) for 1 ≤ i ≤ c. Notice for each i that we have wi ∈ {w,w} ⊂ P . Applying
Proposition 5.1 (iv), we obtain

(φw(v))⊕ (φw(v))
R = w1w2 · · ·wc ⊕ wR

c w
R
c−1 · · ·w

R
1

= (w1 ⊕ wR
c )(w2 ⊕ wR

c−1) · · · (wc ⊕ wR
1 ).

Since v ∈ P , Proposition 5.2 (i) implies

wi = φw(v(i))

= φw(v(c− i+ 1))

= wc−i+1.

Since wi ∈ P , it follows from this and Proposition 5.2 (iv) that

(wi ⊕ wR
c−i+1) = (wi ⊕ wR

i )

= 00 · · · 0.

Hence
(φw(v))⊕ (φw(v))

R = 00 · · · 0,

which implies that φw(v) ∈ P . This proves (5.1). The relations (5.2)–(5.4) can be proved
by similar arguments. It follows from (10.1)–(10.4) that φw(v) ∈ Q whenever w ∈ Q and
v ∈ Q.

Conversely, suppose φw(v) ∈ Q. Then φw(v) is given by

φw(v) = φw(v(1))φw(v(2)) · · ·φw(v(c)).

By definition φw(v) ∈ Q implies that either

φw(v) = (φw(v))
R

or
φw(v) = (φw(v))

R.

In particular, we have
φw(v(1)) = (φw(v(c)))

R

or
φw(v(1)) = (φw(v(c)))

R.

It follows that either w = wR or w = wR, and in any case we have w ∈ Q. It remains to
be shown that v ∈ Q, and to do this we again distinguish several cases. Suppose first that
w ∈ P and φw(v) ∈ S. Now φw(v) is of the form

φw(v) = φw(v(1))φw(v(2)) · · ·φw(v(c)).
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By our assumption that φw(v) ∈ S it follows that

φw(v(i)) = (φw(v(c− i+ 1)))R (5.5)

for 1 ≤ i ≤ c. If v(i) = 0, then (5.5) and our assumption w ∈ P implies that v(c− i+1) = 1.
Likewise, v(i) = 1 implies that v(c− i+ 1) = 0. Hence we have v(i) 6= v(c− i+ 1) for all i,
so v ∈ S by Proposition 5.2 (ii). The proofs of the remaining cases are similar.

We now characterize first differences of palindromes.

Lemma 5.1. Given a finite word w ∈ Σ∗ with |w| ≥ 2, we have w ∈ Q if and only if
∆w ∈ P.

Proof. Applying Proposition 5.2 (iv), it follows that ∆w ∈ P is equivalent to

00 · · · 0 = ∆w ⊕ (∆w)R

= ∆w ⊕∆(wR) (Prop. 5.1(iii))

= ∆(w ⊕ wR) (Lemma 4.2).

Hence w ⊕ wR is either 00 · · · 0 or 11 · · · 1, and by Proposition 5.2 (iv) this is equivalent to
w ∈ Q.

We now consider palindromes in infinite words of the form

w∗ = ψ∞

w (w(1))

introduced in Section 2.

Lemma 5.2. Let w be a finite word. If w∗ contains arbitrarily long palindromes, then w
itself is a palindrome.

Proof. Let v be a subword of w∗ that is a palindrome. Then v is of the form

v = x[u1]w[u2]w · · ·w[un]y, (5.6)

where [ui] for 1 ≤ i ≤ n are the letters filling the “holes” arising in the construction of w∗,
and x and y are a suffix and prefix of w, respectively. (We allow the possibility that x or y
or both are empty.)

Suppose first that |x| = |y|. If we subtract |x| + 1 letters from each side of (5.6), then
the remaining word

v0 = w[u2]w[u3] · · · [un−1]w (5.7)

is still a palindrome. Notice that v0 both begins and ends with w. Since v0 ∈ P , it follows
that w = wR, and hence w ∈ P .

Now assume without loss of generality that |x| > |y|. Let |w| = b, and let |x| = b −m
for some m with 0 ≤ m < b. Then |y| = b −m − r for some r with 1 ≤ r ≤ b −m (since
|x| > |y|). Now let x1 be the suffix of x of length |x| − |y| − 1, so that |x1| = r − 1. If we
remove |y|+ 1 letters from each side of v, then the resulting word

v1 = x1[u1]w[u2] · · · [un−1]w (5.8)
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must still be a palindrome. Since x1 is a suffix of w, we can write w as

w = aw(b− r + 1)x1, (5.9)

where a is the prefix of w of length b − r, and w(b − r + 1) is the (b − r + 1)st letter of w.
Substituting (5.9) into (5.8) we obtain

v1 = x1[u1]aw(b− r + 1)x1[u2] · · · [un−1]aw(b− r + 1)x1. (5.10)

Subtracting r − 1 letters from each side of (5.10), we obtain

v2 = [u1]aw(b− r + 1)x1[u2] · · · [un−1]aw(b− r + 1), (5.11)

which again is a palindrome. Since v2 ∈ P , it follows that

[u1]aw(b− r + 1) = ([un−1]aw(b− r + 1))R

= w(b− r + 1)aR[un−1].

Hence [u1] = w(b− r + 1) = [un−1]. Proceeding inductively (by removing at each step b+ 1
letters from each side) we see that [u1] = [u2] = · · · = [un−1]. Since, by assumption, w∗

contains arbitrarily long palindromes, we can take n in (5.6) arbitrarily large. In particular,
the “holes” arising in the construction of w∗ must include arbitrarily long strings of consec-
utive 0’s or consecutive 1’s. This is only possible if w = 00 · · · 0 or w = 11 · · · 1. Thus w is a
palindrome.

Remark. The converse of the lemma is also true (though we will not need this fact here):
If w is a palindrome, then w∗ contains arbitrarily long palindromes.

We are now ready to state and prove our main result, giving us a necessary and sufficient
condition for a fixed point w to contain palindromes of arbitrary length. For similar subject
matter, see Hof, Knill, and Simon [8].

Theorem 5.1. Let w be a finite word with |w| = b ≥ 2, and w(1) = 0. Then w contains
arbitrarily long palindromes if and only if w is a quasi-palindrome.

Proof. Suppose first that w ∈ Q. Then by Proposition 5.3 we have φw(w) ∈ P , and hence
φ2n+1w (w) ∈ P for all n. Thus φ∞w (w) = w contains arbitrarily long palindromes.

Conversely, if w contains arbitrarily long palindromes, then by Lemma 5.1 its first differ-
ence ∆w also contains arbitrarily long palindromes. If w(b) = 0, then we can apply Theorem
4.1 to conclude that (∆w)∗ contains arbitrarily long palindromes. By Lemma 5.2 it follows
that ∆w ∈ P , which by Lemma 5.1 implies that w ∈ Q. If w(b) = 1, then we cannot apply
Theorem 4.1 directly to w. However, we may apply the theorem to the word u = φw(w) to
obtain ∆w = ∆u = (∆u)∗. It follows that (∆u)∗ contains arbitrarily long palindromes. As
before, this implies that φw(w) = u ∈ Q. By Proposition 5.3 it follows that w ∈ Q.
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